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ABSTRACT. Markov chain has been a popular approach for market share modelling and
forecasting in many industries. This paper presents four mathematical models for the
same market share problem based on different underlying assumptions. The four models
include a homogeneous Markov model, a time-varying Markov model, a new extended
time-varying Markov model, and a novel non-Markov model. A numerical example in
the telecommunications industry is included to illustrate that all four models can be used
for market share forecasting. Although Markov models are popular, forecasters should be
cautious in choosing Markov or the alternative models for their problems in hand. In
order to achieve the best forecasting results, forecasters should have in-depth understand-
ing of the industries, market conditions, and trends, then make appropriate assumptions,
and apply or even develop the most suitable models.
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1. Introduction. Markov chains have been widely studied and applied in brand switch-
ing problems and market share forecasting [1,2]. The Markov brand switching model
studies customer loyalty and forecasts the brands, products, or service that a customer
is likely to purchase next. As aggregation of individual customer choices, market shares
of companies and their competitors can also be studied using similar approach. In the
literature, most applications used a memory-less process, or first order Markov chain to
model the probability that a customer switches from one provider to another over a period
of time, and to forecast future market shares.

An early example in the literature presented a Markovian analysis of newspaper sub-
scriptions [3]. Similarly, it was proposed in the work of [4], that mobile subscriptions offer
a more contemporary example to introduce students to Markov chains. More recently,
Markov chains were applied to model market shares of mobile operators [5,6]. In the
work of [7], a diffusion growth model was included in the Markov formulation to fore-
cast changes in market share according to phases in the product life cycles. In another
study related to the telecommunications industry, a non-homogeneous Markov model was
applied to forecast market shares of all competitors, using non-stationary transition prob-
ability matrices, which could be modified to reflect consequences due to actions such as
marketing activities taken by providers [8]. In all these previous studies, the Markov chain
model was used to investigate the movements of a group of buyers among a number of
sellers, and market shares as proportions are used in the state vectors. Markov chains
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have also been applied to other problems that are similar in nature but in different areas,
such as manpower supply [9,10], home heating units forecasting [11], credit risk analysis
[12], tourist destinations [13], and student progressions in a regional university [14]. In a
very recent paper [15], an integrated mathematical model linking the Markov chain model
with a product life cycle model was proposed in forecasting market shares of all competi-
tors, and their market share components including customers retained, customers gained
from overall market growth, and customers gained from competitors over all stages of the
product life cycle. This was an interesting and unique approach in which the impact of
varying overall market size on the actual market share of individual sellers was studied.

This paper aims to review the popular homogeneous Markov model and the time-
varying Markov model; and to present two new models. The first new model, an extension
based on the time-varying Markov model, is capable of modelling the effect of changes in
market sizes; while the second model is completely new and non-Markov. The focus of
Markov models is on the transition probabilities. The non-Markov model is novel with
a new focus on the trends of categories of customers. Further details will be provided
later. As these models have their own assumptions and focuses in the formulation, each
model would be particularly suitable for certain types of scenarios. Although Markov
chain models are elegant, popular in academia, and have found wide applications in many
research disciplines, they might not be the only possible or appropriate model for a par-
ticular problem in hand. The main contribution of this paper is to propose a number of
alternatives and demonstrate how they have been developed based on different assump-
tions. In practice, it is important to understand in depth the nature and characteristics
of the problem, and then choose the most suitable forecasting model in order to achieve
the most accurate results. This paper will present the formulations of the four models
and compare the different approaches. A numerical example will be provided to illustrate
how these models can be applied to the same market share forecasting problem.

2. Four Mathematical Formulations. This section will present the mathematical for-
mulations of the four brand switching models for market share modelling and forecasting.
They are:

1. Homogeneous Markov model (m1I)

2. Time-varying Markov model (m2)

3. Extended Time-varying Markov model (m3)
4. Non-Markov model (mJ)

For simplicity, we will refer to these models as m1 to m/ in the following.

