International Journal of Innovative _
Computing, Information and Control ICIC International ¢ 2018 ISSN 1349-4198
Volume 14, Number 3, June 2018 Pp. 971{995

A MORE EFFICIENT DETERMINISTIC ALGORITHM IN PROCESS
MODEL DISCOVERY

Hermawan 2 and Riyanarto Sarno 2

!Departemen Informatika
Fakultas Teknik
Universitas Trunojoyo Madura
Po. Box 2 Kamal, Bangkalan 69162, Indonesia
hermawan@trunojoyo.ac.id

2Departemen Informatika
Fakultas Teknologi Informasi dan Komunikasi
Institut Teknologi Sepuluh Nopember
Jalan Raya ITS, Sukolilo, Surabaya 60111, Indonesia
riyanarto@if.its.ac.id

Received June 2017; revised December 2017

Abstract. Alpha is a basic deterministic discovery algorithm that hasbeen enhanced
by Alpha*, Alpha++ and Alpha#. Alpha does an analysis of place, transition, and r-
ing locally on each trace in the event log, which causes thente complexity of Alpha to
be high for large event logs. In this paper, the Alpha-Tree (Boha-T) algorithm is pro-
posed to enhance Alpha's time complexity performance and glity of discovery. Based
on generalized tuple pattern recognition (GTPR) inside the adjacency list tree (ALT)
data structure, Alpha-T is able to simplify the tuple patten analysis, resulting in a more
e cient time complexity O t3 compared to Alpha O t* . Alpha-T reduces the time
complexity by localizing the e ect of the event log size to # preprocessing stage, which
diminishes the number of steps in the discovery processingage. Then within processing,
Alpha-T does execution pattern of logic directly and indudbn in the places gateway, and
make it have more dynamically pattern that produces more copleteness and correctness
model than other algorithms. Finally, in the post-processig stage, Alpha-T has a single
graph structure, which reduces the complexity and memory ape needed for work ow
ring between place and transition.

Keywords: Process mining, Deterministic discovery algorithm, Alphaalgorithm, Alpha-

T algorithm, Generalized tuple pattern recognition (GTPR) , Adjacency list tree (ALT)

1. Introduction. Today, the process mining of transaction data is increasihygrequired
by various organizations [1]. Process mining is widely imgrnented to analyze business
process activities using process aware information systerfPAIS) [2]. PAIS are used to
improve competitiveness, performance, and organizationaolicy [3] in various elds, such
as manufacture [4], insurance [1], nance [5], healthcaré][information technology [7],
and education [8].

The main activity in mining is the discovery process [9], wkkh examines the event
log [10] to produce a model that re ects the work ow of the bumess process [11]. The
work ow model should be accurate in describing the real opational activities from the
business transactions that generate the event log.

There are many standardized work ow models that are used fdousiness processes,
such asPetri nets, business process model notatigi8PMN), event-driven process chain
(EPC), and yet another work ow languaggYAWL) [12].

971

972 HERMAWAN AND R. SARNO

In this study, the YAWL-model was chosen for the work ow degin because YAWL
has the best work ow pattern analysis, which covers all workw perspectives and has
control- ow patterns, data patterns, resource patterns, sange patterns, and also excep-
tion patterns [12]. YAWL has been adopted by common discovertools such as ProM,
which is a quali ed framework and tool used in the process mimg.

Several algorithms have been developed to do the mining inethdiscovery process: a
deterministic algorithm, Alpha, including Alpha* [13], Alpha++ [14], and Alpha# [15], a
fuzzy algorithm [16], a heuristic algorithm [17], a genetialgorithm [18], machine learning
[19], discriminative patterns [20] and also based on assatcon rule approaches [21,22].

From a performance comparison of the discovery algorithmis, was found that the best
accuracy was achieved by the genetic algorithm and the bestiie complexity was achieved
by the heuristic algorithm when compared with Alpha [23]. Ahough the heuristic algo-
rithm produces an optimal solution with minimal side e ects it is unsuitable for complex
mining containing invisible tasks [2]. Other than that, it produces a directed graph of
a standard causality network (C-net) that has bias represé¢ational model [24] and only
supports structured relations, not in behavioral relatios. Meanwhile, the computation
complexity of the genetic algorithm is worse and unfavoraélfor big event logs.

For these reasons, this study aimed at enhancing the detemstic algorithm based on
the Alpha method [25], whose performance is not optimal in ¢hdiscovery on big event logs
and has low accuracy in complex mining that contains invisib task [15]. The enhanced
method that is proposed here to solve the shortcomings of Alp is called Alpha-T.

Through the Alpha-T algorithm, the mining analysis on tuple relationships can be
simpli ed by using pre x generalizations in ALT structure, a process that is called GTPR.
During general retrieval, using ALT is more e cient in terms of time and space than using
a general matrix structure. Also, using GTPR will shorten tle discovery step because it
executes logic pattern recognition directly on the tuple fation.

To test several algorithms that are commonly used, thenodel driven analysigMDA)
strategy was applied to measuring conformance of work ow rdel that shows quality of
discovery. Using MDA, a comparison of the reference modeldthe discovery model can
be aligned as driven by quali ed tools such as YAWL and ProM.

For benchmarking the computation performance, time compkey analysis was done
with focus between Alpha-T and Alpha. Also, for quality disovery, it was done by
conformance checking of completeness and correctness mod#pha-T is expected having
higher performance and better discovery quality than otlseas the main contribution and
novelty of this study

2. Problem Statement and Preliminaries. In this section, we describe the Alpha
stages to be compared with the proposed method to show the drence between them.
Alpha as the basis of the deterministic discovery algorithndoes the tuple mining by
tracing the task sequence locally in the event log. The tuplsequence patterns describe
the work ow that is built from the event log. Alpha consists d 4 ordering relation
patterns, i.e.:

1) Follows (>), if (A, B) are 2 related tasks
2) Causal (), iftasks A> Band B! > A

3) Parallel (jj), if tasks A> Band B> A

4) Unrelated (#), if tasks Al > B and B! > A

The relation sequence patterns are based on the causalitgiofrom the Alpha discovery
algorithm. All Alpha steps are described in the following Lexma 1.

Q) Ty=ft2T94t2 ¢

2T, =1ft2Tj9 ,wt 2 rst()g

A MORE EFFICIENT DETERMINISTIC ALGORITHM 973

(3) To = ft 2 Tj9 ,ut 2 last()g
(4) Xw = f(P;Po)jPi Tw™Po Tuw"8ap Bropy ! wb®
8ai:ar2p, @1 6w @2 " 8 by 2P, 01 61 O
(5) Yu (P1;Po) 2 Xwj8(po2pg)2x., P PoAPo P8) (Pi;Po)=(PS5%PY)
6) Pw = ppr p)i(P;B)2 Yy [f Iw;0ng
(7) Fw = app, po)i(PisPo) 2 Yo a2 P [pag);B(Pi;Po) 2 Yy ™ Po
[f (w;D)jt2 Tig[f (;0w)jt 2 Tog
(8) w=fPuw;Tw;FuO (1)

Performance evaluation of Alpha and other discovery algohims can be done through
conformance checking by trace matching of the sequence iretavent log and the discovery
process model [25]. To gain better conformance checking, seebdriven analysis was used,
using a top-down and a bottom-up strategy respectively [26]

In the top-down strategy, a YAWL reference model was desigdeising the YAWL editor
to create a business process work ow model, as shown in Figut. In step-by-step task
simulation, the work ow is executed by a YAWL server, as showin Figure 2.

