
International Journal of Innovative
Computing, Information and Control ICIC International c
 2018 ISSN 1349-4198
Volume 14, Number 3, June 2018 pp. 971{995

A MORE EFFICIENT DETERMINISTIC ALGORITHM IN PROCESS
MODEL DISCOVERY

Hermawan 1;2 and Riyanarto Sarno 2

1Departemen Informatika
Fakultas Teknik

Universitas Trunojoyo Madura
Po. Box 2 Kamal, Bangkalan 69162, Indonesia

hermawan@trunojoyo.ac.id

2Departemen Informatika
Fakultas Teknologi Informasi dan Komunikasi

Institut Teknologi Sepuluh Nopember
Jalan Raya ITS, Sukolilo, Surabaya 60111, Indonesia

riyanarto@if.its.ac.id

Received June 2017; revised December 2017

Abstract. Alpha is a basic deterministic discovery algorithm that hasbeen enhanced
by Alpha*, Alpha++ and Alpha#. Alpha does an analysis of place, transition, and �r-
ing locally on each trace in the event log, which causes the time complexity of Alpha to
be high for large event logs. In this paper, the Alpha-Tree (Alpha-T) algorithm is pro-
posed to enhance Alpha's time complexity performance and quality of discovery. Based
on generalized tuple pattern recognition (GTPR) inside the adjacency list tree (ALT)
data structure, Alpha-T is able to simplify the tuple pattern analysis, resulting in a more
e�cient time complexity

�
O

�
t3

��
compared to Alpha

�
O

�
t4

��
. Alpha-T reduces the time

complexity by localizing the e�ect of the event log size to the preprocessing stage, which
diminishes the number of steps in the discovery processing stage. Then within processing,
Alpha-T does execution pattern of logic directly and induction in the places gateway, and
make it have more dynamically pattern that produces more completeness and correctness
model than other algorithms. Finally, in the post-processing stage, Alpha-T has a single
graph structure, which reduces the complexity and memory space needed for work
ow
�ring between place and transition.
Keywords: Process mining, Deterministic discovery algorithm, Alphaalgorithm, Alpha-
T algorithm, Generalized tuple pattern recognition (GTPR) , Adjacency list tree (ALT)

1. Introduction. Today, the process mining of transaction data is increasingly required
by various organizations [1]. Process mining is widely implemented to analyze business
process activities using process aware information systems (PAIS) [2]. PAIS are used to
improve competitiveness, performance, and organizational policy [3] in various �elds, such
as manufacture [4], insurance [1], �nance [5], healthcare [6], information technology [7],
and education [8].

The main activity in mining is the discovery process [9], which examines the event
log [10] to produce a model that re
ects the work
ow of the business process [11]. The
work
ow model should be accurate in describing the real operational activities from the
business transactions that generate the event log.

There are many standardized work
ow models that are used forbusiness processes,
such asPetri nets, business process model notation(BPMN), event-driven process chain
(EPC), and yet another work
ow language(YAWL) [12].

971

972 HERMAWAN AND R. SARNO

In this study, the YAWL-model was chosen for the work
ow design because YAWL
has the best work
ow pattern analysis, which covers all work
ow perspectives and has
control-
ow patterns, data patterns, resource patterns, change patterns, and also excep-
tion patterns [12]. YAWL has been adopted by common discovery tools such as ProM,
which is a quali�ed framework and tool used in the process mining.

Several algorithms have been developed to do the mining in the discovery process: a
deterministic algorithm, Alpha, including Alpha* [13], Alpha++ [14], and Alpha# [15], a
fuzzy algorithm [16], a heuristic algorithm [17], a geneticalgorithm [18], machine learning
[19], discriminative patterns [20] and also based on association rule approaches [21,22].

From a performance comparison of the discovery algorithms,it was found that the best
accuracy was achieved by the genetic algorithm and the best time complexity was achieved
by the heuristic algorithm when compared with Alpha [23]. Although the heuristic algo-
rithm produces an optimal solution with minimal side e�ects, it is unsuitable for complex
mining containing invisible tasks [2]. Other than that, it produces a directed graph of
a standard causality network (C-net) that has bias representational model [24] and only
supports structured relations, not in behavioral relations. Meanwhile, the computation
complexity of the genetic algorithm is worse and unfavorable for big event logs.

For these reasons, this study aimed at enhancing the deterministic algorithm based on
the Alpha method [25], whose performance is not optimal in the discovery on big event logs
and has low accuracy in complex mining that contains invisible task [15]. The enhanced
method that is proposed here to solve the shortcomings of Alpha is called Alpha-T.

Through the Alpha-T algorithm, the mining analysis on tuple relationships can be
simpli�ed by using pre�x generalizations in ALT structure, a process that is called GTPR.
During general retrieval, using ALT is more e�cient in terms of time and space than using
a general matrix structure. Also, using GTPR will shorten the discovery step because it
executes logic pattern recognition directly on the tuple relation.

To test several algorithms that are commonly used, themodel driven analysis(MDA)
strategy was applied to measuring conformance of work
ow model that shows quality of
discovery. Using MDA, a comparison of the reference model and the discovery model can
be aligned as driven by quali�ed tools such as YAWL and ProM.

For benchmarking the computation performance, time complexity analysis was done
with focus between Alpha-T and Alpha. Also, for quality discovery, it was done by
conformance checking of completeness and correctness model. Alpha-T is expected having
higher performance and better discovery quality than others as the main contribution and
novelty of this study.

2. Problem Statement and Preliminaries. In this section, we describe the Alpha
stages to be compared with the proposed method to show the di�erence between them.
Alpha as the basis of the deterministic discovery algorithmdoes the tuple mining by
tracing the task sequence locally in the event log. The tuplesequence patterns describe
the work
ow that is built from the event log. Alpha consists of 4 ordering relation
patterns, i.e.:
1) Follows (>), if (A, B) are 2 related tasks
2) Causal (!), if tasks A > B and B! > A
3) Parallel (jj), if tasks A > B and B > A
4) Unrelated (#), if tasks A! > B and B! > A

The relation sequence patterns are based on the causality logic from the Alpha discovery
algorithm. All Alpha steps are described in the following Lemma 1.

(1) Tw = f t 2 Tj9 � 2 w t 2 � g
(2) TI = f t 2 Tj9 � 2 w t 2 �rst(�)g

A MORE EFFICIENT DETERMINISTIC ALGORITHM 973

(3) TO = f t 2 Tj9 � 2 w t 2 last(�)g
(4) X w = f (PI ; PO)jPI � Tw ^ PO � Tw ^ 8 a2 PI 8b2 PO ! w b̂

8a1 ;a22 PI a1 6= w a2 ^ 8 b1 ;b22 PO b1 6= w b2g
(5) Yw =

�
(PI ; PO) 2 X w j8(P 0

I 2 P 0
O)2 X w PI � P0

I ^ PO � P0
O) (PI ; PO) = (P0

I ; P0
O)

	

(6) Pw =
�

p(PI ;PO) j(PI ; B) 2 Yw
	

[f I w ; Owg
(7) Fw =

�
a; p(PI ;PO) j(PI ; PO) 2 Yw ^ a 2 PI

	
[

�
p(A;B) ; bj(PI ; PO) 2 Yw ^ PO

	

[f (I w; t)jt 2 TI g [f (t; Ow)jt 2 TOg
(8) � w = f Pw; Tw; Fwg (1)

Performance evaluation of Alpha and other discovery algorithms can be done through
conformance checking by trace matching of the sequence in the event log and the discovery
process model [25]. To gain better conformance checking, model-driven analysis was used,
using a top-down and a bottom-up strategy respectively [26].