2.1. Homogeneous Markov model (m1) formulation. In a Markov model, a popu-
lation of individuals moves among a finite set of states in a sequence of trials at discrete
points of time. For the brand switching problem, the individuals are subscribers or cus-
tomers. The finite set of states, denoting the set of providers or competitors, is defined
as the state space, S:

s€ S, S ={s1,8,",Smw1,5m}, M < 0.

There are M providers in total. The discrete points of time, referred to as epochs or time
steps, are defined by a set of time steps, T

tET,T:{l,Q,"' 7tmax}a tmaxgoo-

A customer is with a provider at each time step, and will stay or move to another
provider at the next time step. Let X; be the provider of a particular customer at time
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step t. And X, is a random variable taking values in the state space S. The sequence
X = X, Xy, X3,--- is a Markov chain if the following equality holds:

P X =51 Xi =04, Xiy =dpy, -, Xy =i} = P{Xy1 = j | Xy = i}, Vit

This equality is the so-called Markov condition that states that, if the system is in state
¢ at time step ¢, then the probability that it will be in state j at time step ¢ + 1 does not
depend on the states of the system in earlier times. In other words, this is a model of a
memory-less process, or first order Markov chain. For a homogeneous Markov chain, the
transition probability
P{Xi1 =7 | Xi =1} =pi,

is independent of time step ¢. The probability p; ; represents the chance that a customer of
provider ¢ at time step ¢ will change to provider j at the next time step t+1. The transition
probabilities can be placed together in a matrix P, called the transition probability matrix,
where P(i,j) = p; ;. The transition probability matrix has the following properties:

M
0<py; <land » piy=1, fori=1,2--- M.
=1
Transition probability matrices are usually estimated based on historical data. Let us
also define the market share vector, Y}, at time ¢ > 1, as

Y= [yils1) wi(s2) - wilsm1) welsur)] -

The components of Yy, yi(s1),- -+, y:(su), represent the market shares of providers s; to
sy at time £. The market share of a provider is a proportion. Therefore, the combined
market share of all providers is equal to one, i.e., 224:1 y1(sr) = 1. To predict the next
market share vector Y;,;, we simply multiply Y; by the transition probability matrix P:

Yiy = YiP.

To forecast market shares at time step ¢ 4+ 1 based on the initial market share vector at
time step ¢ = 1, we have

Yy = Y, P, and
Yy =YoP =Y, P?,
}/t+1 — }/IPt (1)

The numbers of customers of the providers at time step ¢ can be represented by a popu-
lation vector, (),
Qt = Mt}/ta

where M, is the overall market size, or total number of customers of all providers, at time
step t. We have now completed the mathematical formulation of model m1.

Figure 1 illustrates a simple scenario of model m1. There are two providers: Us and
Competitor. In this diagram, each circle represents the market share of a provider at a
certain time step. Each row of circles shows the market shares of all providers at a certain
time step. Each column shows the market shares captured by a specific provider changing
over time. The arrows represent the market share transitions from one time step to the
next. The vertical downward arrows represent the market share that a provider retains;
while the diagonal ones represent the market share that a provider gains from, or loses
to, its competitor. For example, at time step ¢, Competitor or provider s, has a market
share y;(sx). From time step ¢ to t + 1, Competitor gains p, ; of the market share of Us
or provider s;, and retains pyj of its own market share. At time step ¢ 4 1, provider s
will have a market share v41(sr) = yi(s1)P1x + Y(Sk)pee. The transition probabilities
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Us (s9) Competitor (Sy)
Time t
Yi(S1)P1k
Yi(S1)P11 Yi(Si)Prk
Time t+1
Yie1(S1) P11 Yes1(Si)Pici
Time t+2

FIGURE 1. Homogeneous Markov model (m1)

p1k and pg k. are elements of the transition probability matrix P. The term v (sg) is the
k'™ component of the market share vector Y;,;. The market share vectors at future time
steps can be easily calculated using Equation (1).

To decide if the Markov chain model m1 is a suitable model for a forecasting problem,
a major consideration should be given to whether the Markov condition is an appropriate
assumption for the problem [16].