Specification: CreditAppProcess2 0, Met CreditApplication

notify

acceptance

receive check for c4 checkloan

application Tequirements amount

¢7 perform checks <8 c10 mnotify rejection
for small
amount

Figure 1. YAWL model to simulate a credit application business procas|[22]

foundation.org s h Leading the Warld in Process
Cases | Users | Org Data | Assets | Calendar | Services | Client Apps Logout)
-~
\ Unoffered (0) ‘ Worklisted (1) ‘ - %
Work ltems Specification Task
14 3icheck_loan_amount CreditAppProcess2.0 l check loan amount
(0.1)
‘
Case Status
—E [Excouing
Created Age
| Feb:07, 2018 7:25:41 | 0:00:00:27
Assigned To (1) Resource State Secondary
one, one ¥ I Started
Documentation
4

Figure 2. YAWL server engine work ow task executor

974 HERMAWAN AND R. SARNO

The YAWL server also automatically generates an applicatio form according to the
data model that is determined for every task by the YAWL modelas alternative other
technology supported this simulation such abusiness process model serv@8PMS) that
generatesbusiness process execution langua@@PEL) [26]. This simulation model, also
produces event log data that re ect the transactions in the werall task work ow.

By using the bottom-up strategy, the result of the event logan be applied to discovering
a functional work ow model [27]. Conformance checking bewen the work ow produced
by the discovery model and the reference model will prove tleerrectness of the discovery
algorithm.

The list of tasks from the business process work ow is shown iTable 1, whileL, is
the log set inside the event log that is generated by each traaction goal from the sim-
ulation. The simulated work ow describes transaction autmation for credit application
submission in a banking business process.

Table 1. Follow footprint matrix for L,

Tn/Tou |A B C D EF GH I J K L
A >
B > >
C >
D > >
E > >
F > >
G > >
H > >
I
J >
K >
L

This business process scenario begins when a customer psega loan to the bank. For
the rst task, through a credit sta, bank will receive le su bmission \receive application
(A)", and then he checks the ful liment of requirements requred \ check for requirements
(B)". If a problem is found, it is necessary for customer to m@air \ modify application
(C)", and he will check the application again until it meets tie requirements.

When the credit application meets the requirements, acheck loan amount(D)" is
estimated. These are two loan categories, rst\performs @tks for large amount (E)" and
second \checks for small amount (F)". A credit analyst will @sess credit appropriateness
and \make decision(G)".

If the application is approved, the bank o ers a ‘start approval (H)", then requests
the customer to sign a hotify acceptance(J)" and he accepted a credit card teliver
credit card (K)" which indicates credit approval has been agreeddomplete approva(L)".
However, if application is not approved, then the hotify rejection (I)" is delivered to the
customer.

Considering a simulation of the YAWL model in Figure 1, the beginess process scenario
is done by the bank to check the consumer's credit applicahowvhen applying for a loan.
Through all the di erent data transaction forms that are executed by the operators and
credit analyzers, the credit application in Figure 2 will gaerate the following event log:

L,: ABDEFGI, ABDFEGI, ABDEFGHJL, ABDEFGHKL, ABCBDEFGI, ABCB D-
FEGI, ABCBDEFGHJL, ABCBDEFGHKL, ABDFEGHJL, ABDFEGHKL, AB CBD-
FEGHJL, ABCBDFEGHKL.

A MORE EFFICIENT DETERMINISTIC ALGORITHM 975

For discovery of an event log, the discovery process in Alplia4] starts with event log
extraction, i.e., steps (1) to (3) in Lemma 1. These steps ctiethe tuple relation between
each task and the task precedence, generating the followatbn matrix, as shown in
Table 1. In order to construct a work ow network (WF-net), the follow relation matrix is
converted to a footprint matrix based on causality logic, €., causality (), parallel (jj)
and unrelated (#). The causal relations inside the footprihmatrix are shown in Table 2.

Table 2. Causal footprint matrix based on Alpha base logic

TaTot|A B C D E F G H I J K L
A |# | # H# # H # # # # # #

B OVl H OB BB HHEHH

C |# ! # # # # # # # # # #

D |# # # # |\ # # # # # #
E |# # # # oG #O#o# B #
F | # # # i #) B O#H B H##
G |# # # # #O0 H#H##
H |# # # # # # #o# 11 ¢
| HO#H OHO# HH# #O# # H##
J HOHO#OH K KB H #o#
K |# # # # # # # # #o#
L | # # # # # # # # # #

Alpha must build a WF-net structure by determining the canddate places K,) based
on the transition tasks (T,,) from the footprint matrix generated by steps (4) and (5).
X contains the pair set of input transition places IP;) and output transition places (Po)
with the possibility of single or multi-independent causaty without being followed by
the same transition. For example, taskA is the input for task B. BecauseA has single
causality, it will produce place @A; B). Moreover, task (A; C) is the set of inputs for task
B and has multi-independent causality so it will produce plaep(f A; Cg; B).

The footprint analysis result expresses the place sets ofusal task pairs, so thatX,,
= set of single causality[set of multi causality from (P, 2 T;Po 2 Ty) = (A;B),
(B;C);(B;D);(C;B);(D;E); (D; F); (E;G); (F; G); (G H); (Gs 1);(H; 3); (H K); (35 L),
(K;iL), (fA;Cg;B), (fE;Fg;G), (B; fC;Dg), (D; fE;Fg), (fI;Kg;L), (GfH;19), (H,
fJ; K g).

Because of the avoidance of redundant places, the place settains only the maximal
path from combined setX,, as the complete nal place set Y,,) by removing the sin-
gle causality relation that is contained within the multi-independent causality collection,
so thatY,, = (fA;Cg;B);(fE;Fg;G); (fJ;KgL);(B;fC;DQ);(D; fE;FQ); (G;fH; I g),
(H; fJ; K g).

Finally, the place set isP,,, which contains place seY,, added with the input start place
setp(lw) and the output nish place set p(Oy), so that P, has the following Lemma 2:

Pw = p(Yw) [P(Iw;Ow) = p(Yw) [p(t 2 Ti5t 2 To) (2)
= (Start;A);(fA;Cg;B); (fE;Fg,G); (fJ;Kg;L);(B;fC; Dg);
(D; fE;FQ); (GsfH; 1 9); (H; fI;K g); (I L g; End):
According to the gateway behavior in thestructured work ow net (SWF-net), P,, has
ve logical possibilities: CAUSAL, XOR-split, XOR-join, A ND-split and AND-join. In

this case a CAUSAL relation is found only at the start place bmuse the other places
have multi-independent causality. XOR-split is built fromthe combined set of unrelated

976 HERMAWAN AND R. SARNO

tasks (#) in the output destination, p(B;fC;Dg). Then XOR-join is created from the
combined set of # from the input destination, p(f A; Cg; B). Moreover, the AND gate is
built from the combined set of the parallel input and output (j), i.e., p(D; fE; Fg) for
AND-split and p(f E; F g; G) for AND-join.