In the top-down strategy, a YAWL reference model was designed using the YAWL editor
to create a business process work
ow model, as shown in Figure 1. In step-by-step task
simulation, the work
ow is executed by a YAWL server, as shown in Figure 2.

Figure 1. YAWL model to simulate a credit application business process [22]

Figure 2. YAWL server engine work
ow task executor

974 HERMAWAN AND R. SARNO

The YAWL server also automatically generates an application form according to the
data model that is determined for every task by the YAWL model, as alternative other
technology supported this simulation such asbusiness process model server(BPMS) that
generatesbusiness process execution language(BPEL) [26]. This simulation model, also
produces event log data that re
ect the transactions in the overall task work
ow.

By using the bottom-up strategy, the result of the event log can be applied to discovering
a functional work
ow model [27]. Conformance checking between the work
ow produced
by the discovery model and the reference model will prove thecorrectness of the discovery
algorithm.

The list of tasks from the business process work
ow is shown in Table 1, while L1 is
the log set inside the event log that is generated by each transaction goal from the sim-
ulation. The simulated work
ow describes transaction automation for credit application
submission in a banking business process.

Table 1. Follow footprint matrix for L1

T in /T out A B C D E F G H I J K L
A >
B > >
C >
D > >
E > >
F > >
G > >
H > >
I
J >
K >
L

This business process scenario begins when a customer proposes a loan to the bank. For
the �rst task, through a credit sta�, bank will receive �le su bmission \receive application
(A)", and then he checks the ful�llment of requirements required \ check for requirements
(B)". If a problem is found, it is necessary for customer to repair \ modify application
(C)", and he will check the application again until it meets the requirements.

When the credit application meets the requirements, a \check loan amount(D)" is
estimated. These are two loan categories, �rst \performs checks for large amount (E)" and
second \checks for small amount (F)". A credit analyst will assess credit appropriateness
and \make decision(G)".

If the application is approved, the bank o�ers a \start approval (H)", then requests
the customer to sign a \notify acceptance(J)" and he accepted a credit card \deliver
credit card (K)" which indicates credit approval has been agreed \complete approval(L)".
However, if application is not approved, then the \notify rejection (I)" is delivered to the
customer.

Considering a simulation of the YAWL model in Figure 1, the business process scenario
is done by the bank to check the consumer's credit application when applying for a loan.
Through all the di�erent data transaction forms that are executed by the operators and
credit analyzers, the credit application in Figure 2 will generate the following event log:

L1: ABDEFGI, ABDFEGI, ABDEFGHJL, ABDEFGHKL, ABCBDEFGI, ABCB D-
FEGI, ABCBDEFGHJL, ABCBDEFGHKL, ABDFEGHJL, ABDFEGHKL, AB CBD-
FEGHJL, ABCBDFEGHKL.

A MORE EFFICIENT DETERMINISTIC ALGORITHM 975

For discovery of an event log, the discovery process in Alpha[14] starts with event log
extraction, i.e., steps (1) to (3) in Lemma 1. These steps check the tuple relation between
each task and the task precedence, generating the follow relation matrix, as shown in
Table 1. In order to construct a work
ow network (WF-net), the follow relation matrix is
converted to a footprint matrix based on causality logic, i.e., causality (!), parallel (jj)
and unrelated (#). The causal relations inside the footprint matrix are shown in Table 2.

Table 2. Causal footprint matrix based on Alpha base logic

T in /T out A B C D E F G H I J K L
A # ! # # # # # # # # # #
B # ! ! # # # # # # # #
C # ! # # # # # # # # # #
D # # # # ! ! # # # # # #
E # # # # jj ! # # # # #
F # # # jj # ! # # # # #
G # # # # # ! ! # # #
H # # # # # # # # ! ! #
I # # # # # # # # # # #
J # # # # # # # # # # !
K # # # # # # # # # # !
L # # # # # # # # # #

Alpha must build a WF-net structure by determining the candidate places (X w) based
on the transition tasks (Tw) from the footprint matrix generated by steps (4) and (5).
X w contains the pair set of input transition places (PI) and output transition places (PO)
with the possibility of single or multi-independent causality without being followed by
the same transition. For example, taskA is the input for task B. BecauseA has single
causality, it will produce place (A; B). Moreover, task (A; C) is the set of inputs for task
B and has multi-independent causality so it will produce place p(f A; Cg; B).

The footprint analysis result expresses the place sets of causal task pairs, so thatX w

= set of single causality [set of multi causality from (PI 2 Tw ; PO 2 Tw) = (A; B),
(B; C); (B; D); (C; B); (D; E); (D; F); (E; G); (F; G); (G; H); (G; I); (H; J); (H; K); (J; L),
(K; L), (f A; Cg; B), (f E; F g; G), (B; f C; Dg), (D; f E; F g), (f J; K g; L), (G; f H; I g), (H ,
f J; K g).

Because of the avoidance of redundant places, the place set contains only the maximal
path from combined setX w as the complete �nal place set (Yw) by removing the sin-
gle causality relation that is contained within the multi-independent causality collection,
so that Yw = (f A; Cg; B); (f E; F g; G); (f J; K g; L); (B; f C; Dg); (D; f E; F g); (G; f H; I g),
(H; f J; K g).

Finally, the place set isPw, which contains place setYw added with the input start place
set p(I w) and the output �nish place set p(Ow), so that Pw has the following Lemma 2:

Pw = p(Yw) [p(I w; Ow) = p(Yw) [p(t 2 TI ; t 2 TO) (2)

= (Start; A); (f A; Cg; B); (f E; F g; G); (f J; K g; L); (B; f C; Dg);

(D; f E; F g); (G; f H; I g); (H; f J; K g); (f I; L g; End):

According to the gateway behavior in thestructured work
ow net (SWF-net), Pw has
�ve logical possibilities: CAUSAL, XOR-split, XOR-join, A ND-split and AND-join. In
this case a CAUSAL relation is found only at the start place because the other places
have multi-independent causality. XOR-split is built from the combined set of unrelated

976 HERMAWAN AND R. SARNO

tasks (#) in the output destination, p(B; f C; Dg). Then XOR-join is created from the
combined set of # from the input destination,p(f A; Cg; B). Moreover, the AND gate is
built from the combined set of the parallel input and output (jj), i.e., p(D; f E; F g) for
AND-split and p(f E; F g; G) for AND-join.

The complete WF.net graph will be generated by the �ring map (Fw), which is produced
by the combined sets of input task, place and output task fromthe Pw set as follows:

Fw = (Start; A); (A; p(f A; Cg)); (C; p(f A; Cg)); (p(f A; Cg; B)); (B; p(B; f C; Dg));

(p(B; f C; Dg); C); (p(B; f C; Dg); C); (p(B; f C; Dg); D); (D; p(D; f E; F g));

(p(D; f E; F g); E); (p(D; f E; F g); F); (E; p(f E; F g; G)); (F; p(f E; F g; G));

(p(f E; F g; G); G); (G; p(G; f H; I g)) ; (p(G; f H; I g; H)); (p(G; f H; I g; I));

(H; p(H; f J; K g)); (p(H; f J; K g; J); (p(H; f J; K g; J); K); (J; p(f J; K g; L));

(K; p(f J; K g; L)); (J; p(f J; K g; L)); (p(f I; L g); End):

The �nal Alpha discovery result has a WF-net structure that is determined by� w =
f Pw; Tw ; Fwg, as shown in Figure 3. Alpha establishes the correctness of the discovery
result with the ProM tool and it also fully conforms to the YAWL reference model.
Compared to the heuristic algorithm, Alpha's discovery model has more correctness than
heuristic, as shown in Figure 4.

