ANTI-SATURATION DYNAMIC SURFACE CONTROL FOR SPACECRAFT TERMINAL SAFE APPROACH BASED ON COMMAND FILTER

GUANQUN WU, SHENMIN SONG* AND JINGGUANG SUN

Center for Control Theory and Guidance Technology
Harbin Institute of Technology
No. 92, West Dazhi Street, Harbin 150001, P. R. China
{wgqwuguanqun; sunjingguanghit}@163.com; *Corresponding author: songshenmin@hit.edu.cn

Received June 2017; revised October 2017

ABSTRACT. This paper studies anti-saturation control schemes of the spacecraft terminal safe approach. Based on the spacecraft relative motion model of terminal approach and spherical collision avoidance potential function, anti-saturation controller and adaptive anti-saturation controller are designed for the situations of known and unknown upper bound of external disturbances respectively using dynamic surface control (DSC) and auxiliary system. The designed controllers not only take advantage of the first-order command filter to avoid the differential of the virtual control signals, but also introduce the compensating signals to remove the effect of the error caused by the command filter. Under the proposed control strategies, the bounded and uniformly ultimate bounded of the system states are proved via Lyapunov stability theory, and the chaser can approach the desired position without collision with the target. The numerical simulations are conducted to demonstrate that the chaser spacecraft using the designed controllers can realize the terminal approach to the target safely, which further illustrate the effectiveness of the proposed controllers.

Keywords: Terminal safe approach, Collision avoidance, Dynamic surface control, Command filter, Input saturation

1. Introduction. With the increasing of space strategy position, the spacecraft proximity relative motion control has become a research hotspot in space technology, which is being widely applied in many space missions, such as rendezvous and docking, on-orbit services and space attack-defense [1,2]. Considering the actual requirements as the external disturbances, input constraint and collision area, controlling the chaser to approach the target safely and accurately becomes the key to complete space missions. Consequently, the robust control of spacecraft proximity relative motion considering safety constraints has become an essential technology in aerospace [3].

Recently, experts and scholars at home and abroad have conducted a lot of research with respect to spacecraft relative motion control and obtained many important achievements [4-8]. On the basis of Tschauner-Hempel equations, a parametric Lyapunov differential equation method was proposed in [4] to solve the spacecraft rendezvous problem. In order to drive the chaser to approach the target, a modified adaptive controller with uncertain parameters was presented in [5], and the system states were proved asymptotic convergent with the controller. In [6], an integral sliding mode controller was proposed using linear quadratic optimal control theory to realize spacecraft hovering around elliptic orbits by tracking fuel-optimal trajectories. Contraposing spacecraft formation with uncertainties and disturbances, to improve the control precision of the system, an input-output linearization minimum sliding mode error feedback controller was designed in [7]. Using
back-stepping method, a robust adaptive controller was designed in [8] for spacecraft rendezvous and docking, with which the system states were globally uniformly ultimately bounded, and the uncertainties of the relative dynamics were compensated by using radial basis function neural networks.

Collision may happen in the process of the spacecraft relative motion. Thus, to ensure the safety of the chaser spacecraft, much literature considers collision avoidance in the design of relative motion control scheme [9-16]. For autonomous rendezvous and docking with a non-cooperative target, a new guidance control method using fuzzy logic combined with potential function was presented in [9] to ensure safe approaching. Aiming at spacecraft formation maintaining, new sliding mode controllers that used the special potential functions to realize avoiding obstacles were presented in [10]. For proximity operations of spacecraft formation flying near elliptic reference orbits, a tracking controller using Riccati procedure was provided in [11], also collision avoidance problem was settled via using Gaussian-like function. In [12], a nonlinear optimal control scheme was put forward using the optimal sliding mode control, which was combined with a quadratic function to keep away from moving obstacle. To realize accurate formation, finite-time controllers are designed for multiple Euler-Lagrange systems with avoiding obstacles using null-space-based and fast terminal sliding mode in [13]. As the in-depth study on the model predictive control (MPC), many control strategies based on MPC were put forward for rendezvous and docking with obstacle avoidance [14-16]. Robust control schemes based on explicit MPC and the linear quadratic MPC with dynamically reconfigurable constraints were proposed in [14,15], under which spacecraft rendezvous considering obstacle avoidance and a line-of-sight cone constraint can accomplish successfully. In [16], linear quadratic MPC and nonlinear MPC were applied for spacecraft rendezvous and docking, and multiple obstacles were avoided by using the controllers.

In the actual control system, the control force provided by the actuators is limited. The actuator saturation can weaken system control performance, even may result in system instability if the input saturation is not taken into consideration in the controller design. Thus, the problem of input saturation should be solved in the process of controller design [17-22]. The auxiliary system was introduced in [17] to analyze the effect of input saturation, with which adaptive tracking controllers were designed for MIMO systems with input saturation. Using the mean-value theorem, an adaptive fuzzy tracking controller was constructed in [18], which introduced a piecewise smooth function to approximate the saturation function. In [19], focusing on uncertain nonstrict-feedback systems, an adaptive fuzzy control scheme was proposed, and the problem of input saturation was solved by adopting an auxiliary design system. In [20], an auxiliary system was employed to deal with the influence of input constraints, combining with which robust back-stepping controller was presented for uncertain nonlinear systems with input constraints. Concentrating on spacecraft circular orbit rendezvous system subject to input saturation, a new robust gain scheduling controller was provided in [21]. For spacecraft rendezvous and proximity operations, a saturated adaptive back-stepping controller was put forward in [22], which adopted auxiliary design system for input saturation. The control strategies above can settle the problem of input constraint effectively, but there are a smaller number of control schemes with safe constraint considering input saturation at the same time.

In order to further research the spacecraft terminal safe approach control scheme considering input saturation, and being inspired by above research, anti-saturation controllers are designed using DSC and auxiliary system for the situations of known and unknown upper bound of external disturbances respectively, which use spherical collision avoidance
potential function to deal with taboo area in the chaser spacecraft motion. Compared with the above mentioned literature, the main contributions of the paper are as follows.

(1) The collision avoidance constraint is considered in terminal approach control. And the spherical collision avoidance potential function is introduced to make collision avoidance problem in terminal approach control be simplified into boundedness problem of reciprocal of the potential function.

(2) The proposed dynamic surface controllers use command filter to avoid the computations of time derivatives of the virtual control signals, and the compensating signals are introduced to remove the effects of the error caused by the command filter, which can improve the performance of the controllers.

(3) By introducing the auxiliary system, input saturation is taken into consideration in controller design to cope with physical constraints of the actuators, which makes the designed controllers have more practical value in engineering.