The complete WF.net graph will be generated by the ring mapf,,), which is produced
by the combined sets of input task, place and output task frorthe P,, set as follows:

Fw = (Start; A); (A;p(fA;CQ)); (C;p(fA; Cg)); (p(fA; Cg; B)); (B; p(B; fC; Dg));
(p(B; fC;Dg); C); (p(B; fC;Dg); C); (p(B; fC;DQ); D); (D; p(D; FE; F g));
(p(D; fE;FQ);E); (p(D; fE;FQ);F); (E;p(fE;Fg;G)); (F; p(fE; F g, G));
(P(fE;F g G); G); (G, p(G; TH;19); (p(G; fH; 1 g, H)): (p(G; TH 1 g; 1)),
(H;p(H; f3;K g)); (p(H; FI;K g;3); (p(H; £I;K g;.3); K)5 (35 p(fI; K g; L));
(K;p(fI;K g L)); (I p(fI; K g L)); (p(fI; L g); End):
The nal Alpha discovery result has a WF-net structure that is determined by , =
f Pw; Tw; Fwg, as shown in Figure 3. Alpha establishes the correctness tietdiscovery
result with the ProM tool and it also fully conforms to the YAWL reference model.

Compared to the heuristic algorithm, Alpha's discovery moel has more correctness than
heuristic, as shown in Figure 4.

Figure 3. Alpha discovery result in ProM

Figure 4. Heuristic discovery result in ProM

For the enhancement of Alpha, the existing Alpha* [12] and Adha++ [13] were used.
They contain the following two additional logical patterns

5) One-loop (), if redundant tasks are found (A;A), t=t; = A

6) Two-loop (}), if a loop structure is found A;B;A), t=t,= Aandt; = B

With these two additional logic patterns, the Alpha++ algorithm has an advanced
tuple loop pattern based on and } in every log trace, so that Alpha++ has better
discovery accuracy than Alpha in loop mining. However, thedalition of loop base patterns
signi cantly increases the time complexity.

Alpha and Alpha++ have become standard plug-ins in ProM toat. Moreover, they
have been proven to improve the discovery results according the WF-net work ow
model [14].

The next enhancement of Alpha++ for Alpha is Alpha#. Alpha# i mproves some
logic patterns that are not solved accurately during the disovery process by Alpha++,

A MORE EFFICIENT DETERMINISTIC ALGORITHM 977

i.e., redo, skip, and switch based on logic inspection of the followX) and two-loop ()
patterns [15].

Alpha and its enhancements perform every step of the procestdetermining places
and rings locally on the whole event log, which greatly inceases the time complexity,
possibly leading to over tting of the numbers of places andrings.

3. Main Result. The main result of this study is a novel algorithm within the determin-
istic discovery mining process, which adopts several pattes from Alpha'’s tuple analysis.
The nal discovery result from our proposed method, the Alph-T algorithm, is shown in
Figure 5.

B Discovery: * - credit_bank.mxml -0 “
File Edit View Diagram Options Window Help
H w3 ¥ |) iy | Hehvetica vigpp ~|B i |E® 2|A & 5| IR ~

i () hadul | y
| o o, A < s et [
| LA G o = e g ' & E = = -

695, 513

Figure 5. Graph visualization of Alpha-T discovery result

The graph visualization of Alpha-T was created using JAVA ad JGraph graph library
support. From this result it can be found that the Alpha-T resilt had the same correctness
level as the Alpha discovery result standardized by BPMN mad. Moreover, the result
ensures the soundness of the SWF-net on the ring connect®nso that it is proven that
the work ow model has correctness in the structural and behdoral perspectives.

4. Control Design. In this section, we describe Alpha-T algorithm to discoverhe logic
pattern contained within an event log. It aims to construct vork ow model which is
expected to produce behavior model in BPMN and achieve SWFenstructure.

4.1. Alpha-T algorithm. The Alpha-T algorithm is presented as a proposed method to
improve time complexity performance and simplify concurrg processes to discover the
event log.
The Alpha-T algorithm has 3 stages, i.e., preprocessing,guessing and post-processing.
These are 4 sub-processes in the preprocessing stage:
structuring the ALT object
extracting the event log to the ALT forest (steps (1)-(4))
weighting on the ALT forest node (coincide step (1))
sorting on the ALT forest node (step (5))

The processing stage has 3 sub-processes, i.e.:
Boolean logic matching on the concurrent looping (step (6))
Itering on the node transition (step (7))

Furthermore, in the post-processing stage a direct followrgph is built and a graph
visualization of the rings from the discovery is produced gtep (8)).
The process of the Alpha-T algorithm is as Lemma 3 followed:

(1) 8N =t @g 2 8Nj9 =tytointn 2w;i2f 1;2;:::;ngt 2 ! [=t >t,@ t>t i]
(2) LoL = t28Nj9 =t t,ut,2wi2f l;2;:::;ng[t =t 1>t 1=t

(BT, =ft28Nj9 Lt 2 rst()g

(4) To=ft28Nj9 ,,t 2 last()g

978 HERMAWAN AND R. SARNO

(5) 8N = Sort asc N¢.gg 28N by W,

(6) BN = P N¢.gq 2 8Njas Lemma 18

(7) 8N = FfNtg 2 8Njas Lemma §

(8) Alpha'T = Graph Nvertex! edge(@ 28N (3)
4.2. Construct adjacency list tree structure. To obtain a more e cient and dynamic

data structure, the abstract of data type (ADT) used by AlphaT is the adjacency list
tree (ALT). ALT is an alternative ADT for the graph representation, where ALT is more
e cient in terms of memory space than ADT.

Alpha-T creates a pre x tuple relationship based on the glohl event log in step (1),
called GTPR, to directly analyze the pattern of logic betwee a task and its precedent,
as illustrated in Figure 6.

|Start|A|B|E|F|G|I|H|J|L|K|C|D|End|

b © GOOELEEEOO VOO © © © GY

Figure 6. Adjacency list tree from event lod-1

In accordance with event lod.;, ALT shows the relationship between activity list
T(A:::Z) in the reference forest tree relationship and the determ&d children (@, which
is a successor tuple from the sequence order event log in adaace with step (1). The
object de nition of the ALT task node is expressed as De nitbn 4 followed:

Class Node
String data;
String type;
ConcurrentLinkedDeque (Node) parents
ConcurrentLinkedDeque (Node) children
N ode startP oint;
N ode endpoint
Boolean inner-gate;
Boolean enable
Boolean depth (4)
From the de nition of the node class, each node object has anput set as parents< >
and an input set as children< @ >, with the conditions as given in Lemma 5 followed:
T2Tj areparents ofT, =fA;B;:::;Zd
T 2 Tg@are children of T, @= fA;B;:::;Z¢g (5)

As the bag of task nodes, the forest tree object is used, whighde ned as De nition
6 followed:

Class Forest
ConcurrentLinkedDeque(Node) adjacencyList;
Node Start;
Node End, (6)

A MORE EFFICIENT DETERMINISTIC ALGORITHM 979

The ALT graph grows with additional members from the place gaway, which changes
the task and gateway relationship as determined by Lemma 7lkawed:

8N = Ty [Gu (7)

while,

8N: ALT node set

Gy gateway set,G,, = fG<;G. g

G.: split gateway

G, : join gateway

G< and G, are produced by Boolean logic pattern analysis when the rélanship
between task and gateway for valid rings E,,) is as Lemma 8 followed:

Fw N2TgN :fG.;G.0; [Nj=1
Fw N 2 G N :fT;Slackg; jG<j=1
Fw N 2Gs N :fG.;Tg (8)
The determination of a simple parent-child relationship ptiern between task and gate-
way produces a work ow model with a closed boundary in the bakioral gatewaysG<
and G, , also allowing an open boundary inside singleton and frebeaice patterns that

have only G, . This rule intends to ful Il the rules of a WF-net based on Peti-net ring
between the place and transition setéP,; T,,; Fwg, as shown in Figure 7.