Figure 3. Alpha discovery result in ProM

Figure 4. Heuristic discovery result in ProM

For the enhancement of Alpha, the existing Alpha* [12] and Alpha++ [13] were used.
They contain the following two additional logical patterns:

5) One-loop (�), if redundant tasks are found (A; A), t = t1 = A
6) Two-loop (}), if a loop structure is found (A; B; A), t = t2 = A and t1 = B
With these two additional logic patterns, the Alpha++ algorithm has an advanced

tuple loop pattern based on � and } in every log trace, so that Alpha++ has better
discovery accuracy than Alpha in loop mining. However, the addition of loop base patterns
signi�cantly increases the time complexity.

Alpha and Alpha++ have become standard plug-ins in ProM tools. Moreover, they
have been proven to improve the discovery results accordingto the WF-net work
ow
model [14].

The next enhancement of Alpha++ for Alpha is Alpha#. Alpha# i mproves some
logic patterns that are not solved accurately during the discovery process by Alpha++,

A MORE EFFICIENT DETERMINISTIC ALGORITHM 977

i.e., redo, skip, and switch based on logic inspection of the follow (>) and two-loop (�)
patterns [15].

Alpha and its enhancements perform every step of the processof determining places
and �rings locally on the whole event log, which greatly increases the time complexity,
possibly leading to over�tting of the numbers of places and �rings.

3. Main Result. The main result of this study is a novel algorithm within the determin-
istic discovery mining process, which adopts several patterns from Alpha's tuple analysis.
The �nal discovery result from our proposed method, the Alpha-T algorithm, is shown in
Figure 5.

Figure 5. Graph visualization of Alpha-T discovery result

The graph visualization of Alpha-T was created using JAVA and JGraph graph library
support. From this result it can be found that the Alpha-T result had the same correctness
level as the Alpha discovery result standardized by BPMN model. Moreover, the result
ensures the soundness of the SWF-net on the �ring connections, so that it is proven that
the work
ow model has correctness in the structural and behavioral perspectives.

4. Control Design. In this section, we describe Alpha-T algorithm to discover the logic
pattern contained within an event log. It aims to construct work
ow model which is
expected to produce behavior model in BPMN and achieve SWF-net structure.

4.1. Alpha-T algorithm. The Alpha-T algorithm is presented as a proposed method to
improve time complexity performance and simplify concurrent processes to discover the
event log.

The Alpha-T algorithm has 3 stages, i.e., preprocessing, processing and post-processing.
These are 4 sub-processes in the preprocessing stage:
� structuring the ALT object
� extracting the event log to the ALT forest (steps (1)-(4))
� weighting on the ALT forest node (coincide step (1))
� sorting on the ALT forest node (step (5))
The processing stage has 3 sub-processes, i.e.:
� Boolean logic matching on the concurrent looping (step (6))
� �ltering on the node transition (step (7))
Furthermore, in the post-processing stage a direct follow graph is built and a graph

visualization of the �rings from the discovery is produced (step (8)).
The process of the Alpha-T algorithm is as Lemma 3 followed:

(1) 8N =
�

t f �;@g 2 8N j9 � = t1 t2 :::t n 2 w;i 2f 1;2;:::;n gt 2 � ! [� = t i > t ; @= t > t i]
	

(2) L0L =
�

t 2 8N j9 � = t1 t2 :::t n 2 w;i 2f 1;2;:::;n g[t = t i � 1 > t i ; t i � 1 = t i]
	

(3) TI = f t 2 8N j9 � 2 w t 2 �rst(�)g
(4) TO = f t 2 8N j9 � 2 w t 2 last(�)g

978 HERMAWAN AND R. SARNO

(5) 8N = Sort asc
�

N f �;@g 2 8N
	

by Wt

(6) 8N = P
�

N f �;@g 2 8N jas Lemma 13g
(7) 8N = F f N f @g 2 8N jas Lemma 8g
(8) Alpha-T = Graph

�
Nvertex ! edge(@) 2 8N

�
(3)

4.2. Construct adjacency list tree structure. To obtain a more e�cient and dynamic
data structure, the abstract of data type (ADT) used by Alpha-T is the adjacency list
tree (ALT). ALT is an alternative ADT for the graph representation, where ALT is more
e�cient in terms of memory space than ADT.

Alpha-T creates a pre�x tuple relationship based on the global event log in step (1),
called GTPR, to directly analyze the pattern of logic between a task and its precedent,
as illustrated in Figure 6.

Figure 6. Adjacency list tree from event logL1

In accordance with event logL1, ALT shows the relationship between activity list
T(A : : : Z) in the reference forest tree relationship and the determined children (@), which
is a successor tuple from the sequence order event log in accordance with step (1). The
object de�nition of the ALT task node is expressed as De�nition 4 followed:

Class Node

String data ;

String type;

ConcurrentLinkedDeque (Node) parents

ConcurrentLinkedDeque (Node) children

Node startP oint ;

Node endpoint;

Boolean inner-gate;

Boolean enable;

Boolean depth; (4)

From the de�nition of the node class, each node object has an input set as parents< � >
and an input set as children< @ >, with the conditions as given in Lemma 5 followed:

T 2 T� j� are parents ofT, � = f A; B; : : : ; Z g

T 2 T@j@are children ofT, @= f A; B; : : : ; Z g (5)

As the bag of task nodes, the forest tree object is used, whichis de�ned as De�nition
6 followed:

Class F orest

ConcurrentLinkedDeque(Node) adjacencyList;

Node Start;

Node End; (6)

A MORE EFFICIENT DETERMINISTIC ALGORITHM 979

The ALT graph grows with additional members from the place gateway, which changes
the task and gateway relationship as determined by Lemma 7 followed:

8N = Tw [Gw (7)

while,
8N : ALT node set
Gw: gateway set,Gw = f G< ; G> g
G< : split gateway
G> : join gateway
G< and G> are produced by Boolean logic pattern analysis when the relationship

between task and gateway for valid �rings (Fw) is as Lemma 8 followed:

Fw N 2 T@jN : f G< ; G> g; jN j = 1

Fw N 2 G< @jN : f T; Slackg; jG< j = 1

Fw N 2 G> @jN : f G< ; Tg (8)

The determination of a simple parent-child relationship pattern between task and gate-
way produces a work
ow model with a closed boundary in the behavioral gatewaysG<

and G> , also allowing an open boundary inside singleton and free-choice patterns that
have onlyG! . This rule intends to ful�ll the rules of a WF-net based on Petri-net �ring
between the place and transition setsf Pw ; Tw; Fwg, as shown in Figure 7.

Figure 7. WF-net soundnessrules [15]

4.3. Weighting ALT node. After the process of extraction from the event log, Alpha-T
performs depth weighting of the tree nodes, which is useful for establishing the sequencing
order of each task node and also their children. The weight updating WT of the depth of
each node inside8N is expressed in the following Expression 9:

for 9 T 2 8N !

i� (T is First)

WT = 1

else i� (T0 2 8N AND T0
� @T�)

W 0
T = (W 0

T + W�)=2

i� (T0
@T�)

W 0
T = W� + 1

else

W 0
� = (W 0

T + W�)=2 (9)

By Expression 9, the taskT traversal is done inside8N . For the �rst time, when T as
the starting node 8N T, that has weight asWT = 1. Otherwise, for the next input if

980 HERMAWAN AND R. SARNO

T has existed inside ALT (T0 2 8N) and the predecessor ofT that is T� has not existed
inside ALT task parent T0

� , the weight of existing task is updated as average of the weight,
W 0

T = (W 0
T + W�)=2.