2.2. Time-varying Markov model (m2) formulation. If the transition probability
matrix P is constant, the Markov chain is time homogeneous (m1). When P varies over
time, the sequence becomes a time-varying Markov chain (m2), and P; will be used instead
of P. And the following equations will be used instead of Equation (1):

}/2 - S/IPI; and
Ys =YoP, =Y1P Py,

t
Yipr =ViP Py P =Y [[ Pa 2)
n=1

Figure 2 illustrates a simple case of model m2. There are two providers: Us and
Competitor. This diagram is similar to Figure 1 with the only difference that the transition
probability p; ; used in model m1 becomes time-dependent; and therefore, the time-varying
transition probability py; ; is used instead. For example, at time step ¢+ 1, provider s will
have a total market share y;1(sx) = ye(s1)De1,k + Ye(Sk)Pyek- The transition probabilities
Py and pygr are elements of the transition probability matrix F;.

Whether a homogeneous (mI) or time-varying (m2) Markov chain model should be
used depends on the nature of problem, data availability, and many other considerations.
The transition probability, p; ; for model m1, or py; ; for model m2, defines the proportion
of market share that provider s; loses to provider s; (or s; gains from s;) at time step ¢. In
general, model m1 that has a constant P would be suitable for modelling competition in
a more stable market condition, while m2 that has a time-varying P, for a more dynamic
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Us (s9) Competitor (S)

Y1 (sk)pt+1\k,k

Time t+2

FIGURE 2. Time-varying Markov model (m2)

or changing market condition. For example, during the growing phase of a product, or in
a highly competitive environment where players are usually more aggressive, and creative
in offering special deals in order to gain more market shares, one would expect a time-
varying Markov model (m2) to perform better than a homogeneous Markov model (m1),
as it is more likely that the transition probabilities would be changing rather than staying
constant. Similar to model m1, model m2 is suitable for forecasting problems that meet
the Markov condition.

2.3. Extended time-varying Markov model (m3) formulation. In both models
m1 and m2, the components of the state vector Y; are market shares, i.e., proportions,
at all time steps. These models can be applied to forecast market shares, but not actual
numbers of customers. In other words, these models can inform the forecasters that the
total market share of all competitors is equal to one at any time, but are not able to
tell what the total number of customers is, or whether the overall market is growing or
shrinking. The model m& proposed in this section aims to address this limitation, and
is developed to forecast the overall market size in terms of customer numbers, as well as
market share and number of customers of each competitor at each time step.

The extended Markov model (mJ) makes use of the same time-varying transition proba-
bility matrix, P;, as in model m2. However, the market share vector Y; used in the previous
models, m1 and m2, is replaced with the population vector, ();. This model assumes that
the Markov condition applies, and the transition probabilities are non-stationary.

The mathematical formulation of model m? is given as follows. Let the growth multi-
pliers of market sizes of providers be expressed as a 1 x M vector G:

G:[Ql g2 - QM]-

The growth multiplier, g;, is used to model the growth and shrinkage in market size
captured by a provider, s;, from one time step to the next. The population vector at the
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next time step, ¢ = 2, is given as:
Q=GO P = [gq(s1) gai(s2) -+ guai(sm)] P,

where ® denotes the element-wise multiplication operator. To forecast the future popu-
lation vectors based on the initial population vector )y,

Q=GO QPh=GOGCOLPP= [g%ql(sl) g2qi(s9) - -+ 912\/[(]1(3M)] P, P,,
t
Qt+1 = G@at @ Ql H Pn = [g{fh(sl) géql (82) PN g}t\/qu (SM)] P1P2 Ce Pt;
n=1

where G®! denotes the t'" power of vector G using element-wise multiplications. To
forecast the next population vector @)y from @y,

Qi1 =GOQP, = [gia(s1) -+ giwl(s) -+ gualsm)] P (3)

This single equation serves two purposes at each time step. The first purpose, which
is the element-wise product G ® @)y, is to adjust the market size of each provider s; by
multiplying ¢;(s;) with a growth multiplier g;. The term g;q;(s;) takes into account the
customers who are completely new to the service, and those who leave permanently. To
clarify, the new customers indicate those who have never used the service provided by
any provider before, and the ones who leave the provider indicate those who will cease
to use the same service provided by any provider. The purpose is to model the effects to
the customer numbers of individual providers due to natural growth or shrinkage of the
overall market. The second purpose, which is similar to that of the previous model m2, is
to take care of customer transitions among providers by multiplying with the time-varying
transition probability matrix P;.