=m0

=] =)

Figure 7. WEF-net soundnessules [15]

4.3. Weighting ALT node. After the process of extraction from the event log, Alpha-T
performs depth weighting of the tree nodes, which is usefurfestablishing the sequencing
order of each task node and also their children. The weight dpting W+ of the depth of
each node inside88N is expressed in the following Expression 9:

for 9T 28N !
i (T is First)
Wr =1
elsei (T°28N AND T°@r)
WP =(W2+ W)=2
i (TP@r)
W7=W +1
else
WOo=(WP+ W)=2 9)
By Expression 9, the taskT traversal is done insideBN. For the rst time, when T as
the starting node 8N T, that has weight asWt = 1. Otherwise, for the next input if

980 HERMAWAN AND R. SARNO

T has existed inside ALT T°2 8N) and the predecessor of thatis T has not existed
inside ALT task parent T? the weight of existing task is updated as average of the waig
WP = (WP + W)=2.

Furthermore, to avoid overlapping a weight in concurrency alation, if T° does not
have parallel relation within its parent T (T2@r), T° weight is updated with a weight
W2 = W + 1. Other than that, if they have parallel relation, existing parent weight
updated with W° = (W2 + W)=2. This expression has purpose to close the weight
deviation of parent and child task on the parallel relation ad to far on the direct causality
relation.

After the task depth weighting process, we get the followingumber of results as shown
in Table 3.

Table 3. Task weight node inside ALT

Stat A B C D E F GHIJ KL End
0O 1 25 275 3 45 475 6 7 7 8 8 9 14

From Table 3, the depth weighting results obtained a clear & weight deviation as
a reference for the sequence order from ttstarting task to nish that is very useful to
avoid an overlapping of tasks order that often occur due to thconcurrency causality.

Furthermore, the result of the weighted task is also used tonalyze the implications
of the logic possibility on the tuples either between the pant-child relationshipN(;)
or also between each child (g @, and then will be combined with sequential causality
analysis to improve logical analysis accuracy.

This method has advantages on computational complexity whecompared with the
using of advanced complex pattern causality matching as alpgd to Alpha# where too
many patterns are analyzed in various invisible patterns B]. The logical implications
that can be produced from the weighting assessment are as Lem 10.

In the parent to children relationship,

Wy <W(;) I Follow
Wy >W (. ! Reply
Also, in the child to child relationship,
Wy <W¢ y; W =W I XOR
Wy <W(. y; 0O<W W < 1! AND; TwolLoop; Skip (10)

Meanwhile, the depth weights of gateway$&. and G. for the gateway pair are the
mean values of the task members' weight, as in the followingemma 11:

Xn)
W (Gs; G;) = W GS@C) NjGsy,: T (11)
c=0
where,
n: number of children
c: child weight

4.4. Sorting ALT nodes. By using tree-map hashing, sorting of the task nodes is done
based on the depth weight value as expressed in Lemma 12. 8aytof their children is
also done, based on the task node sorting. The result of ALTtaf sorting is as illustrated
in Figure 8.

Map(k;v) ! treeMap(N;W (N))

8N Kk (12)

A MORE EFFICIENT DETERMINISTIC ALGORITHM 981

where,
Map: bag set of the generic data structure map
treeMap. hashing/sorting function on the map
k: node key
v: node value

Start A B C D E F G H J K L End

b b6 6 ddOdEOKOLE © ©

Figure 8. Sorting result of ALT from L,

4.5. Alpha-T logic pattern. The GTPR pattern in Alpha-T is analyzed by the place
of nodeN as a parent reference related to second-tuple child nodeand sibling as in
the following Lemma 13:

X0 X0
Puv;;)= N 3 an” @+ (13)
i=0 i =0

where,
P.: place of work ow gateway
N: parent nodejN :fT;G.g; T 6<T > G, 6 }
. rst-tuple node j T
: second-tuple nodg : T
M : numbers of8N
N: number of children
i, j: counter index
GTPR is executed in a concurrent loop insid8N when N is limited only for a non-
inner-gate task< T > and join gateway nodes. Whereas join gateway is nottao-loop
(}). We de ne 11 logical patterns that are used in Alpha-T that til Il behavior and
structural logic of SWF-net, which are:

1) Serial direct
2) Reply

3) Free-Choice
4) Free-Join
5) Non-Free Choice
6) One-loop
7) Two-loop
8) XOR

9) Skip

10) AND

11) OR

1) Serial direct (')
' is a singleton relation that occurs when parent nodes have lgrone child, as de ned
in the following Lemma 14:

I (Ne3 (JiNg=1)! (Ne ;'@) (14)

982 HERMAWAN AND R. SARNO

Example 4.1. ABC. Node A has only one childB, so that serial gateway is created
and alsoB is transferred as' child. The same goes for tasB, which has only one child,
C. These con gurations are shown in Figure 9(a) as the parerthild relationship inside
ALT, while the discovery result is shown in Figure 9(b).

Start A B C _).[” —)‘ 2] —}[3] End
(@)
Start End

oy

(b)

Figure 9. (a) SD pattern in ALT, (b) SWF-net for SD

2) Reply ()
occurs when the parent node has a smaller weight than the ahihode and has vice
versa relation, so it will produceXOR loop that is also calledredo pattern. This pattern
is applied for as de ned by the following Lemma 15:

I (N@3 (; JIW(N)>W())!
Ne “i"@ ()@ e 'i'e N; 7) (15)
Example 4.2. ABCD, ABCBCD. Within the tuple relationship betweenC(B;D), C has
a B child node that has a smaller weight, so th& has an to B that is implemented
as(* ; 7) loop as shown in Figures 10(a) and 10(b).
3) Free-Choice (')
' has only an inclusiveXOR gateway-split from multi-serial that constructs places

that each other has tight di erent link [11] (See Figure 11).This pattern is applied for as
de ned by the following Lemma 16:

I Ne3(;)i2 6 2 6 02 @' Ne "' @ () (16)

Example 4.3. ABDF, ACEF. Within the tuple relationship betweenA(B;C), B and C
have di erent child dependency on each other.

4) Free-Join (')
Opposite to free-choice ' has only an inclusiveXOR gateway-join that constructs

termination from many places that each other has a common t@ination. This pattern
has purpose to guarantee all output places have correctnesgeneralization termination.

A MORE EFFICIENT DETERMINISTIC ALGORITHM 983

[st | A | 8 | c | 0 |ow [>n g | <¥) |*> | end |
| |] | | The single plate is disabled
if it has the same child contalried in parallel orioop pattern.
B = C
Start | A *> < <* D » End

(b)

Figure 10. (a) Reply pattern in ALT, (b) SWF-net for reply pattern

Start A

End

N

Figure 11. SWEF-net for free-choicepattern

Other than that, ' is also used to solve termination for the event nish. This péern

refers to con gure Py, output place Lemma 2 in Alpha. This pattern is applied for as
de ned by the following Expression 17.

for 9T 28N !
i (T is non_inner _gate)
i (jTj>1)
T o
e T (17)
Di erent from all other patterns that are generated by the chidren causality, ' is
generated only bythe parent causality As Expression 17,' is executed on thepost-
processingafter ltering step. ' has a logical pattern (see Figure 12) to recon gure

multi-serial termination that has a soundnessSWF-net considered with Example 4.3.

