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ABSTRACT. Caring for people who are elderly is now a global challenge given the short-
age of nursing and healthcare providers. This makes life-support robots that could assist
people to live independently highly significant. A frequent task during life support is the
fetching of daily containers, which requires accurate siz-dimensional pose estimation. In
this paper, we develop a pipeline that is capable of providing such estimation. First,
transfer learning is used to retrain an object-detection model based on a convolutional
neural network to produce accurate rectangular masks. After extracting object clouds
based on these masks, the iterative closest point algorithm is used to perform point-cloud
registration, resulting finally in pose estimation. Several approaches are introduced to in-
crease the registration accuracy and stability by providing adequate initial alignment and
suitable model clouds considering both self-occlusions and partial occlusions. Through ex-
periments involving actual daily scenarios, the effectiveness and accuracy of the proposed
pipeline are verified.
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1. Introduction. Confronted with an ever-increasing and aging population and a short-
age of nursing personnel, robots with life-support ability could play a vital role in assisting
people who are elderly to live independently. Accompanied by intelligent robots, this ap-
proach could hopefully increase the quality of life for many people. The KUT-LSR robot
pictured in Figure 1 could provide such assistance. Equipped with sensors of multiple
types, this robot can perceive its environment accurately. It can also interact freely with
the world by means of two manipulators and an omnidirectional movement base. Herein,
we focus on the task of fetching containers, which is one of the services required regularly
during daily life support.

Considerable research effort has been devoted to object fetching. One of the most
effective approaches is based on a pipeline with two stages, namely (i) object detection
based on a convolutional neural network (CNN) and (ii) point-cloud registration based on
the iterative closest point (ICP) algorithm [1]. Our research benefits from this pipeline
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Ficure 1. Life-support robot KUT-LSR

while limiting the scope of objects to daily containers. Additionally, we modify both the
two stages so that the pipeline could better serve the pose estimation of daily containers.

By daily containers, we mean the boxes and bottles that normally contain drink, food,
or medicine. To realize the pipeline successfully, we confront two main challenges.

(1) Highly personalized containers: the daily containers used by different families vary
considerably regarding brand, color, and shape. Therefore, the complexity of the model
retraining process to provide accurate object detection should be considered seriously.

(2) Self- and partial occlusions: because of self- and partial occlusions, the scanned
point clouds may not contain all the information about a given container. To perform
highly accurate registration with the ICP algorithm, we must address problems such as
initial alignment and model cloud processing properly.

In Section 2, we investigate related work in the field of object detection and pose esti-
mation. Subsequently, we present a pose-estimation pipeline designed for daily containers
in Section 3. Consequently, in Section 4, we show that the life-support robot KUT-LSR
can fetch the target containers successfully with the proposed pipeline. Eventually, we
conclude the work in Section 5.

2. Related Work.

2.1. Object detection. Object detection has drawn increasing attention in recent years
with the application of deep learning. The classical approaches to this challenge are based
on algorithms such as shape matching [2] and histogram back projection [3]. However,
these methods usually suffer from low recognition accuracy and limited tolerance for
unstructured environments.

Deep learning for image classification was implemented successfully in 2012 [4] and was
modified soon after to solve problems such as object detection. Delicately designed models
such as MobileNets [5] and Faster R-CNN [6] allowed accurate rectangular masks (RMs)
to be generated containing the target objects. Moreover, the use of deep learning has
increased the performance of semantic segmentation dramatically, making highly accurate
pixel-level segmentation available [7].

The choice among such approaches depends primarily on the needs of the given task.
Traditional methods do not perform reliably in cluttered daily environments. Semantic
segmentation requires large numbers of images labeled at pixel level as training data, but
that is impractical because it is common to have to retrain the model for different users
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or newly included containers when supporting the lives of people who are elderly. There-
fore, object-detection approaches resulting in RMs are chosen given their low retraining
complexity and steady performance in daily scenarios.

2.2. Pose estimation. Object detection can identify and localize daily containers in
two-dimensional (2D) red-green-blue (RGB) images, pose estimation on the other hand
is supposed to provide six-dimensional (6D) pose for each recognized container based on
the object cloud extracted from the scanned scene cloud.

There are several widely used approaches to pose estimation. Local descriptors such
as scale-invariant feature transform (SIFT) [8] have been applied successfully for objects
with sufficient texture. As for the texture-less objects, three-dimensional (3D) template-
matching-based methods including LINEMOD [9] prove effective, combining depth and
color information. Nevertheless, this type of method normally performs less well than
desired when confronted with an unstructured environment.