Figure 3 illustrates a simple case of model m3. There are two providers: Us and
Competitor. Unlike models m1 and m2, the circles in model m3 represent customer
numbers, ¢;(s;), rather than market shares, y,(s;). Compared to model m2 shown in
Figure 2, there is an extra row of circles (drawn in dash lines) between two consecutive
time steps. This extra row shows the effect due to market size changing with customers
joining and leaving. The combined effect of customers newly joined (the big arrow Join)
and left permanently (the big arrow Leave) is shown in the dashed circles, which contains
the term g¢;q;(s;) in Equation (3). Assuming this diagram represents a product which is
in the growing phase of its product life cycle, the net increase in the overall market size
would be equal to [g1¢:(s1) + gkqe(sk)] — [@:(s1) + qi(sg)] from time step ¢ to ¢ + 1. If the
overall market is shrinking, this number will be negative. Following this intermediate step
of market size adjustment, multiplying the transition probabilities will give us the final
numbers of customers at the next time step ¢ + 1. For example, our competitor s, will
have a total number of customers, yii1(sk) = 916:(51)Pej1.k + 98 (Sk)Pejkk, at time step
t+1.

The main advantage of m3 is that it can model the effect of changes in market sizes,
and forecast in terms of, not just market shares, but numbers of customers. The growth
vector, (G, which can be estimated based on historical data or the experiences of the
forecasters, contribute mostly to this advantage. As the growth vector G is a constant in
the formulation, one would expect this model to predict more accurately for problems in
which the growth rates are steady, or to be more appropriate for short term prediction.
However, this growth vector can be modified to become a time-varying vector, G;. In
that case, the model would be more suitable for longer term prediction that will take into
account the variations of growth rates, or different stages of the product life cycle.
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FIGURE 3. Extended time-varying Markov model (ms3)

2.4. Non-Markov model (m4) formulation. In the previous three models, the tran-
sition probability matrix, which models the transitions of market shares among providers
over time steps, plays a key role in the formulation. In this section, we propose a new,
non-Markov forecast model (m4) in which transition probability is not a notion in the
formulation. The focus of the model is on the individual trends of each category of cus-
tomers. The group of customers who moves from a specific provider to another, or to
itself, over time steps is called a category. This model assumes that the trends are inde-
pendent of each other, and aims to forecast the future trend of each category of customers.
In other words, each category follows its own trend. Similar to model m3, this model uses
customer numbers rather than market shares in the formulation.
Let us first define the customer number matrix N, as

Mg - M
Nt — . . .
Ngpmr -0 T MM

where ny; ; is the number of customers switching from provider, s;, to s;, at time . Each
element, n); ;, of the matrix Ny is the number of a particular category of customers at
time step ¢. The diagonal elements in the matrix, ny;;, are the net numbers of those who
stay with, newly join, and have left provider s;, during time step ¢ to t + 1. The newly
joined customers are totally new to the service, and not a previous customer of any other
providers. The ones who left, are leaving permanently and will cease using the service
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again. Similar to model m3, this model also allows us to model the effect of market growth
or shrinkage.

The total customer number of each provider at time step ¢ can be determined, and
placed together in a population vector, (Q;, where

Qt:[Qt(Sl) q(sk) e Qt(SM)]

m m m
= |2 v Mkttt D M| (4)
=1 =1 =1

The summation Y ", nyik 15 the total number of customers that provider s; has at time
step t. In addition, we define a constant M x M matrix N’ to represent the relative
changes of customer numbers from one time step to the next as:

!
Ny 00 My

!
a0 Mg

We assume that the relative change n; ; of customer numbers remains constant over the
whole forecasting period. We use the following equation to find the customer numbers at
the next time step:

max(0, 1,1 + g (s1)ny ) - max(0,ngar + q(s1)n] )
max (0, nyar1 + qe(sar)niyys) -+ max(0, ngarnr + q(Sar) Ny ar)

The maximum function ensures that the number of customers in each category is non-
negative at all time. Once Ny, is determined, we can apply Equation (4) to calculate
the number of customers for all the providers, and their corresponding market shares.