5) Non-Free-Choice (NFC)
NFC has an exclusive XOR gateway that constructs implicit @ces whenever each
other transition as the input for a place has a di erent depedency [28]. NFC has a

984 HERMAWAN AND R. SARNO

Free Choice Free Join

“q

F End

Start A

Figure 12. SWEF-net for reply pattern

logical pattern as de ned in the following Lemma 18:
I (Ne3(;) 2 @ 2 @ @ @W()EW()! XOR (18)

Example 4.4. ABDB, ACDE. Within the tuple relationship betweenA(B;C), B and
C have the same childD, so an exclusive XOR is created. Other than that, on tuple
D(B;E), D produces redo taB; E) which causes create link to existing XOR. For these
reasons,D has an NFC link to XOR gateway becaud2 does not haveC child. NFC has
the same con guration such as XOR and AND gateways (see Figut6).

6) One-loop ()
indicates the occurrence of a single task one-loop free SWhet Alpha++ loop [14].
This pattern occurs inside a redundant taskl(oL) during log extraction when a repeating
task is found. is processed at the end of discovery after lering, which is executed
through ring a parent-input and child-output set (see Figue 13) as expressed in the
following Lemma 19:

| (T2LoL<T>)! T 77 TiTe i e (7:T@iTe:G (19)

- ° e ° ° C 1

Figure 13. SWF-net for one-loop

Example 4.5. AABC, ABBC. Tasks A and B are repeating tasks and will createraXOR
loop.

7) Two-loop (})

} indicates a locked short-redo loop between two interconrted tasks, called a two-
loop free sound SWF-net loop in Alpha++ [14], as expressed lemma 20.} is produced
with condition having a direction only to the parent because it has only onehitd, N
(see Figure 14).

I N@3(;)i() ()N2 giNdg 2j d=1 2 @ 2 o'
Ne Gs(,iGs e @ Gs(1iGiyye G) e Gs, (20)
Example 4.6. ABAC, ABAD. } occurs when the tuple parenA(B;C;D) has many

children, and one of its children has only one child as its gart such asB. So, the close
vice versa causality creates awo-loop pattern such asB to A.

A MORE EFFICIENT DETERMINISTIC ALGORITHM 985

Two-Loop XOR

.

End

Start

Figure 14. SWEF-net for two-loop

8) Skip (< # >)
Skip is a causal relation that creates a jump XOR alternativeSkip occurs when a tuple
task is the precedent of but not vice versa, as expressed in the following Lemma 21:

I (N@3 (; JIIN) ()iNd 2, 2 @ 2 @
Ne “i"e@ (7))@) (21)

Example 4.7. ABC, AC. A parent tuple has childrerB and C, whereasB is a causality
of C so A needs a skip taC. Skip is shown in Figure 15.

Start A <x 1 W C End

Figure 15. SWHF-net for skip

9) AND (< & >)
AND occurs when two or more tasks are absolutely parallel, whe a tuple task
precedes and vice versa, as expressed in the following Lemma 22:

I (N@3 (;)JIW(N) W()ijNd 2; = @'
(Ne <&<&e (;)(a@ @ &>)&>e (@ dla@ @6(;)) (22

Example 4.8. ABC, BAC. Task A has a childB and B has a childA, as shown in
Figure 16.

Start e @ C End

Figure 16. SWF-net for AND

986 HERMAWAN AND R. SARNO

10) XOR (< >)

XOR occurs when two or more tasks are an exclusive alternagivso that only one of
them can be executed. This occurs when nodehas no child and node also has no
child and their children are equality, as expressed in the follomg Lemma 23:

I Ne3(;) 2 @ 2 @ 0= @'
(Ne G<:iG<y (5)(@ @ G»>)Gsy (@ da e8(;) (23
Example 4.9. AC, BC. See Figure 16.

11) OR (< % >)

OR occurs when two or more tasks have two or more multi-choi¢29] constructed from
AND and SKIP logic. It is caused by the set of children of pardrtuple that is not equal,
so they have multi-causality variants. Since the exclusiveND cannot skip the SKIP
causality that occurs on the members, the possible logic islg OR.

The method of OR analysis used here is simpler than using maugcision analyses
from AND and XOR patterns [29], as described as Lemma 24 foNed:

I (Ne3 (; JW(N) W()iNd 25 2 @ 2 @ @6 d
I (Ng Replacd< & > < %>)) (24)

Example 4.10. ACD, BCD, ABCD, ACBD. See Figure 16 as con guration and the rsult
is shown as Table 6.

4.6. Concurrent loops in Alpha-T algorithm. The Alpha-T discovery analysis works
over concurrent looping inside ALT, where all enabled and meinner-gate tasks and join
gateway nodes inside ALT are parent sets for tuple analysis @e ned in Expression 25.

By Expression 25, if the node is a gateway, it will induct the ausality analysis on
the join gateway having the benet to analyze the set of childhodes of children that
is contained in the parallel or exclusive gateway, so the ayais will be able to align
the relationship of parallel sequences with successors aretluce the number of tasks
to analyze. So, it will avoid over tting pattern that only an alyzed independently such
worked on Alpha.

Concurrent discovery works well through an iterator loop amh concurrent data type
support, which are provided by the programming language emg. By using the Java SDK
that is used in the Alpha-T implementation various concurrat data types are provided,
including: ConcurrentLinkedQueue, ConcurrentLinkedDege, ConcurrentSkipList.

function discoveryLoog8N)
iter iterator(8N)
While (iter : hasNext()):
Noden = iter.next ()
I (nis task ORnN is gatewayjoin)
i (n is not gatewayloop)
i (n is enable ANDnN is non.inner_gate
executepattern(n) (25)

To simplify the matcher for logic pattern, Expression 26 is a&on guration summary
for all Alpha-T patterns to be executed,

A MORE EFFICIENT DETERMINISTIC ALGORITHM 987

function executepattern(n)
n: ALT nodes, : predecessor, : successor
| jng =1
(1) Serial Direct
Elsel jng>1
I I(n)>! ()
| nis non.inner_gate AND is non.inner_gate
(2) Reply
Else
(3) free_choice
Elsel 2 AND =2 4
| j 4y =1 ANDn2 4
(7) Two_Loop
Elsel 46 4
(3) Free_choice
Else
(10) XOR/ (6) Non_Free_Choice
Elsel 2 AND 2 4
(9) AND
I @6 o
(11) Replace(AND OR)
Elsel (2 gAND 2)
(8) Skip
N 2 LoL
(6) One_Loop (26)
In accordance with lod- 1, it is illustrated how a concurrent loop from Alpha-T works ©
implement all logic patterns from the sorted8N, as shown in Figure 17. This illustrated
the start node (in yellow color) will be analyzed rst, becase the start node has only one

child, task A, so by pattern analysis it is a singleton and produces an SDdia pattern
and an SD gateway will be added to ALT.

[stert] A |8 [c]ofefrfe]t [r]s]t ed]=2 |

BEP GOO GEBEELEOOO © © 6 ©

Figure 17. First illustration for concurrent pattern analysis ALT for L,

The next looping trace is nodeA. BecauseA is a non-inner-gate task,A is executed

independently. Meanwhile,A has a singleton pattern with childB and also produces an
SD logic pattern as Figure 18.

988 HERMAWAN AND R. SARNO

IStartI I?Ifl?lflflflﬂlflﬂ{l IEndID,I*I

@ ®©@6 O CEOOOOOOOOE © © 6 ® 6

Figure 18. Second illustration for concurrent pattern analysis ALT fo L,

In the next loop, B is a non-inner-gate task, so it is executedB has childrenC and
D, while C has a causality relation with parentB so that it produces a two-loop pattern,
as shown in Figure 19. When a two-loop pattern is produced,> as input and< as
output are created.} pattern con gures the task member considered in Lemma 20.