The rest of the paper is structured in following manner. Section 2 states a brief description of the spacecraft terminal safe approach control problem, including the target orbit coordinate system, spacecraft relative motion model of terminal approach, collision avoidance potential function and related assumptions for controller design. In Section 3, for the situations of known and unknown upper bound of external disturbances, two anti-saturation dynamic surface controllers are proposed respectively, and the Lyapunov theory is used to prove and analyze the performances of the controllers. Section 4 gives numerical simulations to further verify the effectiveness of the proposed controllers. Finally, the conclusions of the paper are presented in Section 5.

2. Problem Formulation.

2.1. Spacecraft relative motion model of terminal approach. The target orbit coordinate frame $F_t(O_{tx}y_tz_t)$ is shown in Figure 1. The origin of coordinate is the center of target. The positive direction of x_t axis is the direction that is from the center point to the target position. The positive direction of y_t axis points to the target movement direction. The positive direction of z_t axis is perpendicular to target orbital plane.

The dynamical equations of the chaser and the target in earth centered inertial (ECI) frame $F_o(OXYZ)$ are given as follows:

$$\ddot{\mathbf{r}}_c = -\frac{\mu \mathbf{r}_c}{r_c^3} + \frac{\mathbf{f}_{dc}}{m_c} + \frac{\mathbf{u}}{m_c}$$ (1)
\[
\ddot{r}_t = -\frac{\mu r_t}{r_t^3} + \frac{f_{dt}}{m_t}
\]

(2)

where \(r_c\) and \(r_t\) are defined as position vectors of the target and chaser in ECI frame \(F_o(OXYZ)\) respectively, so the corresponding acceleration vectors are \(\ddot{r}_c\) and \(\ddot{r}_t\). \(\bar{u}\) is the control force of chaser. \(\mu\) is the gravitational constant. \(f_{dc}\) and \(f_{dt}\) are all perturbation effects on the target and chaser. \(m_c\) and \(m_t\) are the mass of chaser and target.

Relative position vector in ECI frame can be defined as \(\bar{X}_r = r_c - r_t\); thus the relative acceleration vector \(\ddot{X}_r\) can be obtained:

\[
\ddot{X}_r = \ddot{r}_c - \ddot{r}_t = -\frac{\mu r_c}{r_c^3} + \frac{\mu r_t}{r_t^3} + \frac{\bar{u}}{m_c} + \frac{f_{dc}}{m_c} - \frac{f_{dt}}{m_t}
\]

(3)

Converting the \(\ddot{X}_r\) into \(F_t(Ox_t y_t z_t)\) yields:

\[
-\frac{\mu r_c}{r_c^3} + \frac{\mu r_t}{r_t^3} + \frac{u}{m_c} + \frac{d}{m_c} = \ddot{X}_r + \omega_t \times (\omega_t \times X_r) + \omega_t \times X_r + 2\omega_t \times X_v
\]

(4)

In Equation (4), \(X_r\) and \(\ddot{X}_r\) represent relative position vector and the relative acceleration vector in \(F_t\), and \(\bar{u}\) and disturbance \(d\) are denoted as \(\bar{u}\) and \(f_{dc} - \frac{m_c}{m_t}f_{dt}\) in \(F_t\).

In target orbit coordinate frame, define \(X_r = [x \ y \ z]^T\) and \(X_v = \dot{X}_r = [\dot{x} \ \dot{y} \ \dot{z}]^T\). The angular velocity of the target is defined as \(\omega_t = [0 \ 0 \ \dot{\theta}_t]^T\). The position vector from earth’s core to the target and the chaser can be defined as \(r_t = [r_t \ 0 \ 0]^T\) and \(r_c = [x + r_t \ y \ z]^T\). Substituting the definition of the variables above into Equation (4), after simplification, spacecraft terminal approach relative motion model can be obtained as follows:

\[
\begin{cases}
\dot{X}_r = X_v \\
\dot{X}_v = AX_v + BX_r + C + \frac{d}{m_c} + \frac{u}{m_c}
\end{cases}
\]

(5)

where \(X_v = [\dot{x} \ \dot{y} \ \dot{z}]^T\). \(A\), \(B\) and \(C\) are defined as follows:

\[
A = 2\dot{\theta}_t \begin{bmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

(6)

\[
B = -\frac{\mu}{r_c^3} I_{3 \times 3} + \begin{bmatrix}
\ddot{\theta}_t^2 & \dddot{\theta}_t & 0 \\
-\dot{\theta}_t & \ddot{\theta}_t^2 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

(7)

\[
C = \mu \begin{bmatrix}
\frac{1}{r_t^2} & -\frac{r_t}{r_c^3} & 0 \\
\frac{r_t}{r_c^3} & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}^T
\]

(8)

where \(\dot{\theta}_t = \frac{n_t(1+e_t \cos \theta_t)^2}{(1-e_t^2)^{3/2}}, \ddot{\theta}_t = \frac{-2n_t^2 e_t (1+e_t \cos \theta_t)^3 \sin \theta_t}{(1-e_t^2)^{5/2}}\), and \(n_t = \sqrt{\frac{\mu}{a_t^3}}\).

2.2. Description of potential function and control objective. In the process of accessing to the desired position, the chaser will be close to the target spacecraft within short distance, because collision may happen between the chaser and the target. To control the chaser to access to the desired position without collision, taboo area where collision can happen must be considered in the process. Taboo area in the paper is set...
as sphere interior whose centre is the center of target and the radius is R. The collision avoidance potential function is presented as follows:

$$h(X_r) = \frac{1}{R^2} \left(x^2 + y^2 + z^2 - R^2 \right)$$ \hspace{1cm} (9)$$

Assume $h(X_{rd}) > 0$, that is, the initial position of the chaser is in safe area. In the process of approaching to the desired position, if the inequality $h(X_r) > 0$ holds all the time, the chaser may have collision with the target in the taboo area. Thus, if $h(X_r) > 0$ holds from beginning to end, that is to say, the $1/h(X_r)$ is bounded all the time, the chaser can approach desired position around the target safely.

Control objective: Aiming at the situation of known and unknown upper bound of external disturbances, two anti-saturation controllers should be designed respectively, under which the chaser can approach the expected position safely subject to input saturation constraint, that is, the relative position of the chaser X_r can convergence to the neighborhood of the desired location X_{rd}, also $1/h(X_r)$ is bounded all the time.

Remark 2.1. The motivation of employing the potential function is to convert collision avoidance problem into boundedness problem of reciprocal of the potential function, and the designed controller combined with the potential function can guarantee the chaser complete the spacecraft terminal approach without collision happening.

2.3. Related lemmas and assumptions. To facilitate the design and analysis of controller, related lemmas and assumptions are introduced as follows.