Furthermore, to avoid overlapping a weight in concurrency relation, if T0 does not
have parallel relation within its parent T� (T0

@T�), T0 weight is updated with a weight
W 0

T = W� + 1. Other than that, if they have parallel relation, existing parent weight
updated with W 0

� = (W 0
T + W�)=2. This expression has purpose to close the weight

deviation of parent and child task on the parallel relation and to far on the direct causality
relation.

After the task depth weighting process, we get the followingnumber of results as shown
in Table 3.

Table 3. Task weight node inside ALT

Start A B C D E F G H I J K L End
0 1 2.5 2.75 3 4.5 4.75 6 7 7 8 8 9 14

From Table 3, the depth weighting results obtained a clear task weight deviation as
a reference for the sequence order from thestarting task to �nish that is very useful to
avoid an overlapping of tasks order that often occur due to the concurrency causality.

Furthermore, the result of the weighted task is also used to analyze the implications
of the logic possibility on the tuples either between the parent-child relationship N (�; �)
or also between each child (� @; � @), and then will be combined with sequential causality
analysis to improve logical analysis accuracy.

This method has advantages on computational complexity when compared with the
using of advanced complex pattern causality matching as applied to Alpha# where too
many patterns are analyzed in various invisible patterns [15]. The logical implications
that can be produced from the weighting assessment are as Lemma 10.

In the parent to children relationship,
WN < W (�;�) ! Follow
WN > W (�;�) ! Reply

Also, in the child to child relationship,
WN < W (�;�) ; W� = W� ! XOR

WN < W (�;�) ; 0 < W � � W� < 1 ! AND ; TwoLoop; Skip (10)

Meanwhile, the depth weights of gatewaysG< and G> for the gateway pair are the
mean values of the task members' weight, as in the following Lemma 11:

W(GS; GJ) =
nX

c=0

W
�

GS@(c)

� .
njGS@ : T (11)

where,
n: number of children
c: child weight

4.4. Sorting ALT nodes. By using tree-map hashing, sorting of the task nodes is done
based on the depth weight value as expressed in Lemma 12. Sorting of their children is
also done, based on the task node sorting. The result of ALT after sorting is as illustrated
in Figure 8.

Map(k; v) ! treeMap(N; W (N))

8N k (12)

A MORE EFFICIENT DETERMINISTIC ALGORITHM 981

where,
Map: bag set of the generic data structure map
treeMap: hashing/sorting function on the map
k: node key
v: node value

Figure 8. Sorting result of ALT from L1

4.5. Alpha-T logic pattern. The GTPR pattern in Alpha-T is analyzed by the place
of nodeN as a parent reference related to second-tuple child node� and sibling � as in
the following Lemma 13:

Pw(N;�;�) =
mX

i =0

N(i) 3
nX

j =0

� @(j) ^ � @(j +1) (13)

where,
Pw: place of work
ow gateway
N : parent nodejN : f T; G> g; T 6= < T >; G > 6= }
� : �rst-tuple node j� : T
� : second-tuple nodej� : T
M : numbers of8N
N : number of children
i , j : counter index
GTPR is executed in a concurrent loop inside8N when N is limited only for a non-

inner-gate task< T > and join gateway nodes. Whereas join gateway is not atwo-loop
(}). We de�ne 11 logical patterns that are used in Alpha-T that ful�ll behavior and
structural logic of SWF-net, which are:

1) Serial direct
2) Reply
3) Free-Choice
4) Free-Join
5) Non-Free Choice
6) One-loop
7) Two-loop
8) XOR
9) Skip

10) AND
11) OR

1) Serial direct (!)
! is a singleton relation that occurs when parent nodes have only one child, as de�ned

in the following Lemma 14:

I� (N@3 (�)jjN@j = 1) ! (N@ ! ; !
@ �) (14)

982 HERMAWAN AND R. SARNO

Example 4.1. ABC. Node A has only one childB , so that serial gateway! is created
and alsoB is transferred as! child. The same goes for taskB, which has only one child,
C. These con�gurations are shown in Figure 9(a) as the parent-child relationship inside
ALT, while the discovery result is shown in Figure 9(b).

(a)

(b)

Figure 9. (a) SD pattern in ALT, (b) SWF-net for SD

2) Reply ()
 occurs when the parent node has a smaller weight than the child node and has vice

versa relation, so it will produceXOR loop that is also calledredo pattern. This pattern
is applied for as de�ned by the following Lemma 15:

I� (N@3 (�; �)jW(N) > W (�)) !

(N@ < � ; < �
@ (� > ; �); � >

@ � ; � @ ! ; !
@ N ; � � � >) (15)

Example 4.2. ABCD, ABCBCD. Within the tuple relationship betweenC(B; D), C has
a B child node that has a smaller weight, so thatC has an to B that is implemented
as (< � ; � >) loop as shown in Figures 10(a) and 10(b).

3) Free-Choice (!�)
!� has only an inclusiveXOR gateway-split from multi-serial that constructs places

that each other has tight di�erent link [11] (See Figure 11).This pattern is applied for as
de�ned by the following Lemma 16:

I� (N@3 (�; �)j� =2 � @; � =2 � @; � @ =2 � @) ! (N@ !� ; !�
@ (�; �)) (16)

Example 4.3. ABDF, ACEF. Within the tuple relationship betweenA(B; C), B and C
have di�erent child dependency on each other.

4) Free-Join (�!)
Opposite to free-choice, �! has only an inclusiveXOR gateway-join that constructs

termination from many places that each other has a common termination. This pattern
has purpose to guarantee all output places have correctnessin generalization termination.

A MORE EFFICIENT DETERMINISTIC ALGORITHM 983

(a)

(b)

Figure 10. (a) Reply pattern in ALT, (b) SWF-net for reply pattern

Figure 11. SWF-net for free-choicepattern

Other than that, �! is also used to solve termination for the event �nish. This pattern
refers to con�gure PW output place Lemma 2 in Alpha. This pattern is applied for as
de�ned by the following Expression 17.

for 9 T 2 8N !

i� (T is non inner gate)

i� (jT� j > 1)

T� @ �!

�!
@ T (17)

Di�erent from all other patterns that are generated by the children causality, �! is
generated only bythe parent causality. As Expression 17,�! is executed on thepost-
processingafter �ltering step. �! has a logical pattern (see Figure 12) to recon�gure
multi-serial termination that has a soundnessSWF-net considered with Example 4.3.

5) Non-Free-Choice (NFC)
NFC has an exclusive XOR gateway that constructs implicit places whenever each

other transition as the input for a place has a di�erent dependency [28]. NFC has a

984 HERMAWAN AND R. SARNO

Figure 12. SWF-net for reply pattern

logical pattern as de�ned in the following Lemma 18:

I� (N@3 (�; �)j� =2 � @; � =2 � @; � @\ � @; W(�) 6= W(�)) ! XOR (18)

Example 4.4. ABDB, ACDE. Within the tuple relationship betweenA(B; C), B and
C have the same childD, so an exclusive XOR is created. Other than that, on tuple
D(B; E), D produces redo to(B; E) which causes create link to existing XOR. For these
reasons,D has an NFC link to XOR gateway becauseD does not haveC child. NFC has
the same con�guration such as XOR and AND gateways (see Figure 16).