IStartlAIBICIDIEIFIGIHI IKIJILIEndImImISII;IT?I

@ ‘,@Z@ é@@@@@@@(b@ CD CD ‘ @ @@‘ @
e % ®

Figure 19. Third illustration for concurrent pattern analysis ALT for L,

Because taskC is a loop inside a two-loop gateway pair, taslkC is set as inner-gate
with task B and is not executed in the next loop, as shown in Figure 19 (greolor).

Next, D is executed. Becaus® has two exclusive parallel children K;E), it will
produce an AND gateway.< & and & > gateways will be added to ALT and E; F) will

not be executed. AND-join gateway inherits all children fromm node task €;F) except
itself as shown in Figure 20.

IStartIAIBICIDIEIFIGIHIIlKIJILIEndIm ol

f 1 f |

® ®) ©?©é @@@@@@@@@@@ (b @6 ® ©®6 @@@@
006 O® ® ©

Figure 20. Fourth illustration for concurrent pattern analysis ALT for L,

The execution of the ALT logic pattern is done in a concurrenfoop until all par-

ent nodes with limited non-inner-gate tasks, enabled joinageway, and loop have been
inspected as shown in Figure 21.

IsmIAlBIcIDIEIFIGI-|HIJIKILIEnd|—>I—>|<IP|—>I<&I&>I—>*1<*|*>I—>I—>I
@ 6@ @é@@@ 6@@@@ ® @@@@@@@@@@@@@
3‘ @@ @

Figure 21. Fifth illustration for concurrent pattern analysis ALT for L,

A MORE EFFICIENT DETERMINISTIC ALGORITHM 989

4.7. Filtering on ring. Upon ful llment of the SWF-net ring, evaluation is done
for the gateway ring. Moreover, by using Expression 6 a Ite can be implemented to
reduce the number of ALT members and also ring number. Firig is done by keeping
each transition task with the places that have been produceahd deleting all child tasks.

Similarly, on the gateway-join that has been inducted to exate pattern, to avoid
redundancy links that cause over- tting, Itering is done as referring to the Itering in
Alpha. Single causality is removed if the task transition iscovered by a multi-place
gateway, as on seriaA ! [2] that has child (B, > [3]) so that task B is removed, as
shown in Figure 22 B is colored red), and all others adjacency task child with ptee are
removed too, else for the loop nodes.

Figure 22. Firing ltering inside ALT for L,
In addition, there exist patterns that are not executed simlianeously on the concurrent
loop, which are: OR, One-Loop and Free-Join. Such a free-join is produced by thé&nd
node (yellow-white color) that has more than 1 non-inner-gas parent such asli(L) so

it is produced ' [10] End (yellow color). As shown in Figure 23, nal ring post-
processing is represented.

Figure 23. Final set of nodes inside ALT forL

The result of discovery process is presented to the graph wadization that shows a
work ow model as shown in Figure 24, and simpli ed to the mairresult as in Figure 5.

v

Figure 24. Graph of work ow model for nal discovery of event logL;

5. Result and Analysis. As proven by ProM testing that was used to show the discov-
ery result from Alpha and the graph model of Alpha-T, both hadthe same correctness
when visual checked with the reference model from YAWL. Theomputation performances
of Alpha and Alpha-T based on time complexity are shown in Tdk 4. The numbers of
time variables taken into account werei number of logs,t number of tasks, ando number
of logic patterns. As a consideration from another time conbgxity analysis, cyclomatic
complexity measurement could be adopted for the concurreminalysis in the discovery
process [30].
For the rst comparison, an analysis was done based on time roplexity within the

preprocessing stage to construct the base footprint of th@ple task relation pattern from
the event log. Alpha extracts the tuple relation locally, lg per log, which takes (t).

990

HERMAWAN AND R. SARNO

Table 4. Time complexity comparison between Alpha and Alpha-T

Process Alpha Alpha-T
Step Sub-process Time complexity Sub-process Time complexity
Log Footprint matrix, (t1t3) = (t%) Trace event log (ltity) = (It?)
extraction | trace each log by t;: trace task for each and set follow tu- |I: trace event log
(steps 1 follow tuple rela- log ple relation inside t;: trace task for each
to 3) tion and update t,: set follow footprint ALT with parent log
footprint matrix matrix node and children t,: set nodes and chil-
relation dren in ALT
Task Updating weight (t)
weighting of task nodes t: get parent children
weight + 1
Task Sorting parent (tylog(t) + t3)
sorting nodes by weight t;: sort parent nodes
using hash-map t;: sort child nodes
Set places | Update causality (2 tity)= (2 t?) Trace task par- (ptitatsts) = (pt#)
(steps 4-6) | footprint ty: check rowto column ent and children t;: get ALT parent
matrix follow causality relation t,: get ALT child
to: check column to t3: get ALT grandchild
row follow t4: set tuple grandchild
p: number of logic
Place set (t2+ 1) Set places of split (2 t)
(Xw) ty: trace row-column and join gateways t: get number of
single causality of children grandchildren from
to: trace column multi- tuple child nodes
causality tuple
Place set ((t1+ t)tz) = (2 t?) Filtering (t3)
(Pw) ty: trace start task t: check parent to chil-
t,: trace nish task dren relation to ful ll
ts: get places (1;t2) SWF-net soundness
Analyze logic (p(t3t3) = (pt*) Con gure output (t3)
pattern of p: number of logic pat- place for free- t: check children to
place terns choice & termina- parent relation to ful ll
t;: get pairs in multi- tion SWF-net soundness
causality
t2: check causality logic
Firing Pair set (t3)
set (Fw) <P;T > t: get token set inside
place map, t3, due on
multi-causality places
Discovery | = (I(pt* + 413 + 3t2)) Trace overall ALT (titp) = (t?)
graph fPw; Tw; Fwg nodes and their t;: trace parent nodes
children on (N ! t,: get child nodes
Ny)

Its tuple relation is updated to the follow footprint matrix, which takes (t?) so that
the footprint construction process takes (t). Then the footprint is converted to the
causality matrix with checking the follow matrix, which takes (t2), so the preprocessing
stage nally requires (t3+ t2).
Meanwhile, within Alpha-T, the overall follow tuple relations are constructed inside

ALT based on the global relations from the GTPR, which takes (It?).

Meanwhile,

addition of the weighting of the ALT step takes (t), so the tuple construction takes

A MORE EFFICIENT DETERMINISTIC ALGORITHM 991

(1t3). Afterwards, the hashing/ordering of the ALT takes (tlogt), so that the time
complexity of the Alpha-T preprocessing stage is It3 + tlogt).

For the next comparison, an analysis was done of the proceggistage. Alpha sets
the X,, place sets by checking for single causality, which takestf), while checking for
multi-causality takes (t3). Furthermore, to ful Il the behavior of the work ow, the pl ace
set is examined for causality logic inside the multi-causgl map, so the time complexity
for X, is (pt*). Thereafter, for the optimization of place setY,, ltering is done to
check the single causality that is covered by multi-causali place on input and output
pairs, which takes (2t3).

Finally, to construct the nal place set P, the set of places that have causality with
a start and nish task transition, Y,, is added, which takes (2t?). The total time
complexity of Alpha for the establishment of the place setsi pt*+2t3+2t? .

Within Alpha-T, determining place sets is executed direcyl by the pattern of causality
logic between the parent node and the children tuples. The rourrent looping on the
parent node inside ALT has time complexity (t) and tracing the children has (t),
while the children tuple examination to develop the set of plce gateways by getting the
grandchildren requires (t). The determination of the behavior logic is a constant numér
of logic patterns; therefore, the time complexity is (pt®). Furthermore, to set the child
pair of the gateway children takes (t), so Alpha-T processing has time complexity Et*).