Lemma 2.1. [23]. The compensating signals $\xi_i \ (i = 2, \ldots, n)$ are defined as follows

$$\dot{\xi}_1 = -c_1 \xi_1 - \xi_1 + \xi_2 + (x_{2,c} - a_1)$$
$$\dot{\xi}_i = -c_i \xi_i - \xi_{i-1} + \xi_{i+1} + (x_{i+1,c} - a_i)$$
$$\dot{\xi}_n = -c_n \xi_n - \xi_{n-1} \hspace{1cm} (10)$$

where $x_{i+1,c}$ and a_i are output and input of first-order command filter respectively. When $t \to \infty \|\xi_i\|$ is bounded, satisfying $\lim_{t \to \infty} \|\xi_i\| \leq \frac{\gamma}{2k_0}$ where $k_0 = (1/2) \min(c_i)$.

Lemma 2.2. [17]. For any arbitrary number x and non-zero real number y, then the following inequality holds

$$0 \leq |x| \left(1 - \tanh(|x/y|) \right) \leq \alpha^* |y| \hspace{1cm} (11)$$

where $\alpha^* = 0.2785$.

Assumption 2.1. The initial position and the desired position of the chaser X_{r0}, X_{rd} are assumed to be set in safe area.

Assumption 2.2. The external disturbance d in Equation (5) is assumed to be bounded, and satisfies the inequality $\|d\| \leq d_m$, where d_m is a positive constant.

Remark 2.2. For further on-orbit operation, the desired position X_{rd} should be in the safe area. Also, if the initial position X_{r0} is set in the taboo area, the chaser may have collided with the target. Thus, in order to design the controllers for the spacecraft terminal approach with collision avoidance, Assumption 2.1 is reasonable. In practice, the external disturbances are unknown but bounded which contain atmospheric drag, radiation pressure, etc. And [8,10,22] have presented assumptions similar to Assumption 2.2. Thus, Assumption 2.2 is reasonable.
3. **Main Results.** For the spacecraft terminal approach relative motion model Equations (5)-(8), for the situations of known and unknown upper bound of external disturbances, two anti-saturation controllers are designed based on dynamic surface control with signal compensation and auxiliary system, by which the chaser can approach the desired position safely with input constraint.

3.1. **Anti-saturation controller design for the situation of known upper bound of external disturbances.** For the spacecraft terminal approach relative motion model Equations (5)-(8) with the known upper bound of external disturbances, the detailed processes of designing an anti-saturation controller are shown as follows.

Step 1: Define the tracking error variable z_1 as follows:

$$z_1 = X_r - X_{rd}$$

(12)

where X_{rd} is reference signal.

Computing the first order derivative of Equation (12):

$$\dot{z}_1 = \dot{X}_r - \dot{X}_{rd} = X_v - \dot{X}_{rd}$$

(13)

Define the virtual control α_{vcl} as follows:

$$\alpha_{vcl} = -k_1 z_1$$

(14)

where k_1 is a positive constant.

To avoid the differential of the virtual control signal, the first order command filter is introduced as follows:

$$\dot{v}_{v1} = v_{v1}$$

$$\tau_1 \dot{\alpha}_{vd1} + \alpha_{vd1} = \alpha_{vcl}, \quad \alpha_{vd1}(0) = \alpha_{vcl}(0)$$

(15)

where α_{vcl}, α_{vd1} are the input and output of the command filter respectively, and τ_1 is a positive constant.

To eliminate the effect of the error caused by the $\alpha_{vd1} - \alpha_{vcl}$, the compensating signal is introduced referring to Lemma 2.1. ξ_1 is defined as follows:

$$\dot{\xi}_1 = -k_1 \xi_1 + \xi_2 + (\alpha_{vd1} - \alpha_{vcl})$$

(16)

Define the compensated tracking error signal z_{v1} as:

$$z_{v1} = z_1 - \xi_1$$

(17)

Choose Lyapunov function v_1 as:

$$v_1 = \frac{1}{2} z_{v1}^T z_{v1}$$

(18)

Compute the first order derivative of v_1:

$$\dot{v}_1 = z_{v1}^T \dot{z}_{v1}$$

$$= z_{v1}^T (X_v - \dot{X}_{rd}) + z_{v1}^T (k_1 \xi_1 - \xi_2 - (\alpha_{vd1} - \alpha_{vcl}))$$

$$= z_{v1}^T (z_2 + X_v - \dot{X}_{rd}) + z_{v1}^T (k_1 \xi_1 - \xi_2 - (\alpha_{vd1} - \alpha_{vcl}))$$

$$= z_{v1}^T (z_2 + \alpha_{vcl} + \alpha_{vd1} - \alpha_{vcl}) + z_{v1}^T (k_1 \xi_1 - \xi_2 - (\alpha_{vd1} - \alpha_{vcl}))$$

$$= z_{v1}^T (z_2 - k_1 z_1 + k_1 \xi_1 - \xi_2)$$

$$= z_{v1}^T (z_2 - k_1 z_{v1} - k_1 \xi_1 + k_1 \xi_1 - \xi_2)$$

$$= -k_1 z_{v1}^T z_{v1} + z_{v1}^T (z_2 - \xi_2)$$

Step 2: Define the tracking error variable z_2 as follows:

$$z_2 = X_v - \dot{X}_{rd} - \alpha_{vd1}$$

(19)
Computing the first order derivative of Equation (20) yields:
\[
\dot{z}_2 = \dot{X}_v - \dot{X}_{rd} - \dot{\alpha}_{vd1} = AX_v + BX_r + C + \frac{d}{m_c} + \frac{u}{m_c} - \dot{X}_{rd} - \frac{1}{\tau_1} (\alpha_{vd1} - \alpha_{vd}) \tag{21}
\]

The compensating signal ξ_2 is introduced as follows:
\[
\dot{\xi}_2 = -k_2 \xi_2 - \xi_1 \tag{22}
\]
where k_2 is a positive constant.

Define the compensated tracking error signal z_{v2} as:
\[
z_{v2} = z_2 - \xi_2 \tag{23}
\]

Choose Lyapunov function v_2 as:
\[
v_2 = \frac{1}{2} z_{v2}^T z_{v2} \tag{24}
\]

Compute the first order derivative of v_2:
\[
\dot{v}_2 = z_{v2}^T \dot{z}_{v2} = z_{v2}^T \left(AX_v + BX_r + C + \frac{d}{m_c} + \frac{u}{m_c} - \dot{X}_{rd} - \dot{\alpha}_{vd1} \right) + z_{v2}^T (k_2 \xi_2 + \xi_1) \tag{25}
\]

To handle input saturation, the auxiliary system Equation (26) is introduced:
\[
\left\{ \begin{array}{ll}
\eta = -k_\eta \eta - \frac{1}{\|\eta\|^2} \left(\frac{|z_{v2}^T \Delta u|}{m_c} + \frac{1}{2} \Delta u^T \Delta u \right) \eta + \Delta u, & \|\eta\| \geq \sigma_V \\
0, & \|\eta\| < \sigma_V
\end{array} \right. \tag{26}
\]
where $\Delta u = u - u_c$, u is the ideal control input, u_c is the actual control input, and σ_V is a positive constant.