Figure 4 illustrates model m4 and how customer numbers change from one time step
to the next. In this diagram, the circles represent the total numbers of customers owned
by a provider, ¢;(sy), while the ellipses represent the numbers of customers in particular
customer categories at certain time step ¢. As shown in Equation (4), the total number of
customers of provider, ¢;(s¢), is equal to the sum of the categories of customers switched
to provider sy, i.e., 221 nyik- This can be seen in a row that the customer number in a
circle is equal to the sum of that in the ellipses. From time step ¢ to t+ 1, each category of
customers changes according to Equation (5). For example, nyy1j14 = ngpp + q(se)n) g,
and nyyq1) > 0. This shows the number of customers, in the category of customers
switching from provider s, to s, changing from g to 14411k, from time step ¢ to ¢+ 1.
In summary, model m/ takes a completely different approach compared with the previous
Markov models, and the focus is placed on the trends of categories of customers rather
than transition probabilities among providers. In the next section, we will apply these
four models to a numerical example.

3. Numerical Example. We will present a numerical example of subscribers switching
providers in the telecommunications industry, a typical Markov chain application. The
four models will be applied to the same problem. In this example, the historical data from
year 2010 to 2011 is available. There are four providers: s; = Incumbent; sy = NextGen;
s3 = CowBoy; s, = Others. The numbers of subscribers switching providers in year 2010
and 2011 are given in Tables 1 and 2.

The data is hypothetical. Over the period of 2010, provider Incumbent had 1600000
subscribers that include existing customers retained from the previous year, new customers
who were not previously with any other providers, subtracting those who left completely
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FIGURE 4. Non-Markov model (m/)
TABLE 1. Subscriber numbers in 2010
2010 Incumbent NextGen CowBoy Others Total
Incumbent 1600000 12000 7000 8300 | 1627300
NextGen 8900 750000 20000 1400 | 780300
CowBoy 1800 1200 125000 2776 | 130000
Others 3200 1750 2250 166000 | 173200
Total 1613900 764950 154250 178476 | 2711576
Market Share 0.5952 0.2821 0.0569 0.0658 1
TABLE 2. Subscriber numbers in 2011
2011 Incumbent NextGen CowBoy Others Total
Incumbent 1633800 12800 8300 9900 | 1664800
NextGen 9500 777200 19500 1650 | 807850
CowBoy 2100 1800 133500 1868 | 139268
Others 4100 2400 2778 185200 | 194478
Total 1649500 794200 164078 198618 | 2806396
Market Share 0.5878 0.2830 0.0585 0.0708 1

1213

and ceased to be customers of any providers. In the same period, Incumbent lost 12000
customers to NextGen, 7000 to CowBoy, and 8300 to others. The numbers in the rightmost
column show the total of these numbers for all providers. On the other hand, the numbers
in the second last row show the total of existing and new customers, plus customers gained

from competitors.

For example, provider Incumbent has a total of 1613900 subscribers,

including 1600000 existing and new subscribers joined in 2010; 8900 customers gained
from competitor NextGen; 1800 from CowBoy; and 3200 from Others.
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In practice, the amount and format of data available may be different. The forecasters
may need to use different approaches in estimating the transition probability matrices,
and apply statistical tests to ensure best estimates of historical data are used.

3.1. Numerical example — forecasting using model m1. In a homogeneous Markov
model (m1), the transition probability matrix P is assumed constant over time. Therefore,
we will take averages to estimate p;; based on the customer numbers in year 2010 and
2011. For example, py; can be estimated:

1 ( 8900 9500

— - — 0.01158.
P21 =75 780300+807850> 001158

Other p; ; values in the matrix P can be determined in a similar manner,

0.98230 0.00753 0.00464 0.00552
p— 0.01158 0.96161 0.02489 0.00192
~10.01442 0.01105 0.95721 0.01732

0.01978 0.01122 0.01364 0.95536

The numbers in the last row of Table 2 can be used as the components in the initial
market share vector Y;:

Y, = [0.5878 0.2830 0.0585 0.0708], and

with the above values and Equation (1), we can forecast market shares in the next few
years. The results are summarized in Table 3.