Moreover, ICP-based registration methods [10] can be used to align 3D point clouds,
thereby producing accurate pose estimation. Because ICP is an iterative local optimizer,
we must address problems such as initial alignment and point-cloud pre-processing to
guarantee performance.

3. Method. Figure 2 illustrates the structure of our proposed pipeline. The original
point cloud acquired from a Kinect 2 is regarded as the “scene cloud” containing the
raw sensor information and can be registered with the RGB image via accurate camera
calibration. With a fine-tuned CNN model in the object-detection phase, accurate RMs
of the target containers can be obtained from the RGB images. Then, by projecting the
RMs from the RGB-image frame to the point-cloud frame, the point cloud of the target
container (object cloud) can be extracted from the scene cloud. Nevertheless, because the
extraction is based on rectangles, there will be some background outliers.

Meanwhile, models of various containers are drawn with CAD software or scanned
using a depth camera. A suitable model is retrieved from the model library based on
the recognized container label. The “model cloud” results from multiple processing of
container models such as down sampling and rotation. The ICP algorithm is then used to
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FIGURE 2. Proposed pose-estimation pipeline
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register the model cloud with the object cloud. Upon successful registration, a 6D pose
can finally be estimated.

3.1. Object detection. To select a CNN model that could keep accuracy, speed, and
retraining complexity in ideal balance, we explored several models from the Tensorflow
detection-model zoo. Ultimately, we chose the ssd_mobilenet_v1_coco model, which was
pre-trained on the Microsoft COCO dataset [11]. Originally, the dataset consisted of only
general container classes such as “bottle”. By taking advantage of transfer learning, we
fine-tuned the model with 200 labeled images (which were finished easily with software
such as DarkLabel) for three containers and less than 10h of training on a PC (Intel
i7 processor with no graphics-processing unit). Recognizing more containers in various
scenarios requires more effort, but the overall process is relatively easy and simple, making
it practical for daily use.

3.2. Point cloud registration. The ICP algorithm was designed initially to register two
point clouds with the same or similar number of points and close initial poses. In our case,
good initial alignment and suitable model clouds are crucial for acceptable performance.

Regarding pose initialization, without good initial alignment, the ICP algorithm can
easily converge to an incorrect local minimum. We have observed experimentally that
the initial orientation of a container does not influence the result dramatically because
containers are usually placed vertically on platforms such as a desk.

A good initial position could be addressed based on prior knowledge. With a finely
tuned CNN model, we can assume that the generated RMs surround the target container
properly. For instance, in Figure 3, the container should be approximately centered in
the corresponding RM marked with “Juice Box”.

Juice Box

FIGURE 3. Iterative closest-point pose initialization

We then simply set the median point of the mask as py,(z,y) in 2D RGB space. Pro-
jecting the point into the point-cloud frame allows py,(x, y, z) to be obtained in 3D space.
It should lie on the surface of the container, which is an initial pose close to the target
cloud. Nevertheless, it often fails for two reasons: (i) the sensor data are noisy, meaning
that the value of z could be either empty or inaccurate; (ii) if the median point in the RGB
image is covered by other objects, py(z,y, 2) could be set close to an incorrect object.

Considering these factors, we modify the approach as follows. A rectangular area
labeled with P, is placed on the RM; P, refers to the extracted point cloud with regard
to this rectangle. The CheckPointCloud function in (1) iterates all the points in P,
eliminates empty values, and reorganizes the remaining points, returning the median
point as p(z,y, z) in the 3D point-cloud space:

p(z,y, z) = CheckPointCloud(P,) (1)
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Furthermore, we push the point back along the z axis by a distance d, which is half
the z dimension of the model. Eventually, the initial-position guess p/(z,y, z) can be
calculated.

This newly introduced approach allows good initial poses to be calculated with higher
accuracy and better tolerance to sensor noise and object occlusions.

Regarding model cloud processing, limited camera positions mean that only one side
of the container can be scanned. Providing a full model of the container directly to the
registration would result in poor performance because the external points could act as
outliers.

Additionally, some containers such as the juice box shown in Figure 4 have movable
parts that can influence the registration. Herein, we use only the most stable and reliable
parts of the container when constructing the mesh model.