6) One-loop (�)
� indicates the occurrence of a single task one-loop free SWF-net Alpha++ loop [14].

This pattern occurs inside a redundant task (L0L) during log extraction when a repeating
task is found. � is processed at the end of discovery after �ltering, which is executed
through �ring a parent-input and child-output set (see Figure 13) as expressed in the
following Lemma 19:

I� (T 2 L0L < T >) !
�
T� � > ; � >

@ T; T@ < � ; < �
@ (� > ; T@)jT@: G

�
(19)

Figure 13. SWF-net for one-loop

Example 4.5. AABC, ABBC. Tasks A and B are repeating tasks and will create an XOR
loop.

7) Two-loop (})
} indicates a locked short-redo loop between two interconnected tasks, called a two-

loop free sound SWF-net loop in Alpha++ [14], as expressed inLemma 20.} is produced
with condition � having a direction only to the parent because it has only one child, N
(see Figure 14).

I�
�
N@3 (�; �)j(�) � (�); N 2 � @; jN@j � 2; j� @j = 1; � =2 � @; � =2 � @

�
!

�
N@ GS(�)

; GS(�) @
 � ; � @ GS(�)

; GJ (�) @
 (�; �); � @ GS(�)

�
(20)

Example 4.6. ABAC, ABAD. } occurs when the tuple parentA(B; C; D) has many
children, and one of its children has only one child as its parent such asB. So, the close
vice versa causality creates atwo-loop pattern such asB to A.

A MORE EFFICIENT DETERMINISTIC ALGORITHM 985

Figure 14. SWF-net for two-loop

8) Skip (< # >)
Skip is a causal relation that creates a jump XOR alternative. Skip occurs when a tuple

task � is the precedent of� but not vice versa, as expressed in the following Lemma 21:
I� (N@3 (�; �)j(N) � (�); jN@j � 2; � 2 � @; � =2 � @!

(N@ < � ; < �
@ (�; � >); � >

@ �) (21)

Example 4.7. ABC, AC. A parent tuple has childrenB and C, whereasB is a causality
of C so A needs a skip toC. Skip is shown in Figure 15.

Figure 15. SWF-net for skip

9) AND (< & >)
AND occurs when two or more tasks are absolutely parallel, where a tuple task �

precedes� and vice versa, as expressed in the following Lemma 22:
I� (N@3 (�; �)jW(N) � W(�); jN@j � 2; � @= � @) !

(N@ < &; < &@ (�; �); (� @; � @) & >); & > @ (� @; � @j(� @; � @) 6= (�; �)) (22)

Example 4.8. ABC, BAC. Task A has a childB and B has a childA, as shown in
Figure 16.

Figure 16. SWF-net for AND

986 HERMAWAN AND R. SARNO

10) XOR (< � >)
XOR occurs when two or more tasks are an exclusive alternative so that only one of

them can be executed. This occurs when node� has no child� and node� also has no
child � and their children are equality, as expressed in the following Lemma 23:

I� (N@3 (�; �)j� =2 � @; � =2 � @; � @= � @) !

(N@ G< � ; G< � @ (�; �); (� @; � @) G� >); G� > @ (� @; � @j� @; � @6= (�; �)) (23)

Example 4.9. AC, BC. See Figure 16.

11) OR (< % >)
OR occurs when two or more tasks have two or more multi-choice[29] constructed from

AND and SKIP logic. It is caused by the set of children of parent tuple that is not equal,
so they have multi-causality variants. Since the exclusiveAND cannot skip the SKIP
causality that occurs on the members, the possible logic is only OR.

The method of OR analysis used here is simpler than using manydecision analyses
from AND and XOR patterns [29], as described as Lemma 24 followed:

I� (N@3 (�; �)jW(N) � W(�); jN@j � 2; � 2 � @; � 2 � @; � @6= � @)

! (N@ Replace(< & > < % >)) (24)

Example 4.10. ACD, BCD, ABCD, ACBD. See Figure 16 as con�guration and the result
is shown as Table 6.

4.6. Concurrent loops in Alpha-T algorithm. The Alpha-T discovery analysis works
over concurrent looping inside ALT, where all enabled and non-inner-gate tasks and join
gateway nodes inside ALT are parent sets for tuple analysis as de�ned in Expression 25.

By Expression 25, if the node is a gateway, it will induct the causality analysis on
the join gateway having the bene�t to analyze the set of childnodes of children that
is contained in the parallel or exclusive gateway, so the analysis will be able to align
the relationship of parallel sequences with successors andreduce the number of tasks
to analyze. So, it will avoid over�tting pattern that only an alyzed independently such
worked on Alpha.

Concurrent discovery works well through an iterator loop and concurrent data type
support, which are provided by the programming language engine. By using the Java SDK
that is used in the Alpha-T implementation various concurrent data types are provided,
including: ConcurrentLinkedQueue, ConcurrentLinkedDeque, ConcurrentSkipList.

function discoveryLoop(8N)

iter iterator (8N)

While (iter : hasNext()):

Node n = iter.next ()

i� (n is task ORn is gatewayjoin)

i� (n is not gatewayloop)

i� (n is enable ANDn is non inner gate)

executepattern(n) (25)

To simplify the matcher for logic pattern, Expression 26 is acon�guration summary
for all Alpha-T patterns to be executed,

A MORE EFFICIENT DETERMINISTIC ALGORITHM 987

function executepattern(n)

n: ALT nodes, � : predecessor,� : successor

I� jn@j = 1

(1) Serial Direct

Else I� jn@j > 1

I� ! (n) > ! (�)

I� n is non inner gate AND � is non inner gate

(2) Reply

Else

(3) free choice

Else I� � =2 � # AND � =2 � #

I� j� # j = 1 AND n 2 � #

(7) Two Loop

Else I� � # 6= � #

(3) Free choice

Else

(10) XOR/ (6) Non Free Choice

Else I� � 2 � # AND � 2 � #

(9) AND

I� � @6= � @

(11) Replace(AND OR)

Else I� (� 2 � @ AND � 2 � #)

(8) Skip

*I� N 2 LoL

(6) One Loop (26)

In accordance with logL1, it is illustrated how a concurrent loop from Alpha-T works to
implement all logic patterns from the sorted8N , as shown in Figure 17. This illustrated
the start node (in yellow color) will be analyzed �rst, because the start node has only one
child, task A, so by pattern analysis it is a singleton and produces an SD logic pattern
and an SD gateway will be added to ALT.

Figure 17. First illustration for concurrent pattern analysis ALT for L1

The next looping trace is nodeA. BecauseA is a non-inner-gate task,A is executed
independently. Meanwhile,A has a singleton pattern with childB and also produces an
SD logic pattern as Figure 18.

988 HERMAWAN AND R. SARNO

Figure 18. Second illustration for concurrent pattern analysis ALT for L1

In the next loop, B is a non-inner-gate task, so it is executed.B has childrenC and
D, while C has a causality relation with parentB so that it produces a two-loop pattern,
as shown in Figure 19. When a two-loop pattern is produced,� > as input and < � as
output are created. } pattern con�gures the task member considered in Lemma 20.

Figure 19. Third illustration for concurrent pattern analysis ALT for L1

Because taskC is a loop inside a two-loop gateway pair, taskC is set as inner-gate
with task B and is not executed in the next loop, as shown in Figure 19 (grey color).