Within the post-processing stage in Alpha, the discovery picess requires a ring step
to create a link between place set and task transition, reqimg (t?) for single causality
and (t3) for multi-causality places. All stages of the Alpha discary process are repeated
until the entire event log has been processed. Because Algptiacovery , = fPy; Tw; FwQ
the total time complexity is | pt* + 4t3 + 3t?

Meanwhile, Alpha-T post-processing requires a ltering €p to ful ll the SWF-net
gateway behavior pattern and reduce the redundant links, vith takes (t?). The nal
result of this stage is a simple dataset at-tree that showshte direct links in a graph
model between parent node links as a vertex and child nodeksas an edge. Therefore,
completion of Alpha-T discovery takes (It®+ tlogt + pt* + t?).

However, in the general discovery process, the number of eigethat is produced by the
number of data transactions has the highest value, while theimbers of task combinations
and logic patterns are limited and generally constant. WithO time complexity analysis
on limit-to-limit approximation [31], O can be determined by the following equation:

XX X

Alpha(0) = lim lim lim n pt*+4t3+3t2 pt* +4t3+ 3t (27)
x11 y! lu:z! 4006 ntp
n=1 t=1 p=1
XX X
Alpha-T(O) = lim lim lim nt®+ tlogt + pt* + 4t> t* (28)
x11 oyl Lz 8n=1 t=1 pe ntp

For the highest number of events in Alpha, as de ned by Lemma?2 it has been shown
that the increasing in the number of events greatly a ects tk preprocessing, processing
and post-processing stages, that cause signi cantly inasing the computing load. Sim-
ilarly, complex concurrency and the number of tasks also hava major impact on the
time complexity because there are many steps that are diré¢ta ected by the number of
events.

Lemma 28 of Alpha-T shows that Alpha-T is able to minimize then uence of the
number of events by localizing only in the preprocessing gfa because it is analyzed on
global causality. Meanwhile, the complexity of the task casality and the number of tasks

992 HERMAWAN AND R. SARNO

will a ect without adding signi cant computational load on the processing stage because
there are not many steps that are in uenced directly by the nmber of events.

Other than that, by using Alpha-T, the post-processing to ring and visualize will do
on the simple graph relation without complex mapping procssbetween task and place
of gateway. Furthermore, to show the quality of discovery &@m Alpha-T, Table 5 shows
the comparison of many discovery results on invisible and mecurrent patterns that are
produced from *.mxml event logs. The testing uses many algtrms that are available
in ProM 6.7., including: Alpha, Alpha++, Heuristic, Genetic, evolutionary tree miner
(ETM) [32], and alsoinductive miner (IM) [33]. Two basic parameters that are examined
are CompletenesgCp) [9] and Correctness(Cr) [10].

Table 5. Comparison of discovery result between Alpha-T and others

Concurrent | Alpha Alpha++ Heuristic Genetic ETM IM Alpha-T
Pattern Cp Cr Cp Cr Cp Cr Cp Cr Cp Cr Cp Cr Cp Cr

Multi-Switch X X

Multi-Skip X X X X

Multi-Reply X X X X X
Free-choice X X
Multi-Loop | x X X X X X X X
XOR/NFC X X X X X

Multi-Choice X X

Meanwhile, by the comparison testing it is shown that AlphaF has the best discovery
result on structure and behavior model as proven in Table 6. &hy algorithms that are
not based on the direct mapping in pattern matching have the orst result. Whereas
on testing with a large task and event log variants, such as fegring to Coselogproject
data testing [34], Alpha-T has over- tting if compared with IM, which gives the better
simpli cation and generalization result because based on lzeuristic. However, on the
other side, Alpha-T has better precision because it has molegic pattern which can be
examined than IM.

Furthermore, Alpha-T has the better result than the other, lecause it executes the
pattern on global event log, and also do induction to patterranalysis on the gateway
places. This mechanism has not been applying by other algitwins. The induction has
been reducing step to do the concurrent analysis of all tramisn. Because it does not
analyze independently many causality relations, it will kep o over- tting of placeon the
model from discovery result.

6. Conclusion. From the test results it can be concluded that the novel Alphd algo-

rithm using GTPR based on the ALT structure is an approach thais able to accurately
perform discovery from a structural and behavioral perspé&ege while conforming to the
SWF-net and BPMN model. Other than that, the step preprocessg in addition to the

depth weighting process has bene t to generalize logic agals that has not been applying
to Alpha and other advanced algorithms.

Meanwhile, by direct pattern executing on global causalitythis causes Alpha-T has
more bene t in pattern matching precision and also to be adveced by adding new pattern
analysis on the next study. Then by result comparison, Alphd is better than many
algorithms on correctness and completeness.

Furthermore, Alpha-T has successfully conducted discoweon a business process under
certainty with complex concurrent transitions and placeslt reduced the number of steps

A MORE EFFICIENT DETERMINISTIC ALGORITHM 993

Table 6. Discovery result fromAlpha-T simulated by JGraph

Concurrent .
Pattern Event Log Alpha-T Discovery

Multi Switch AC, AD, BC, BD,
AE, BE

Multi-Skip AC, ABC, ABD,
ABCD
Multi-Reply ABABCDE
ABCDCDE
ABCBCDE
ABCBCADE
Multi ABDGJ,
Free-choice ABEHJ,
ACEHJ,
ACFIJ.
Multi-Loop ABACCDE,
ABBACDCE.

Multi- ABE, ACE, ADE,
XOR/NFC ABEC, ABED

Multi-Choice ABCD, ACBD,
(AND-OR) ABD, ACD, AD

by localizing computation complexity in the pre-processmp stage, and also minimizing
complexity ring mapping of task and place gateway in post-ppcessing. In fact, Alpha-T
has time complexityO(t®), so that it performs better than Alpha and other determinisic,
which has time complexity O(t%).

Therefore, it is proven, Alpha-T has not only high-quality dscovery for producing
work ow model suitable for SWF-net structure and BPMN behavor, but also high per-
formance.

For further development of the Alpha-T algorithm, we will develop an advanced logic
to solve complex concurrent logic on business processeseamancertainty [34,35], which
until now cannot be solved by most discovery algorithms [36]To improve the discovery
quality, we will analyze the heuristic in uence based on frguency and time causality
[37], and also the task weight causality used to adjust diseery view level, considered
with the four discovery level perspectives which are tnessimpli cation, precision, and
generalization [32]. Also, to support implementation, welpgn to develop several feature
and tools that cover various standard business process m&sjesuch as YAWL and BPMN,
for conformance evaluation and business process auditi8§] as ProM plugins library [15].

994 HERMAWAN AND R. SARNO

Acknowledgment. This work is partially supported by Indonesia Endowment Fund for
Education (LPDP-KeMenKeu). The authors also gratefully acknowledgéhe helpful com-
ments and suggestions of the supervisor, reviewers and eds, which have improved the
presentation.

REFERENCES

[1] M. de Leoni, W. M. P. van der Aalst and M. Dees, A general praess mining framework for correlating,
predicting and clustering dynamic behavior based on eventdg, Information Systems, vol.56, pp.235-
257, 2016.

[2] A. Rozinat and W. M. P. van der Aalst, Conformance checkirg of processes based on monitoring
real behavior, Information Systems, vol.33, no.1, pp.64-95, 2008.

[3] N. Mundbrod and M. Reichert, Process-aware task manageent support for knowledge-intensive
business processes: Findings, challenges, requirementSEE the 18th International Enterprise Dis-
tributed Object Computing Ulm, Germany, pp.116-125, 2014.