TABLE 3. Forecast by m1

Incumbent NextGen CowBoy Others
0.5878 0.2830 0.0585  0.0708
0.5829 0.2780 0.0667  0.0724
0.5782 0.2733 0.0745  0.0741
0.5737 0.2688 0.0818  0.0758
0.5693 0.2645 0.0887  0.0775
0.5651 0.2605 0.0951  0.0792

S U = W N T+

This m1 model has been widely applied to many problems in the literature. It is able to
forecast the market shares of all the competitors, but not the actual numbers of customers.
In other words, this approach cannot determine the overall market size and the customer
number of each provider.

3.2. Numerical example — forecasting using model m2. If the probabilities that
subscribers switching providers are changing or following certain trends rather than re-
maining constants, it would be more appropriate to forecast using a time-varying Markov
chain (m2). Let us define a difference matrix AP, where

Py = P+ AP; and AP(i,7) = 0p; ;.

We can estimate AP based on the subscriber numbers in Tables 1 and 2. For example,
dp2,1 can be calculated:
9500 8900

— =0. 4.
807850 780300 0000

5292,1 =
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Other dp; ; values can be calculated in a similar manner:

—1.8446 0.3144  0.6840  0.8462
| 0.3538 0.8910 —1.4930  0.2483 L
AP =1 13149 37487 27506 —7.8142| X110

2.6063 2.2368  1.2936 —6.1368

Once AP is determined, we can calculate P, at each time step to forecast the next Y;
using Equation (3). All elements in P, must not be negative as they are probabilities. If
(pyi; + 0pij) < 0, the next transition probability p,i1);; should be set to 0; and other
probabilities in the same row need to be adjusted so that the sum of row i remains one.
By using Equation (2), the market share vector can be determined at each time step. The
forecast results are shown in Table 4. If we were to ask which model, m1 or m2, is better,
the answer would be it depends. It depends on whether constant or varying transition
probabilities are better estimates of the reality. The forecaster will need to make the
assumption based on past experiences, or gather more data and resort to some statistical
means to decide which model to use.

TABLE 4. Forecast by m2

Incumbent NextGen CowBoy Others
0.5878 0.2830 0.0585  0.0708
0.5818 0.2792 0.0674  0.0716
0.5754 0.2765 0.0756  0.0725
0.5685 0.2749 0.0832  0.0733
0.5614 0.2744 0.0901  0.0742
0.5539 0.2750 0.0962  0.0750

S U i W N T+

3.3. Numerical example — forecasting using model m3. A limitation of both the
homogeneous and time-varying Markov models presented is that they can only forecast
market shares, but not actual customer numbers. Being able to predict the actual numbers
of customers can be very useful for any service provider. In the following we will show
how models m3 and m4 can be used to obtain this information.

From Tables 1 and 2, we can estimate the growth vector G as follows:

_ 11664800 194478
1613900 178476

From Table 2, we can start with ) as:

Q1 = [1649500 794200 164078 198618] .

:[1.0315 1.0561 0.9029 1.0897].

By using the same P, as in Section 3.2, and Equation (3), we can forecast market shares
in the next few years. The results are summarized in Table 5. There is an additional
column which shows the overall market size in terms of numbers of customers at each
time step. The previous models (m1 and m2) are not able to provide this information
due to their limitations.