For the situations that the upper bound of external disturbances is known, based on Equations (12)-(26), the controller is designed as Equation (27), where k_2, k_h, k_η, k_{h1} are positive constants, and inequalities $k_2 > \frac{1}{2} k_\eta, k_\eta > 1$ hold.
\[
u_c = m_c \left(-k_2 z_2 - z_1 - AX_v - BX_r - C + \dot{X}_{rd} + \dot{\alpha}_{vd1} - \frac{d_m}{m_c} \text{sign} (z_{v2}) \right) + k_\eta \eta - k_h \frac{z_{v2}}{\|z_{v2}\|^2} \left(h(X_r) h^{-2} (X_r) + k_{h1} h^{-1} (X_r) \right) \tag{27}
\]

Theorem 3.1. Consider the spacecraft terminal approach relative motion model Equations (5)-(8) with Assumption 2.1 and Assumption 2.2, for the situations of known upper bound of external disturbances, the state of the system is regulated under the designed controller Equation (27) and auxiliary system Equation (26), and the following conclusion can be drawn.

(I) The variables $v_1, v_2, \eta, 1/h(X_r)$ are bounded.

(II) The collision avoidance potential function $h(X_r)$ is positive, that is, the chaser can avoid collision with the target in the process of motion.

(III) The tracking error variables z_1, z_2 can converge to any small neighborhood, that is, the relative position of the chaser X_r can converge to any small range of the desired position X_{rd}.

Proof: Choose the Lyapunov function V_1 as:
\[
V_1 = v_1 + v_2 + \frac{1}{2} \eta^T \eta + k_h \frac{1}{h(X_r)} \tag{28}
\]
Computing the derivative of V_1 yields:

$$V_1 = \dot{v}_1 + \dot{v}_2 + \eta^T \dot{\eta} + k_h \frac{\dot{h}(X_r)}{h^2(X_r)}$$

$$= -k_1 z_T z_v + z_T (z_2 - \xi_2) + z_T (AX_v + BX_r + C + \frac{d}{m_c} + \frac{u}{m_c})$$

$$+ \frac{\Delta u}{m_c} - \dot{X}_{rd} - \alpha_{rd1}) + z_T (k_2 \xi_2 + \xi_1) + \eta^T \dot{\eta} + k_h \frac{\dot{h}(X_r)}{h^2(X_r)}$$

$$= -k_1 z_T z_v + z_T (z_2 - z_1) + z_T (k_2 \xi_2 + \xi_1)$$

$$+ \eta^T \dot{\eta} + k_h \frac{\dot{h}(X_r)}{h^2(X_r)} + z_T \left(\frac{d}{m_c} + \frac{\Delta u}{m_c} - \frac{d_m}{m_c} \text{sign}(z_v) + k \eta \right)$$

$$- k_h \frac{z_T}{\|z_T\|^2} \left(h(X) h^{-2}(X) + k h^{-1}(X) \right)$$

$$= -k_1 z_T z_v + z_T (z_2 - z_1 + \xi_2 + \xi_1) + \eta^T \dot{\eta} + k_h \frac{\dot{h}(X_r)}{h^2(X_r)} + z_T \left(\frac{d}{m_c} + \frac{\Delta u}{m_c} - \frac{d_m}{m_c} \text{sign}(z_v) + k \eta \right)$$

$$+ k_h \frac{z_T}{\|z_T\|^2} \left(h(X) h^{-2}(X) + k h^{-1}(X) \right)$$

$$= -k_1 z_T z_v - k_2 \eta \frac{z_T}{\|z_T\|^2} \left(h(X) h^{-2}(X) + k h^{-1}(X) \right)$$

$$+ k_h \frac{z_T}{\|z_T\|^2} \left(h(X) h^{-2}(X) + k h^{-1}(X) \right)$$

Two inequalities can be derived:

$$z_T \Delta u - z_T \Delta u \leq 0$$

$$k_\eta z_T \eta + \eta^T \Delta u = k_\eta \sum \limits_{i=1}^{3} z_{v,i} \eta_i + \sum \limits_{i=1}^{3} \Delta u_i \eta_i$$

$$\leq \frac{1}{2} k_\eta z_T \eta + \frac{1}{2} \Delta u \eta + \frac{1}{2} \Delta u \eta$$

Substituting Equations (30) and (31) into Equation (29), then Equation (29) can be rewritten as:

$$\dot{V}_1 \leq -k_1 z_T z_v - \left(k_2 - \frac{1}{2} k_\eta \right) z_T \Delta u - \left(\frac{1}{2} k_\eta - \frac{1}{2} \right) \eta^T \dot{\eta} - k h k_1 \frac{1}{h(X_r)}$$

$$+ \frac{z_T}{m_c} \left(d - d_m \text{sign}(z_v) \right)$$

$$\leq -k_1 z_T z_v - \left(k_2 - \frac{1}{2} k_\eta \right) z_T \Delta u - \left(\frac{1}{2} k_\eta - \frac{1}{2} \right) \eta^T \dot{\eta} - k h k_1 \frac{1}{h(X_r)}$$

$$+ \frac{||z_T||}{m_c} \left(||d|| - d_m \right)$$

$$\leq -k_1 z_T z_v - \left(k_2 - \frac{1}{2} k_\eta \right) z_T \Delta u - \left(\frac{1}{2} k_\eta - \frac{1}{2} \right) \eta^T \dot{\eta} - k h k_1 \frac{1}{h(X_r)}$$

$$\leq -\varepsilon_1 V_1$$

where $\varepsilon_1 = \min \{ 2k_1, 2 \left(k_2 - \frac{1}{2} k_\eta \right), 2 \left(\frac{1}{2} k_\eta - \frac{1}{2} \right), k_1 \}, \ k_2 > \frac{1}{2} k_\eta, \ k_\eta > 1$.

Equation (32) shows that $\dot{V}_1 \leq 0$, so V_1 is not increasing, which means that $v_1, v_2, \eta, 1/h(X_r)$ are bounded.