Next, D is executed. BecauseD has two exclusive parallel children (F; E), it will
produce an AND gateway.< & and & > gateways will be added to ALT and (E; F) will
not be executed. AND-join gateway inherits all children from node task (E; F) except
itself as shown in Figure 20.

Figure 20. Fourth illustration for concurrent pattern analysis ALT for L1

The execution of the ALT logic pattern is done in a concurrentloop until all par-
ent nodes with limited non-inner-gate tasks, enabled join gateway, and loop have been
inspected as shown in Figure 21.

Figure 21. Fifth illustration for concurrent pattern analysis ALT for L1

A MORE EFFICIENT DETERMINISTIC ALGORITHM 989

4.7. Filtering on �ring. Upon ful�llment of the SWF-net �ring, evaluation is done
for the gateway �ring. Moreover, by using Expression 6 a �lter can be implemented to
reduce the number of ALT members and also �ring number. Firing is done by keeping
each transition task with the places that have been producedand deleting all child tasks.

Similarly, on the gateway-join that has been inducted to execute pattern, to avoid
redundancy links that cause over-�tting, �ltering is done as referring to the �ltering in
Alpha. Single causality is removed if the task transition iscovered by a multi-place
gateway, as on serialA ! [2] that has child (B , � > [3]) so that task B is removed, as
shown in Figure 22 (B is colored red), and all others adjacency task child with place are
removed too, else for the loop nodes.

Figure 22. Firing �ltering inside ALT for L1

In addition, there exist patterns that are not executed simultaneously on the concurrent
loop, which are: OR, One-Loopand Free-Join. Such a free-join is produced by theEnd
node (yellow-white color) that has more than 1 non-inner-gates parent such as (I; L) so
it is produced �!

@[10] End (yellow color). As shown in Figure 23, �nal �ring post-
processing is represented.

Figure 23. Final set of nodes inside ALT forL1

The result of discovery process is presented to the graph visualization that shows a
work
ow model as shown in Figure 24, and simpli�ed to the mainresult as in Figure 5.

Figure 24. Graph of work
ow model for �nal discovery of event logL1

5. Result and Analysis. As proven by ProM testing that was used to show the discov-
ery result from Alpha and the graph model of Alpha-T, both hadthe same correctness
when visual checked with the reference model from YAWL. The computation performances
of Alpha and Alpha-T based on time complexity are shown in Table 4. The numbers of
time variables taken into account were:l number of logs,t number of tasks, andp number
of logic patterns. As a consideration from another time complexity analysis, cyclomatic
complexity measurement could be adopted for the concurrentanalysis in the discovery
process [30].

For the �rst comparison, an analysis was done based on time complexity within the
preprocessing stage to construct the base footprint of the tuple task relation pattern from
the event log. Alpha extracts the tuple relation locally, log per log, which takes
(t).

990 HERMAWAN AND R. SARNO

Table 4. Time complexity comparison between Alpha and Alpha-T

Process

Step
Alpha Alpha-T

Sub-process Time complexity Sub-process Time complexity

Log
extraction
(steps 1
to 3)

Footprint matrix,
trace each log by
follow tuple rela-
tion and update
footprint matrix

(t1t2
2) =
(t3)

t1: trace task for each
log
t2: set follow footprint
matrix

Trace event log
and set follow tu-
ple relation inside
ALT with parent
node and children
relation

(lt 1t2) =
(lt 2)
l : trace event log
t1: trace task for each
log
t2: set nodes and chil-
dren in ALT

Task
weighting

� � Updating weight
of task nodes

(t)
t: get parent children
weight + 1

Task
sorting

� � Sorting parent
nodes by weight
using hash-map

(t1 log(t) + t2
2)

t1: sort parent nodes
t2: sort child nodes

Set places
(steps 4-6)

Update causality
footprint
matrix

(2 t1t2) =
(2 t2)
t1: check row to column
follow
t2: check column to
row follow

Trace task par-
ent and children
causality relation

(pt1t2t3t4) =
(pt4)
t1: get ALT parent
t2: get ALT child
t3: get ALT grandchild
t4: set tuple grandchild
p: number of logic

Place set
(X w)

(t2
1 + t3

2)
t1: trace row-column
single causality
t2: trace column multi-
causality tuple

Set places of split
and join gateways
of children

(2 t)
t: get number of
grandchildren from
tuple child nodes

Place set
(Pw)

((t1 + t2)t3) =
(2 t2)
t1: trace start task
t2: trace �nish task
t3: get places (t1; t2)

Filtering
(t2)
t: check parent to chil-
dren relation to ful�ll
SWF-net soundness

Analyze logic
pattern of
place

(p(t2
1t2

2)) =
(pt4)
p: number of logic pat-
terns
t1: get pairs in multi-
causality
t2: check causality logic

Con�gure output
place for free-
choice & termina-
tion

(t2)
t: check children to
parent relation to ful�ll
SWF-net soundness

Firing
set (Fw)

Pair set
< P; T >

(t3)
t: get token set inside
place map, t3, due on
multi-causality places

� �

Discovery
graph

� w =
f Pw ; Tw ; Fw g

(l (pt4 + 4 t3 + 3 t2)) Trace overall ALT
nodes and their
children on (N !
N#)

(t1t2) =
(t2)
t1: trace parent nodes
t2: get child nodes

Its tuple relation is updated to the follow footprint matrix , which takes
(t2) so that
the footprint construction process takes
(t3). Then the footprint is converted to the
causality matrix with checking the follow matrix, which takes
(t2), so the preprocessing
stage �nally requires
(t3 + t2).

Meanwhile, within Alpha-T, the overall follow tuple relations are constructed inside
ALT based on the global relations from the GTPR, which takes
(lt 2). Meanwhile,
addition of the weighting of the ALT step takes
(t), so the tuple construction takes

A MORE EFFICIENT DETERMINISTIC ALGORITHM 991

(lt 3). Afterwards, the hashing/ordering of the ALT takes
(t logt), so that the time
complexity of the Alpha-T preprocessing stage is
(lt 3 + t logt).

For the next comparison, an analysis was done of the processing stage. Alpha sets
the X w place sets by checking for single causality, which takes
(t2), while checking for
multi-causality takes
(t3). Furthermore, to ful�ll the behavior of the work
ow, the pl ace
set is examined for causality logic inside the multi-causality map, so the time complexity
for X w is
(pt4). Thereafter, for the optimization of place setYw, �ltering is done to
check the single causality that is covered by multi-causality place on input and output
pairs, which takes
(2t3).

Finally, to construct the �nal place set Pw, the set of places that have causality with
a start and �nish task transition, Yw, is added, which takes
(2t2). The total time
complexity of Alpha for the establishment of the place sets is

�
pt4 + 2t3 + 2t2

�
.

Within Alpha-T, determining place sets is executed directly by the pattern of causality
logic between the parent node and the children tuples. The concurrent looping on the
parent node inside ALT has time complexity
(t) and tracing the children has
(t),
while the children tuple examination to develop the set of place gateways by getting the
grandchildren requires
(t). The determination of the behavior logic is a constant number
of logic patterns; therefore, the time complexity is
(pt3). Furthermore, to set the child
pair of the gateway children takes
(t), so Alpha-T processing has time complexity
(pt4).

Within the post-processing stage in Alpha, the discovery process requires a �ring step
to create a link between place set and task transition, requiring
(t2) for single causality
and
(t3) for multi-causality places. All stages of the Alpha discovery process are repeated
until the entire event log has been processed. Because Alphadiscovery� w = f Pw; Tw; Fwg
the total time complexity is

�
l
�
pt4 + 4t3 + 3t2

��
.