3.4. Numerical example — forecasting using model m/. Unlike the previous three
models, model m/ is a non-Markov model. Based on the data given in Tables 1 and 2,
the N’ matrix can be estimated easily. For example,

, 1633800 — 1600000
=

= = (0.02094.
’ 1613900 0.0209
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TABLE 5. Forecast by m3

Incumbent NextGen CowBoy Others Q:
0.5878 0.2830 0.0585  0.0708 | 2806396
0.5799 0.2847 0.0603  0.0751 | 2904830
0.5716 0.2871 0.0618  0.0795 | 3006878
0.5630 0.2904 0.0629  0.0838 | 3112896
0.5540 0.2944 0.0636  0.0879 | 3223242
0.5448 0.2991 0.0642  0.0919 | 3338269

S O W N |

To begin forecasting, we need the following:
Q= [1649500 794200 164078 198618], and

2.09431 0.04957  0.08055  0.09914
0.07844 3.55579 —0.06536  0.03268
0.19449 0.38898  5.51053 —0.58865
0.50647 0.36579  0.29713 10.80473

Using the customer numbers in Table 2, for the matrix Ny, and Equation (5), we can
determine the customer number matrix at the next time step. Then Equation (4) can be
applied to determine the customer number and market share of each provider. Repeating

the same calculations at each time step, the forecasting results are summarized in Table
6.

N' = x 1072,

TABLE 6. Forecast by m4

Incumbent NextGen CowBoy Others Q:
0.5878 0.2830 0.0585  0.0708 | 2806396
0.5801 0.2838 0.0601  0.0760 | 2906144
0.5723 0.2844 0.0616  0.0817 | 3011215
0.5642 0.2847 0.0632  0.0879 | 3122858
0.5558 0.2850 0.0648  0.0945 | 3240716
0.5472 0.2850 0.0663  0.1014 | 3365282

S O = W N =T+

4. Discussion and Conclusion. Two existing and two new mathematical models have
been presented for the brand switching problem. All of these models have also been applied
to the same numerical example for market share forecasting. This example was provided
to show that the same problem can be modelled differently, with different assumptions
and model focuses. The prediction results are only sensible and accurate if the model is
sound and appropriate, and the assumptions made are correct, and the historical data is
reliable.

For a steady or stable market, it would be appropriate to assume that the market size
is fixed, and the probabilities that customers switching providers are constant. For such
market conditions, the homogeneous Markov model m1 would be appropriate. However,
if certain providers have been constantly advertising and gaining momentum in gaining
customers from their competitors, it would be reasonable to assume that the transition
probabilities would change and continue their trends, and therefore, the time-varying
Markov model m2 would be more appropriate. However, for a growing market in which
new customers are joining regularly, models m& and m/ would be appropriate alternatives
as they are capable of modelling market sizes.
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TABLE 7. Model comparison

ml

m2

ms

m4

Homogeneous
Markov model

Time-varying
Markov model

Extension of time-
varying Markov
model

Non-Markov model

Market share based

Market share based

Population based

Population based

Predicting market
shares only

Predicting market
shares only

Predicting market
shares and actual
customer numbers

Predicting market
shares and actual
customer numbers

Satisfying Markov
condition

Satisfying Markov
condition

Satisfying Markov
condition

Markov condition
not applicable

Modelling station-
ary transition
probabilities

Modelling time-
varying transition
probabilities

Modelling time-
varying transition
probabilities

Modelling custom-
er numbers in cat-
egories, and their
relative changes
over time

Incapable of model-
ling total market
growth, assuming a
fixed market size

Incapable of model-
ling total market
growth, assuming a
fixed market size

Explicitly model-
ling growth of each
provider over time

Implicitly model-
ling population
growth of providers
over time

Incapable of model-
ling growth of
individual provider

Incapable of model-
ling growth of
individual provider

Growth rate of
each competitor is
assumed constant.

Growth rate of
each category of
customers is
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assumed constant.

In summary, a comparison table of the four proposed models (m?! to m4) is provided
in Table 7.

This paper reviewed two commonly used Markov chain models and presented two new
models for market share forecasting. The purpose of this paper is to illustrate that the
same problem can be modelled in different ways, based on different assumptions and mod-
elling focuses. Certain models would be more suitable for certain types of applications or
business environment. Although Markov chains have been popular for the brand switch-
ing problem, forecasters should not simply fit Markov chains to their problems. Rather,
forecasters should have good understanding of the problems, and market conditions and
trends, then make the most appropriate assumptions; and choose, or develop, the most
suitable models in order to achieve the best prediction accuracy.
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