Because initial value $h(X_{r0})$ is positive and $1/h(X_r)$ is bounded, it can be obtained that $h(X_r) \neq 0$ holds during the change of the system states, which indicates that collision avoidance potential function $h(X_r)$ is not equal to zero in the process of approaching the target, that is to say, the chaser moves in safe area all the time and can realize spacecraft terminal approach safely.

Therefore, conclusions (I) and (II) have been proved.

According to Equation (32), inequality can be obtained as:

$$V_1(t) \leq V_1(0)e^{-\varepsilon_1 t}$$ \hspace{1cm} (33)

From Equation (33), it can be obtained that $v_1, v_2 \leq V_1(0)e^{-\varepsilon_1 t}$. When $t \to \infty$, $v_1, v_2 \to 0$, further $z_{v1}, z_{v2} \to 0$. From Lemma 2.1 it can be seen that ξ_1 and ξ_2 are bounded. So when ε_1 is selected large enough, the tracking error variables z_1, z_2 can converge to any small neighborhood.

Therefore, conclusion (III) has been proved.

The proof of Theorem 3.1 has been completed.

Remark 3.1. The use of command filter may cause the filtering errors which can lead to great tracking error. Therefore, the thesis introduces the compensating signals Equation (16) and Equation (22) to remove the effect of the error caused by the command filter so that the tracking error can be diminished.

Remark 3.2. Generally, the upper bound of external disturbances of the system is unknown because of the complex external environment; thus the controller Equation (27) results in failure. To make the control scheme more valuable to practice, an adaptive controller is designed as the following.

3.2. Adaptive anti-saturation controller design for the situation of unknown upper bound of external disturbances. To deal with the spacecraft terminal approach with unknown upper bound of external disturbances, the paper further designs an adaptive anti-saturation controller.

Based on Equations (12)-(26) derived using DSC, command filter and the compensating signal, a novel controller Equation (34) is designed which adopts adaptive law Equations (35) and (36) to estimate the upper bound of unknown external disturbances, where $k_2, k_3, k_\eta, k_\gamma$ are positive constants, and inequalities $k_2 > \frac{1}{2}k_\eta, k_\eta > 1$ hold, \hat{d}_m is the estimation value of upper bound of external disturbances d_m.

$$\dot{u}_c = m_c \left(-k_2 z_2 - z_1 - AX_v - BX_r - C + \dot{X}_{rd} + \dot{\alpha}_{rd} \right)$$

$$- \frac{d_m}{m_c} \tanh (z_{v2}/p_V^2) + k_\eta \eta - k_h \frac{z_{v2}}{\|z_{v2}\|^2} \left(h(X_r)h^{-2}(X_r) + h^{-1}(X_r)\right)$$ \hspace{1cm} (34)

$$\dot{\hat{d}}_m = \gamma_d \|z_{v2}\|_1$$ \hspace{1cm} (35)

$$\frac{d}{dt}p_V^2 = -3k_3 \alpha^* \hat{d}_m p_V^2$$ \hspace{1cm} (36)

Theorem 3.2. Consider the spacecraft terminal approach relative motion model Equations (5)-(8) with Assumption 2.1 and Assumption 2.2, for the situations of unknown upper bound of external disturbances, the state of the system is regulated under the designed adaptive controller Equation (34), adaptive law Equations (35) and (36) and auxiliary system Equation (26), the following conclusion can be drawn.

(1) The collision avoidance potential function $h(X_r)$ is positive, that is, the chaser can avoid collision with the target in the process of motion.
(II) The variables v_1, v_2, η, $1/h(X_r)$ are uniformly ultimately bounded.

(III) The tracking error variables z_1, z_2 can converge to any small neighborhood, that is, the relative position of the chaser X_r can converge to any small range of the desired position X_{rd}.

Proof: Choose the Lyapunov function candidate as

$$V_2 = v_1 + v_2 + \frac{1}{2} \eta^T \eta + \frac{1}{2 \gamma_d m_c} \dot{d}_m^2 + \frac{1}{m_c k_3} p_2^2 + k_h \frac{1}{h(X_r)}$$

(37)

where \dot{d}_m is the estimation error $\dot{d}_m = d_m - \hat{d}_m$ of upper bound of external disturbances.

Computing the derivative of V_2 yields:

$$\dot{V}_2 = \dot{v}_1 + \dot{v}_2 + \eta^T \dot{\eta} + \frac{1}{\gamma_d m_c} \dot{\hat{d}}_m \dot{d}_m + \frac{1}{m_c k_3} \dot{p}_2^2 + k_h \frac{1}{h(X_r)}$$

$$= -k_1 z_{v1}^T z_{v1} + z_{v1}^T (z_2 - \xi_2) + z_{v2}^T \left(A X_v + B X_r + C + \frac{d}{m_c} + \frac{u_c}{m_c} + \frac{\Delta u}{m_c} \right)$$

$$+ \eta^T \dot{\eta} + \frac{1}{\gamma_d m_c} \dot{\hat{d}}_m \dot{d}_m + \frac{1}{m_c k_3} \dot{p}_2^2 + k_h \frac{1}{h(X_r)}$$

$$= -k_1 z_{v1}^T z_{v1} + z_{v1}^T (z_2 - \xi_2) + z_{v2}^T \left(k_2 \xi_2 + \xi_1 \right) + \eta^T \dot{\eta} + \frac{1}{\gamma_d m_c} \dot{\hat{d}}_m \dot{d}_m + \frac{1}{m_c k_3} \dot{p}_2^2 + k_h \frac{1}{h(X_r)}$$

(38)

Because Equations (30) and (31) hold, Equation (38) can be further rewritten as:

$$\dot{V}_2 \leq -k_1 z_{v1}^T z_{v1} + \left(k_2 - \frac{1}{2} k_\eta \right) z_{v2}^T z_{v2} - \left(\frac{1}{2} k_\eta - \frac{1}{2} \right) \eta^T \eta - k_h \frac{1}{h(X_r)}$$

$$+ \frac{z_{v2}^T}{m_c} \left(d - \hat{d}_m \tanh (z_{v2}/p_2^2) \right) + \frac{1}{\gamma_d m_c} \dot{\hat{d}}_m \dot{d}_m + \frac{1}{m_c k_3} \dot{p}_2^2$$

(39)

According to Lemma 2.2 and Assumption 2.2, the following inequality can be derived:

$$\frac{1}{m_c} \left(z_{v2}^T d - \hat{d}_m z_{v2} \tanh (z_{v2}/p_2^2) \right)$$

$$\leq \frac{1}{m_c} \sum_{i=1}^{3} \left(z_{v2,i} d_i + \hat{d}_m p_2^2 \left(\alpha^* - \left| z_{v2,i} \right| / p_2^2 \right) \right)$$

$$\leq \frac{1}{m_c} \sum_{i=1}^{3} \left(\left| z_{v2,i} \right| d_m + \hat{d}_m p_2^2 \left(\alpha^* - \left| z_{v2,i} \right| / p_2^2 \right) \right)$$

$$\leq \frac{1}{m_c} \left(3 \alpha^* \hat{d}_m p_2^2 + \hat{d}_m \sum_{i=1}^{3} \left| z_{v2,i} \right| \right)$$