Meanwhile, Alpha-T post-processing requires a �ltering step to ful�ll the SWF-net
gateway behavior pattern and reduce the redundant links, which takes
(t2). The �nal
result of this stage is a simple dataset
at-tree that shows the direct links in a graph
model between parent node links as a vertex and child node links as an edge. Therefore,
completion of Alpha-T discovery takes
 (lt 3 + t logt + pt4 + t2).

However, in the general discovery process, the number of events that is produced by the
number of data transactions has the highest value, while thenumbers of task combinations
and logic patterns are limited and generally constant. WithO time complexity analysis
on limit-to-limit approximation [31], O can be determined by the following equation:

Alpha(O) = lim
x!1

lim
y! 1:::

lim
z! 4:::6

xX

n=1

yX

t=1

zX

p=1

n
�
pt4 + 4t3 + 3t2

�
ntp

� pt4 + 4t3 + 3t2 (27)

Alpha-T(O) = lim
x!1

lim
y! 1:::

lim
z! 8

xX

n=1

yX

t=1

zX

p=1

�
nt3 + t logt + pt4 + 4t2

�
ntp

� t3 (28)

For the highest number of events in Alpha, as de�ned by Lemma 27, it has been shown
that the increasing in the number of events greatly a�ects the preprocessing, processing
and post-processing stages, that cause signi�cantly increasing the computing load. Sim-
ilarly, complex concurrency and the number of tasks also have a major impact on the
time complexity because there are many steps that are directly a�ected by the number of
events.

Lemma 28 of Alpha-T shows that Alpha-T is able to minimize thein
uence of the
number of events by localizing only in the preprocessing stage because it is analyzed on
global causality. Meanwhile, the complexity of the task causality and the number of tasks

992 HERMAWAN AND R. SARNO

will a�ect without adding signi�cant computational load on the processing stage because
there are not many steps that are in
uenced directly by the number of events.

Other than that, by using Alpha-T, the post-processing to �ring and visualize will do
on the simple graph relation without complex mapping process between task and place
of gateway. Furthermore, to show the quality of discovery from Alpha-T, Table 5 shows
the comparison of many discovery results on invisible and concurrent patterns that are
produced from *.mxml event logs. The testing uses many algorithms that are available
in ProM 6.7., including: Alpha, Alpha++, Heuristic, Geneti c, evolutionary tree miner
(ETM) [32], and alsoinductive miner (IM) [33]. Two basic parameters that are examined
are Completeness(Cp) [9] and Correctness(Cr) [10].

Table 5. Comparison of discovery result between Alpha-T and others

Concurrent
Pattern

Alpha Alpha++ Heuristic Genetic ETM IM Alpha-T
Cp Cr Cp Cr Cp Cr Cp Cr Cp Cr Cp Cr Cp Cr

Multi-Switch x x
Multi-Skip x x x x

Multi-Reply x x x x x
Free-choice x x
Multi-Loop x x x x x x x x
XOR/NFC x x x x x

Multi-Choice x x

Meanwhile, by the comparison testing it is shown that Alpha-T has the best discovery
result on structure and behavior model as proven in Table 6. Many algorithms that are
not based on the direct mapping in pattern matching have the worst result. Whereas
on testing with a large task and event log variants, such as referring to Coselogproject
data testing [34], Alpha-T has over-�tting if compared with IM, which gives the better
simpli�cation and generalization result because based on aheuristic. However, on the
other side, Alpha-T has better precision because it has morelogic pattern which can be
examined than IM.

Furthermore, Alpha-T has the better result than the other, because it executes the
pattern on global event log, and also do induction to patternanalysis on the gateway
places. This mechanism has not been applying by other algorithms. The induction has
been reducing step to do the concurrent analysis of all transition. Because it does not
analyze independently many causality relations, it will keep o� over-�tting of placeon the
model from discovery result.

6. Conclusion. From the test results it can be concluded that the novel Alpha-T algo-
rithm using GTPR based on the ALT structure is an approach that is able to accurately
perform discovery from a structural and behavioral perspective while conforming to the
SWF-net and BPMN model. Other than that, the step preprocessing in addition to the
depth weighting process has bene�t to generalize logic analysis that has not been applying
to Alpha and other advanced algorithms.

Meanwhile, by direct pattern executing on global causality, this causes Alpha-T has
more bene�t in pattern matching precision and also to be advanced by adding new pattern
analysis on the next study. Then by result comparison, Alpha-T is better than many
algorithms on correctness and completeness.

Furthermore, Alpha-T has successfully conducted discovery on a business process under
certainty with complex concurrent transitions and places.It reduced the number of steps

A MORE EFFICIENT DETERMINISTIC ALGORITHM 993

Table 6. Discovery result fromAlpha-T simulated by JGraph

Concurrent
Pattern Event Log Alpha-T Discovery

Multi Switch AC, AD, BC, BD,
AE, BE

Multi-Skip AC, ABC, ABD,
ABCD

Multi-Reply ABABCDE
ABCDCDE
ABCBCDE
ABCBCADE

Multi
Free-choice

ABDGJ,
ABEHJ,
ACEHJ,
ACFIJ.

Multi-Loop ABACCDE,
ABBACDCE.

Multi-
XOR/NFC

ABE, ACE, ADE,
ABEC, ABED

Multi-Choice
(AND-OR)

ABCD, ACBD,
ABD, ACD, AD

by localizing computation complexity in the pre-processing stage, and also minimizing
complexity �ring mapping of task and place gateway in post-processing. In fact, Alpha-T
has time complexityO(t3), so that it performs better than Alpha and other deterministic,
which has time complexityO(t4).

Therefore, it is proven, Alpha-T has not only high-quality discovery for producing
work
ow model suitable for SWF-net structure and BPMN behavior, but also high per-
formance.

For further development of the Alpha-T algorithm, we will develop an advanced logic
to solve complex concurrent logic on business processes under uncertainty [34,35], which
until now cannot be solved by most discovery algorithms [36]. To improve the discovery
quality, we will analyze the heuristic in
uence based on frequency and time causality
[37], and also the task weight causality used to adjust discovery view level, considered
with the four discovery level perspectives which are �tness, simpli�cation, precision, and
generalization [32]. Also, to support implementation, we plan to develop several feature
and tools that cover various standard business process models, such as YAWL and BPMN,
for conformance evaluation and business process auditing [38] as ProM plugins library [15].

994 HERMAWAN AND R. SARNO

Acknowledgment. This work is partially supported by Indonesia Endowment Fund for
Education (LPDP-KeMenKeu). The authors also gratefully acknowledgethe helpful com-
ments and suggestions of the supervisor, reviewers and editors, which have improved the
presentation.

REFERENCES

[1] M. de Leoni, W. M. P. van der Aalst and M. Dees, A general process mining framework for correlating,
predicting and clustering dynamic behavior based on event log, Information Systems, vol.56, pp.235-
257, 2016.

[2] A. Rozinat and W. M. P. van der Aalst, Conformance checking of processes based on monitoring
real behavior, Information Systems, vol.33, no.1, pp.64-95, 2008.

[3] N. Mundbrod and M. Reichert, Process-aware task management support for knowledge-intensive
business processes: Findings, challenges, requirements,IEEE the 18th International Enterprise Dis-
tributed Object Computing, Ulm, Germany, pp.116-125, 2014.