In [12], the self-occlusion issue was solved using a multi-hypothesis approach. Because
most daily containers have relatively simple shapes (mainly cubes and cylinders), we can
decrease the algorithmic complexity by having far fewer candidate crops (in [12], 30 crops
were required for each object). As shown in Figure 5, because the object clouds of bottles
scanned from different angles are similar, only one candidate crop is needed in that case.

The situation becomes slightly more complicated when cubic containers are involved.
Two types of target cloud are possible, namely the “half” type (Figure 5-2) and the “one
face” type (Figure 5-3). Two candidate model clouds that comprise only those parts
labeled with solid lines are provided to the ICP registration, and for pose estimation we
choose the one with the lower registration error.

Partial occlusions occur because the target container is partially hidden by other ob-
jects, making the scanned container surfaces incomplete. Herein, we consider only partial
occlusions caused by other objects on the same surface with the target container.

FIGURE 5. Self-occlusion examples, hand-drawn solid lines are used to
highlight the container surfaces.
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The multi-hypothesis method itself offers a certain degree of tolerance of partial oc-
clusions. In Figure 6-1, the coffee can is causing an occlusion, two surfaces of the juice
box are scanned, one incompletely so. In this case, the half-type model cloud would
perform poor registration whereas the one-face model cloud would register the complete
surface accurately. Therefore, no extra effort is required to deal with the occlusion in this
situation.

However, if both scanned surfaces are incomplete because of the coffee can (Figure 6-
2), the pose is estimated inaccurately. In this situation, a suitable model cloud could be
provided by cropping the model upward from the bottom. In previous work, we cropped
the model with a constant step length until the registration error € decreased below a
given threshold &;.

However, it is difficult to choose the step length because doing so involves a trade-off
between speed and accuracy. Herein, we propose an approach involving a model cropped
with a variable step size. During the experiment, we noticed that the ICP registration
error € could also be a metric for the degree of partial occlusion. Therefore, we calculate
the model-cropping step length [ as

Il = pe (2)

where 1 is an empirical value. Similar to the principle of a classical P controller, [ can be
calculated based on the degree of partial occlusion. Two successful registration scenarios
are demonstrated in Figure 7.

FiGURE 6. Examples of partial occlusions, the white point clouds are the
model clouds used.

FIGURE 7. Successful registration scenarios with partial occlusions. The
hand-drawn solid lines indicate the missing surface, and the white point
cloud indicates the model cloud used for registration.
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4. Experiments.

4.1. Evaluation of effectiveness and accuracy. In the first experiment, we used a
Kinect 2 RGB-D camera as the data source. We placed several daily containers on a
crowded desk and used a maker board to provide the ground truth of the target-container
poses (Figure 8).

FIGURE 8. Scenarios used to evaluate accuracy

We began with pose estimation with no partial occlusion, taking a juice box as the
target container (Figure 8-1). We conducted 20 estimations of various poses relative to
the camera. The position error was less than 2 mm and the orientation error was less
than 2°.

Next, we conducted 20 estimations of various poses with the juice box partially hidden
(Figure 8-2). We note that the error bounds increased to 1 cm in position and 7° in
orientation considering 18 successful registrations. The remaining two trials ended with
failed information because ¢ did not decease below ¢; after multiple model cropping.
Nevertheless, the performance fulfills the requirements of container picking.

4.2. Container fetching with KUT-LSR. The second experiment was to demonstrate
various fetching tasks performed with a KUT-LSR robot. The scenario involved a work-
ing desk that was excluded from the model training phase to challenge the pipeline’s
generalization ability.

We placed several daily containers on the desk along with some tools. Figure 9-1 to
Figure 9-4 show one of 10 fetching tasks conducted with the right arm, and Figure 9-5

FiGURE 9. Container-fetching experiment with a KUT-LSR robot
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to Figure 9-8 show the same task recorded from another angle. It could be concluded
that the KUT-LSR is capable of reliable and accurate object picking in a cluttered daily
environment, which is essential for the realization of various life-support tasks.

5. Conclusion. Assisted by the proposed pose-estimation pipeline, with small amount
of re-training effort for the intended daily containers, a life-support robot can fetch the
targets with promising accuracy and a certain degree of robustness to self- and partial
occlusions. One main challenge remaining is the deformation of container surfaces when
using RGB-D cameras such as Kinect 2. In future work, we aim to improve the stability
of pose estimation given such deformations.
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