(40)
Substituting Equation (40) into Equation (39) yields

\[
\dot{V}_2 \leq - k_1 z_{v1}^T z_{v1} - \left(k_2 - \frac{1}{2} k_\eta \right) z_{v2}^T z_{v2} - \left(\frac{1}{2} k_\eta - \frac{1}{2} \right) \eta^T \eta - k_\eta \frac{1}{h(X_r)} \\
+ \frac{1}{m_c} \left(3 \alpha^* \hat{d}_m \dot{p}_v^2 + \ddot{d}_m \sum_{i=1}^3 |z_{v,i}| \right) - \frac{1}{\gamma_d m_c} \hat{d}_m \dot{\hat{d}}_m - \frac{3 \alpha^* \hat{d}_m \dot{p}_v^2}{m_c} \\
= - k_1 z_{v1}^T z_{v1} - \left(k_2 - \frac{1}{2} k_\eta \right) z_{v2}^T z_{v2} - \left(\frac{1}{2} k_\eta - \frac{1}{2} \right) \eta^T \eta - k_\eta \frac{1}{h(X_r)} \\
+ \frac{1}{m_c} \left(\ddot{d}_m \sum_{i=1}^3 |z_{v,i}| - \hat{d}_m \|z_{v2}\|_1 \right) \\
= - k_1 z_{v1}^T z_{v1} - \left(k_2 - \frac{1}{2} k_\eta \right) z_{v2}^T z_{v2} - \left(\frac{1}{2} k_\eta - \frac{1}{2} \right) \eta^T \eta - k_\eta \frac{1}{h(X_r)} \\
\leq 0
\]

Equation (41) shows that \(\dot{V}_2 \leq 0\), so \(V_2\) is not increasing, which means that \(v_1, v_2, \eta, \dot{\hat{d}}_m, 1/h(X_r)\) are bounded. Therefore, the estimated value of the adaptive parameter \(\hat{d}_m\) is bounded. That is to say, there exists a positive constant \(\bar{d}_m > 0\) satisfying \(\dot{\hat{d}}_m \leq \bar{d}_m\).

Because initial value \(h(X_{r0})\) is positive and \(1/h(X_r)\) is bounded, it can be concluded that \(h(X_r) \neq 0\) holds during the change of the system states, which indicates that collision avoidance potential function \(h(X_r)\) is not equal to zero in the process of approaching the target, that is to say, the chaser moves in safe area all the time.

In order to further analyze the performance of the controller Equation (34), Lyapunov function \(V_3\) is chosen as

\[
V_3 = v_1 + v_2 + \frac{1}{2} \eta^T \eta + \frac{1}{2 \gamma_d m_c} (\hat{d}_m - \ddot{d}_m)^2 + \frac{2}{m_c k_3} \dot{p}_v^2 + k_\eta \frac{1}{h(X_r)}
\]

Compute the derivative of Equation (42):

\[
\dot{V}_3 = - k_1 z_{v1}^T z_{v1} + z_{v1}^T z_{v2} + z_{v2}^T (k_2 z_{v2} - z_1) + z_{v2}^T (k_2 \xi_2 + \xi_1) + \eta^T \dot{\eta} \\
+ \frac{1}{\gamma_d m_c} (\hat{d}_m - \ddot{d}_m) \dot{\hat{d}}_m + \dot{z}_{v2} \left(\frac{d}{m_c} + \frac{\Delta u}{m_c} - \frac{\ddot{d}_m}{m_c} \tanh \left(\frac{z_{v2}}{p_v^2} \right) \right) + k_\eta \eta \\
- k_\eta \frac{z_{v2}}{z_{v2}^T z_{v2}} h^{-1}(X_r) + \frac{2}{m_c k_3} \frac{d}{dt} \dot{p}_v^2 \\
= - k_1 z_{v1}^T z_{v1} - k_2 z_{v2} z_{v2} - k_\eta \eta^T \eta - k_\eta \frac{1}{h(X_r)} + \frac{z_{v2}}{m_c} \left(d - \dot{d}_m \tanh \left(\frac{z_{v2}}{p_v^2} \right) \right) \\
+ k_\eta \dot{z}_{v2} \eta + \dot{z}_{v2} \frac{\Delta u}{m_c} - \left(\frac{|z_{v2}^T \Delta u|}{m_c} + \frac{1}{2} \Delta u^T \Delta u \right) + \eta^T \Delta u \\
+ \frac{1}{\gamma_d m_c} (\hat{d}_m - \ddot{d}_m) \dot{\hat{d}}_m + \frac{2}{m_c k_3} \frac{d}{dt} \dot{p}_v^2 \\
\leq - k_1 z_{v1}^T z_{v1} - \left(k_2 - \frac{1}{2} k_\eta \right) z_{v2} z_{v2} - \left(\frac{1}{2} k_\eta - \frac{1}{2} \right) \eta^T \eta - k_\eta \frac{1}{h(X_r)} \\
+ \frac{z_{v2}^2}{m_c} \left(d - \dot{d}_m \tanh \left(\frac{z_{v2}}{p_v^2} \right) \right) + \frac{1}{\gamma_d m_c} (\hat{d}_m - \ddot{d}_m) \dot{\hat{d}}_m + \frac{2}{m_c k_3} \frac{d}{dt} \dot{p}_v^2
\]

\textbf{ANTI-SATURATION DYNAMIC SURFACE CONTROL 43}
According to Lemma 2.2, Assumption 2.2 and $\hat{d}_m \leq \bar{d}_m$, the inequality can be derived:

$$\frac{1}{m_c} \left(z_{v2}^T \dot{d}_m - \hat{d}_m z_{v2}^T \tanh \left(\frac{z_{v2}}{p_V^2} \right) \right)$$

$$= \frac{1}{m_c} \sum_{i=1}^{3} z_{v2,i} \left(d_i - \hat{d}_m \tanh \left(\frac{z_{v2,i}}{p_V^2} \right) \right)$$

$$\leq \frac{1}{m_c} \sum_{i=1}^{3} \left(z_{v2,i} \bar{d}_m + \hat{d}_m p_V^2 \left(\alpha^* - |z_{v2,i}| / p_V^2 \right) \right)$$

$$\leq \frac{1}{m_c} \left(3\alpha^* \hat{d}_m p_V^2 + \left(\bar{d}_m - \hat{d}_m \right) \sum_{i=1}^{3} |z_{v2,i}| \right)$$