[4] C. K. H. Lee, K. L. Choy, G. T. S. Ho and C. H. Y. Lam, A slipper y genetic algorithm-based process
mining system for achieving better quality assurance in thegarment industry, Expert Syst. Appl.,
vol.46, pp.236-248, 2016.

[5] M. Werner and N. Gehrke, Multilevel process mining for �nancial audits, IEEE Trans. Serv. Comput.,
vol.8, no.6, pp.820-832, 2015.

[6] �A. Rebuge and D. R. Ferreira, Business process analysis in healthcare environments: A methodology
based on process mining,Information Systems, vol.37, pp.99-116, 2012.

[7] M. Jans, M. Alles and M. Vasarhelyi, The case for process mining in auditing: Sources of value
added and areas of application,International Journal of Accounting Information Systems, vol.14,
no.1, pp.1-20, 2013.

[8] G. Sedrakyan, J. D. Weerdt and M. Snoeck, Process-miningenabled feedback: `Tell me what I did
wrong' vs. `tell me how to do it right', Comput. Human Behav., vol.57, pp.352-376, 2016.

[9] A. Rozinat, M. Veloso and W. M. P. van der Aalst, Evaluatin g the quality of discovered process
models, The 2nd International Workshop on the Induction of Process Models, Antwerp, Belgium,
pp.1-8, 2008.

[10] S. Suriadi, R. Andrews, A. H. M. ter Hofstede and M. T. Wynn, Event log imperfection patterns for
process mining towards a systematic approach to cleaning event log, Information Systems, pp.1-20,
2016.

[11] C. Favre, D. Fahland and H. V•olzer, The relationship between work
ow graphs and free-choice
work
ow nets, Information Systems, vol.47, pp.197-219, 2015.

[12] E. B•orger, Approaches to modeling business processes: A critical analysis of BPMN, work
ow pat-
terns and YAWL, Softw. Syst. Model., pp.305-318, 2012.

[13] J. Li, D. Liu and B. Yang, Process mining: Extending � -algorithm to mine duplicate tasks in process
logs, Advances in Web and Network Technologies, and Information Management, vol.4537, 2007.

[14] A. K. A. de Medeiros, B. F. van Dongen and W. M. P. van der Aalst, Process Mining: Extending
the � -Algorithm to Mine Short Loops, Technische Universiteit Eindhoven, 2004.

[15] L. Wen, J. Wang, W. M. P. van der Aalst, B. Huang and J. Sun, Mining process models with prime
invisible tasks, Data & Knowledge Engineering, vol.69, no.10, pp.999-1021, 2010.

[16] W. G. Christian and W. M. P. van der Aalst, Fuzzy mining { A daptive process simpli�cation
based on multi-perspective metrics,Proc. of the 5th International Conference on Business Process
Management, Brisbane, Australia, pp.328-343, 2007.

[17] M. S. Saravanan and R. J. R. Sree, Evaluation of process models using heuristic miner and disjunctive
work
ow schema algorithm for dyeing process, International Journal of Information Technology
Convergence and Services, vol.1, no.3, 2011.

[18] W. M. P. van der Aalst, A. K. A. de Medeiros and A. J. M. M. We ijters, Genetic process mining,
Applications and Theory of Petri Nets, Lecture Notes in Computer Science, vol.3536, 2005.

[19] S. Goedertier, D. Martens, J. Vanthienen and B. Baesens, Robust process discovery with arti�cial
negative events,The Journal of Machine Learning Research, vol.10, pp.1305-1340, 2009.

[20] Z. He, F. Gu, C. Zhao, X. Liu, J. Wu and J. Wang, Conditional discriminative pattern mining:
Concepts and algorithms,Information Sciences, vol.375, pp.1-15, 2017.

[21] F. Feng, J. Cho, W. Pedrycz, H. Fujita and T. Herawan, Soft set based association rule mining,
Knowledge-Based Syst., vol.111, pp.268-282, 2016.

A MORE EFFICIENT DETERMINISTIC ALGORITHM 995

[22] R. Sarno, R. D. Dewandono, T. Ahmad and M. F. Naufal, Hybrid association rule learning and
process mining for fraud detection,IAENG International Journal of Computer Science, 2015.

[23] J. Wang, R. K. Wong, J. Ding, Q. Guo and L. Wen, E�cient sel ection of process mining algorithms,
IEEE Trans. Services Computing, pp.484-496, 2012.

[24] W. M. P van der Aalst, Business process con�guration in the cloud: How to support and analyze
multi-tenant processes?,The 9th IEEE European Conference on Web Services, pp.3-10, 2011.

[25] W. M. P. van der Aalst, Process Mining Discovery, Conformance and Enhancement of Business
Processes, Springer-Verlag Berlin Heidelberg, 2011.

[26] H. Hermawan and R. Sarno, Developing distributed system with service resource oriented archi-
tecture, TELKOMNIKA (Telecommunication, Computing, Electronics a nd Control) , vol.10, no.2,
pp.389-399, 2012.

[27] R. Sarno, W. A. Wibowo, D. Sunaryono and A. Munif, Developing work
ow patterns based on
functional subnets and control-
ow patterns, International Conference on Science in Information
Technology (ICSITech), 2015.

[28] Q. Guo, L. Wen, J. Wang, Z. Yan and P. S. Yu, Mining invisible tasks in non-free-choice constructs,
Business Process Management, Lecture Notes in Computer Science, vol.9253, 2015.

[29] R. Sarno, P. Sari, H. Ginardi, D. Sunaryono and I. Mukhlash, Decision mining for multi choice
work
ow patterns, Proc. of International Conference on Computer, Control, In formatics and Its
Applications: \Recent Challenges in Computer, Control and Informatics" , Jakarta, 2013.

[30] B. Mikolajczak and J. L. Chen, Work
ow mining alpha algo rithm { A complexity study, intelligent
information processing and web mining,Advances in Soft Computing, vol.31, 2005.

[31] D. H. Greenee and D. E. Knuth, Mathematics for the Analysis of Algorithms, Birkhauser, Boston,
2008.

[32] J. C. A. M. Buijs, B. F. van Dongen and W. M. P. van der Aalst , On the role of �tness, precision,
generalization and simplicity in process discovery,Lecture Notes in Computer Science, vol.7565,
2012.

[33] S. J. J. Leemans, D. Fahland and W. M. P. van der Aalst, Discovering block-structured process
models from event logs containing infrequent behaviour,Business Process Management Workshops,
vol.171, 2013.

[34] W. M. P. van der Aalst, Con�gurable services in the cloud: Supporting variability while enabling
cross-organizational process mining,CoopIS 2010, Lecture Notes in Computer Science, vol.6426,
pp.8-25, 2010.

[35] W. M. P. van der Aalst, Process mining in the large: A tutorial, eBiSS 2013: Business Intelligence,
pp.33-76, 2014.

[36] E. Rojas, J. Munoz-Gamaa, M. Sep�ulveda and D. Capurro,Methodological review process mining
in healthcare: A literature review, Journal of Biomedical Informatics , vol.61, pp.224-236, 2016.

[37] R. Sarno, W. A. Wibowo, K. Kartini and F. Haryadita, Dete rmining model using non-linear heuristics
miner and control-
ow pattern, TELKOMNIKA (Telecommunication, Computing, Electronics a nd
Control) , vol.14, no.1, pp.349-359, 2016.

[38] M. Schultz, Audit-focused mining { New views on integrating process mining and internal control,
ISACA Journal , vol.3, no.1, pp.1-6, 2014.