[4] C. K. H. Lee, K. L. Choy, G. T. S. Ho and C. H. Y. Lam, A slippery genetic algorithm-based process
mining system for achieving better quality assurance in thegarment industry, Expert Syst. Appl.,
vol.46, pp.236-248, 2016.

[5] M. Werner and N. Gehrke, Multilevel process mining for nancial audits, IEEE Trans. Serv. Comput.,
vol.8, no.6, pp.820-832, 2015.

[6] A. Rebuge and D. R. Ferreira, Business process analysis in Akthcare environments: A methodology
based on process mininglnformation Systems, vol.37, pp.99-116, 2012.

[7] M. Jans, M. Alles and M. Vasarhelyi, The case for process ming in auditing: Sources of value
added and areas of application,International Journal of Accounting Information Systems, vol.14,
no.l, pp.1-20, 2013.

[8] G. Sedrakyan, J. D. Weerdt and M. Snoeck, Process-miningnabled feedback: "Tell me what | did
wrong' vs. “tell me how to do it right', Comput. Human Behav, vol.57, pp.352-376, 2016.

[9] A. Rozinat, M. Veloso and W. M. P. van der Aalst, Evaluatin g the quality of discovered process
models, The 2nd International Workshop on the Induction of Process Mdels Antwerp, Belgium,
pp.1-8, 2008.

[10] S. Suriadi, R. Andrews, A. H. M. ter Hofstede and M. T. Wynn, Event log imperfection patterns for
process mining towards a systematic approach to cleaning ewnt log, Information Systems, pp.1-20,
2016.

[11] C. Favre, D. Fahland and H. Velzer, The relationship between work ow graphs and free-choice
work ow nets, Information Systems, vol.47, pp.197-219, 2015.

[12] E. Berger, Approaches to modeling business processeA critical analysis of BPMN, work ow pat-
terns and YAWL, Softw. Syst. Model, pp.305-318, 2012.

[13] J. Li, D. Liu and B. Yang, Process mining: Extending -algorithm to mine duplicate tasks in process
logs, Advances in Web and Network Technologies, and Information Mnagement vol.4537, 2007.

[14] A. K. A. de Medeiros, B. F. van Dongen and W. M. P. van der Adst, Process Mining: Extending
the -Algorithm to Mine Short Loops, Technische Universiteit Eindhoven, 2004.

[15] L. Wen, J. Wang, W. M. P. van der Aalst, B. Huang and J. Sun, Mining process models with prime
invisible tasks, Data & Knowledge Engineering vol.69, no.10, pp.999-1021, 2010.

[16] W. G. Christian and W. M. P. van der Aalst, Fuzzy mining { A daptive process simpli cation
based on multi-perspective metrics,Proc. of the 5th International Conference on Business Proces
Management Brisbane, Australia, pp.328-343, 2007.

[17] M. S. Saravanan and R. J. R. Sree, Evaluation of processadels using heuristic miner and disjunctive
work ow schema algorithm for dyeing process, International Journal of Information Technology
Convergence and Servicesvol.1, no.3, 2011.

[18] W. M. P. van der Aalst, A. K. A. de Medeiros and A. J. M. M. We ijters, Genetic process mining,
Applications and Theory of Petri Nets, Lecture Notes in Computer Science vol.3536, 2005.

[19] S. Goedertier, D. Martens, J. Vanthienen and B. BaesensRobust process discovery with arti cial
negative events,The Journal of Machine Learning Research vol.10, pp.1305-1340, 2009.

[20] Z. He, F. Gu, C. Zhao, X. Liu, J. Wu and J. Wang, Conditional discriminative pattern mining:
Concepts and algorithms,Information Sciences, vol.375, pp.1-15, 2017.

[21] F. Feng, J. Cho, W. Pedrycz, H. Fujita and T. Herawan, Sotf set based association rule mining,
Knowledge-Based Syst.vol.111, pp.268-282, 2016.

A MORE EFFICIENT DETERMINISTIC ALGORITHM 995

[22] R. Sarno, R. D. Dewandono, T. Ahmad and M. F. Naufal, Hybrid association rule learning and
process mining for fraud detection,IAENG International Journal of Computer Science, 2015.

[23] J. Wang, R. K. Wong, J. Ding, Q. Guo and L. Wen, E cient sel ection of process mining algorithms,
IEEE Trans. Services Computing, pp.484-496, 2012.

[24] W. M. P van der Aalst, Business process con guration in he cloud: How to support and analyze
multi-tenant processes?,The 9th IEEE European Conference on Web Servicegpp.3-10, 2011.

[25] W. M. P. van der Aalst, Process Mining Discovery, Conformance and Enhancement of Bsiness
Processes Springer-Verlag Berlin Heidelberg, 2011.

[26] H. Hermawan and R. Sarno, Developing distributed systm with service resource oriented archi-
tecture, TELKOMNIKA (Telecommunication, Computing, Electronics a nd Control), vol.10, no.2,
pp.389-399, 2012.

[27] R. Sarno, W. A. Wibowo, D. Sunaryono and A. Munif, Develging work ow patterns based on
functional subnets and control- ow patterns, International Conference on Science in Information
Technology (ICSITech), 2015.

[28] Q. Guo, L. Wen, J. Wang, Z. Yan and P. S. Yu, Mining invisible tasks in non-free-choice constructs,
Business Process Management, Lecture Notes in Computer Saice vol.9253, 2015.

[29] R. Sarno, P. Sari, H. Ginardi, D. Sunaryono and |. Mukhlash, Decision mining for multi choice
work ow patterns, Proc. of International Conference on Computer, Control, Informatics and Its
Applications: \Recent Challenges in Computer, Control and Informatics" , Jakarta, 2013.

[30] B. Mikolajczak and J. L. Chen, Work ow mining alpha algo rithm { A complexity study, intelligent
information processing and web mining,Advances in Soft Computing vol.31, 2005.

[31] D. H. Greenee and D. E. Knuth, Mathematics for the Analysis of Algorithms, Birkhauser, Boston,
2008.

[32] J. C. A. M. Buijs, B. F. van Dongen and W. M. P. van der Aalst, On the role of tness, precision,
generalization and simplicity in process discovery,Lecture Notes in Computer Science vol.7565,
2012.

[33] S. J. J. Leemans, D. Fahland and W. M. P. van der Aalst, Digovering block-structured process
models from event logs containing infrequent behaviourBusiness Process Management Workshops
vol.171, 2013.

[34] W. M. P. van der Aalst, Con gurable services in the cloud Supporting variability while enabling
cross-organizational process miningCooplS 2010, Lecture Notes in Computer Sciengevol.6426,
pp.8-25, 2010.

[35] W. M. P. van der Aalst, Process mining in the large: A tutorial, eBiSS 2013: Business Intelligence
pp.33-76, 2014.

[36] E. Rojas, J. Munoz-Gamaa, M. Sepilveda and D. Capurro,Methodological review process mining
in healthcare: A literature review, Journal of Biomedical Informatics, vol.61, pp.224-236, 2016.

[37] R. Sarno, W. A. Wibowo, K. Kartini and F. Haryadita, Dete rmining model using non-linear heuristics
miner and control- ow pattern, TELKOMNIKA (Telecommunication, Computing, Electronics a nd
Control), vol.14, no.1, pp.349-359, 2016.

[38] M. Schultz, Audit-focused mining { New views on integraing process mining and internal control,
ISACA Journal, vol.3, no.1, pp.1-6, 2014.