Substituting Equation (44) into Equation (43) yields:

$$\dot{V}_3 \leq -k_1 z_{v1}^T z_{v1} - \left(k_2 - \frac{1}{2} k_\eta \right) z_{v2}^T z_{v2} - \left(\frac{1}{2} k_\eta - \frac{1}{2} \right) \eta^T \eta - k_h \frac{1}{h(X_r)}$$

$$- \frac{1}{2\gamma d m_c} \left(\bar{d}_m - \hat{d}_m \right)^2 - \frac{1}{m_c} p_V^2 + \frac{1}{2\gamma d m_c} \left(\bar{d}_m - \hat{d}_m \right)^2$$

$$\leq -\varepsilon_2 V_3 + C_1$$

where $\varepsilon_2 = \min \left\{ 2k_1, 2 \left(k_2 - \frac{1}{2} k_\eta \right), 2 \left(\frac{1}{2} k_\eta - \frac{1}{2} \right), \frac{k_\eta}{2}, 1 \right\}$, $k_2 > \frac{1}{2} k_\eta$, $k_\eta > 1$, $C_1 = \frac{1}{2\gamma d m_c} \left(\bar{d}_m - \hat{d}_m \right)^2$ is bounded. From Equation (45), it can be known that v_1, v_2, η, $1/h(X_r)$ are uniformly ultimately bounded.

Therefore, conclusion (II) has been proved.

According to Equation (45), inequality can be derived:

$$0 \leq V_3(t) \leq \left(V_3(0) - \frac{C_1}{\varepsilon_2} \right) e^{-\varepsilon_2 t} + \frac{C_1}{\varepsilon_2}$$

(46)

From Equation (46), it can be known v_1, $v_2 \leq \left(V_3(0) - \frac{C_1}{\varepsilon_2} \right) e^{-\varepsilon_2 t} + \frac{C_1}{\varepsilon_2}$. When $t \to \infty$, $v_1, v_2 \to \frac{C_1}{\varepsilon_2}$, further it can be got $\lim_{t \to \infty} \|z_{v1}\| = \sqrt{\frac{2C_1}{\varepsilon_2}}$, $\lim_{t \to \infty} \|z_{v2}\| = \sqrt{\frac{2C_1}{\varepsilon_2}}$. From Lemma 2.1, it can be seen that ξ_1 and ξ_2 are bounded, so when ε_2 is selected large enough, the tracking error variables z_1, z_2 can converge to any small neighborhood.

Therefore, conclusion (III) has been proved.

The proof of Theorem 3.2 has been completed.

Remark 3.3. The auxiliary systems Equation (26) used in control schemes can handle input saturation problem for the cases that the input saturation is symmetrical and asymmetric.

Remark 3.4. Considering the anti-saturation controller Equation (27) and adaptive anti-saturation controller Equation (34), if error z_{v2} converges to zero infinitely, singularity problem may appear in the system. In the simulation analysis, the controller Equation (27) and the controller Equation (34) are modified to Equation (47) and Equation (48) respectively to avoid the phenomenon:

$$u_c = m_c \begin{pmatrix} -k_2 z_2 - z_1 - AX_v - BX_r - C + \ddot{X}_r + \alpha_{vd1} - \frac{d_m}{m_c} \text{sign} (z_{v2}) \\ + k_\eta \eta - k_h \frac{z_{v2}}{\|z_{v2}\|^2 + \Delta} \left(h(X_r) h^{-2}(X_r) + k_{h1} h^{-1}(X_r) \right) \end{pmatrix}$$

(47)
\[u_c = m_c \begin{pmatrix} -k_2 z_2 - z_1 - A X_v - B X_r - C + \dot{X}_{rd} + \dot{\alpha}_{rd1} \\ -\frac{d_m}{m_c} \tanh (z_{v2}/p_v^2) + k_n \eta - k_h \frac{z_{v2}}{\|z_{v2}\|^2 + \Delta} \left(h(X_r)h^{-2}(X_r) + h^{-1}(X_r) \right) \end{pmatrix} \]

where \(\Delta \) is a very small positive constant.

4. Simulation Analysis. In order to validate the effectiveness of the designed controllers, simulations are conducted in this section for the situations that the upper bound of the external disturbances is known and unknown respectively.

In the process of simulations, to make these parameters more reasonable, the values of the basis parameters refer to the values of the corresponding parameters in [10]. The detailed names and values of parameters are shown in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>The maximum input force</td>
<td>5N</td>
</tr>
<tr>
<td>The mass of the chaser</td>
<td>(m_c = 120 \text{ kg})</td>
</tr>
<tr>
<td>The orbital element of the target: Semi-major axis</td>
<td>(a = 7.0 \times 10^6 \text{ km})</td>
</tr>
<tr>
<td>The orbital element of the target: Eccentricity</td>
<td>(e = 0.02)</td>
</tr>
<tr>
<td>The orbital element of the target: Longitude ascending node</td>
<td>(\Omega = 50 \times \pi/180 \text{ rad})</td>
</tr>
<tr>
<td>The orbital element of the target: Inclination</td>
<td>(i = 40 \times \pi/180 \text{ rad})</td>
</tr>
<tr>
<td>The orbital element of the target: Argument of perigee</td>
<td>(\omega = 45 \times \pi/180 \text{ rad})</td>
</tr>
<tr>
<td>The orbital element of the target: Initial true anomaly</td>
<td>(f = 10 \text{ rad})</td>
</tr>
</tbody>
</table>

The initial relative speed vector and the desired relative speed vector are assumed as \(X_{vd0} = [0 0 0]^T \) m/s and \(X_{vd} = [0 0 0]^T \) m/s. To verify the effectiveness and robustness of the controller, simulations for two cases are conducted.

Case1: The radius of the sphere in collision avoidance potential and the external disturbances are set as \(R = 10 \text{ m} \) and \(\mathbf{d} = 10^{-4} \begin{bmatrix} 8 + \sin (\frac{\pi t}{125}) + 2 \sin (\frac{\pi t}{200}) \\ 5 - \sin (\frac{\pi t}{125}) - 3 \cos (\frac{\pi t}{200}) \\ 6 + \sin (\frac{\pi t}{125}) + 5 \cos (\frac{\pi t}{200}) \end{bmatrix} \) N.

The initial relative position and the desired target position vectors are set as \(X_{r0} = [14 25 -5]^T \text{ m} \) and \(X_{rd} = [6 -16.5 1]^T \text{ m} \).

Case2: The radius of the sphere in collision avoidance potential and the external disturbances are set as \(R = 15 \text{ m} \) and \(\mathbf{d} = 10^{-3} \begin{bmatrix} 8 + \sin (\frac{\pi t}{125}) + 2 \sin (\frac{\pi t}{200}) \\ 5 - \sin (\frac{\pi t}{125}) - 3 \cos (\frac{\pi t}{200}) \\ 6 + \sin (\frac{\pi t}{125}) + 5 \cos (\frac{\pi t}{200}) \end{bmatrix} \) N.

The initial relative position and the desired target position vectors are set as \(X_{r0} = [14 30 -5]^T \text{ m} \) and \(X_{rd} = [13 -19 0]^T \text{ m} \).

4.1. Simulation analysis of the anti-saturation controller. For the situation of known upper bound of external disturbances, the parameters of the designed anti-saturation controller Equation (27) are selected as: \(k_1 = 0.021, k_2 = 12, \tau_1 = 0.08, k_h = 40, k_{h1} = 0.8, k_n = 1.02, d_m = 0.05 \). Simulation results of Case1 and Case2 using anti-saturation controller Equation (27) are shown in Figures 2-4.

The tracking error curves of \(z_1 \) and \(z_2 \) are given in Figures 2(a) and 2(b) respectively. The curves of all cases indicate that the position and velocity of chaser can converge in short time though there are external disturbances and input saturation, which satisfies the requirement of control accuracy. The control force curves of the system are provided in
Figure 2. The curves of tracking error under the controller Equation (27)

Figure 3. The control force curves of the system under the controller Equation (27)

Figure 3, from which it can be seen that the control forces are bounded in the whole control process without obvious chattering. Figure 4 shows the curve of potential function and the motion trajectory of chaser in the target orbit coordinate frame which describes the process of terminal approach more intuitively. Based on the results shown in Figures 4(a)-4(d), it can be known that there is no collision happening when the chaser approaches the target. Comparing the results of Case1 and the results of Case2 shows that the controller Equation (27) can realize the terminal safe approach with bigger difference of the external disturbances and taboo areas, which indicate the effectiveness and robustness of the controller Equation (27).

To verify the effectiveness of collision avoidance of the controller Equation (27) ($R = 15$ m), let $k_h = 0$, that is, the collision avoidance is not considered. The corresponding simulation results are shown in Figure 5. Based on the results, it can be seen that the
The curves of potential function and motion trajectory of chaser under the controller Equation (27) are shown in Figure 4.

Simulation results using the controller Equation (27) with $k_h = 0$ are presented in Figure 5.
chaser collides with the target in the process of terminal approach if the collision avoidance is not considered in controller design. Compared with Case2, it further indicates that the controller Equation (27) is useful for collision avoidance.

According to the above analysis, for the situation that the upper bound of the external disturbances is known, the results presented in Figures 2-5 indicate that the anti-saturation controller Equation (27) is effective for the chaser to realize the terminal approach without collision.

4.2. Simulation analysis of the adaptive anti-saturation controller. For the situation of unknown upper bound of external disturbances, the parameters of the designed adaptive anti-saturation controller Equation (34) are selected as: $k_1 = 0.033$, $k_2 = 18$, $k_3 = 0.0004$, $\tau_1 = 0.05$, $k_h = 40$, $k_\eta = 1.8$, $\gamma_d = 0.4$. Simulation results of Case1 and Case2 using adaptive controller Equation (34) are shown in Figures 6-9.

![Simulation Results](image-url)
Figure 6. The curves of tracking error z_1 and z_2

In Figure 6(a) and Figure 6(b), the tracking error curves of z_1 and z_2 are given respectively for two cases. From the simulation curves, it can be seen that the position and the velocity of chaser can converge in short time satisfying the requirement of control accuracy regardless of external disturbance, parameter uncertainty and input saturation of the system. The control force curves of the system presented in Figure 7 show that the control forces are bounded in the whole control process without chattering which satisfy the requirement of input constraint, and the control forces are better than the control forces in Figure 3. The curves of adaptive parameters shown in Figure 8 manifest that the estimated values \hat{d}_m approach a steady value after a period of time, which indicates that the adaptive schemes are effective to estimate the value of the upper bound of unknown external disturbances d_m. Figure 9 gives the curve of potential function and the motion trajectory of chaser in the target orbit coordinate frame, which shows that the value of the potential function is positive and the chaser can accomplish terminal approach being away from the taboo area for two cases. Analyzing the results above, it can be seen that the controller Equation (34) can realize the terminal safe approach for the two cases with difference of the external disturbances and taboo areas, which indicate the effectiveness and robustness of the controller Equation (34).

To verify the effectiveness of collision avoidance of the adaptive controller Equation (34) ($R = 15$ m), let $k_h = 0$, the corresponding simulation results are shown in Figure 10. From the results, it can be seen that the chaser collides with the target during terminal
Figure 7. The control force curves of the system under the controller Equation (34)

Figure 8. The curves of adaptive parameters under the controller Equation (34)

approach if the collision avoidance is not taken into account, which further indicate that the controller Equation (34) is effective to avoid collision in terminal approach.

All in all, for the situation that upper bound of the external disturbances is unknown, the results presented in Figures 6-10 indicate that the adaptive anti-saturation controller Equation (34) is effective for the chaser to realize the terminal safe approach.

5. Conclusions. The anti-saturation control strategies for spacecraft terminal safe approach are researched in this paper based on DSC, auxiliary system and spherical collision.
Figure 9. The curves of potential function and motion trajectory of chaser under the controller Equation (34)

Figure 10. Simulation results using the controller Equation (34) with $k_h = 0$
avoidance potential function. According to the theoretical proofs and numerical simulations, conclusions are drawn as follows.

(1) The safety problem of terminal approach control is simplified into boundedness problem of the reciprocal of the potential function by introducing the spherical collision avoidance potential function.

(2) For the situations of known and unknown upper bound of external disturbances, two novel anti-saturation control schemes for spacecraft terminal safe approach are put forward. The first-order command filter is used to avoid the differential of the virtual control signals, and the effect of the error caused by the command filter can be removed by introducing the compensating signals.

(3) Under the designed controllers, the states of system are bounded and uniformly ultimately bounded respectively, and the tracking errors can converge to any small neighborhood. Also the chaser spacecraft can approach the expected position safely. The numerical simulation results further indicate the effectiveness of the designed controllers.

Acknowledgment. The authors would like to acknowledge the support provided by the China Aerospace Science and Technology Innovation Foundation (CAST. No. JZ20160008), the State Key Program of National Natural Science Foundation of China (61333003) and the Major Program of Natural Science Foundation of China (61690210).

REFERENCES

