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Abstract. In this paper, a novel fuzzy time series predictor for prediction of chaotic
time series data is proposed. Like the basic FTS prediction algorithms, the proposed
FTS prediction method contains the four regular steps and an additional step. The pro-
posed fuzzy predictor (PFP) uses fuzzy c-means clustering algorithms to define linguistic
variables. Linguistic variables, in literature, are mostly represented by triangular mem-
bership functions, modified triangular membership functions or trapezoidal membership
functions. Here, a method to find the optimum shape between the three kinds of mem-
bership functions is applied. TS fuzzy rules and inference model is used for prediction.
Unlike other models, PFP has a T-norm selector. T-norm selector, during training
phase, searches the best T-norm operator which results in minimum absolute error. Un-
like most fuzzy time series predictors, PFP has an output validator. Output validator
checks the validity of the output on occasions when PFP produces an invalid output. In-
valid output occurs when the output lies outside the universe of discourse, U . In this
case, PFP replaces the result with an output having inputs with similar characteristics to
inputs that produce invalid output. To find the best much the minimum of n-dimension
Euclidian distance between input training data points is used. The performance of PFP
is compared with other models in the literature using the Mackay-Glass time series and
Box-Jenkins gas furnace data. Simulation results show the best performance in terms of
MSE. This accuracy was achieved by carefully searching optimum shape of MF and the
best T-norms in addition to adopting the preferred methods at each 4 steps of basic time
series prediction algorithm.
Keywords: TS fuzzy inference, Fuzzy time series prediction, T-norms, Fuzzy rule-based
systems

1. Introduction. Conventional time series is a sequential set of data measured over
time [1]. Fuzzy time series (FTS), first proposed by Q. Song and B. S. Chissom, extends
concepts of conventional time series to that of fuzzy sets [2-4]. FTS is formally defined as
[5]:

Definition 1.1. (FTS): Let Y (t) (t = . . . , 0, 1, 2, . . .), a subset of R, be the universe
of which fuzzy sets µi(t) (i = 1, 2, . . .) are defined and let F (t) be a collection of µi(t)
(i = 1, 2, . . .). Then, F (t) is called a fuzzy time series on Y (t) (t = . . . , 0, 1, 2, . . .).

From this definition one can note that the main difference between conventional time
series and FTS is that observations in conventional time series are real valued numbers,
while in FTS observations are linguistic variables. The purpose of FTS is to predict future
values via extraction of patterns in the fuzzy set. Suppose only one FTS past value is
used, and then the FTS prediction model is called first order FTS [5].
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Definition 1.2. (First order FTS model): Suppose that F (t) is caused by F (t − 1)
only, represented as F (t − 1) → F (t). This relation is expressed as: F (t) = F (t −
1) ◦ R(t, t − 1), where R(t, t − 1) is a fuzzy relationship between F (t − 1) and F (t), and
F (t) = F (t − 1) ◦ R(t, t − 1) is called the first order model of F (t).

The fuzzy relationship defined by R(t, t − 1) can be dependent or independent of time
[6]. If R(t, t − 1) is independent of t, then F (t) is called time invariant FTS. Otherwise,
it is called time variant FTS [7].

Definition 1.3. (Time Variant and Time Invariant Fuzzy Time Series): Suppose
that R(t, t− 1) is a first-order model of F (t). If for any t, R(t, t− 1) is independent of t,
i.e., R(t, t − 1) = R(t − 1, t − 2), then F (t) is called a time invariant fuzzy time series;
otherwise, it is called a time variant fuzzy time series.

If n past values are used for predicting the next value, then the FTS model is called
nth order FTS [7].

Definition 1.4. (nth order FTS): If F (t) is caused by F (t−1), . . . , F (t−n) for n ≥ 0,
then the fuzzy relationship is expressed as F (t − 1), F (t − 2), . . . , F (t − n) → F (t). It is
called nth order FTS.

If the time series in Definition 1.1 has finite mean and variance that does not change
overtime, then the time series is stationary.

Definition 1.5. (Stationary Time Series): A time series Y (t) (t = . . . , 0, 1, 2, . . .) is
said to be stationary if,

a) E[Y (t)] = α, (t = . . . , 0, 1, 2, . . .)

b) E[Y (t)2] < ∞, (t = . . . , 0, 1, 2, . . .)

c) γ[(Y (s, t)] = γ, Y (s + h, t + h) ∀s, t, h ∈ {. . . , 0, 1, 2, . . .}

In the above standard stationary time series definition, Y (t) must have the features:
finite variation, constant first moment and the second moment depending only on the dif-
ference (t− s). For non-stationary time series, the probability distribution characteristics
given in a), b) and c) change with time. Because of this change of parameters, predicting
non-stationary time series is a difficult task.

In this paper a fuzzy inference model to predict chaotic or non-stationary time series is
discussed. The rest of the paper is organized as follows. In Section 2 available prediction
methods in literature are discussed. In Section 3 detailed explanations of fuzzy time series
prediction models and algorithms along with their comparisons are presented. In Section
4 the proposed fuzzy time series prediction model is explained followed by presentation
of simulation results. In Section 5 simulation results are analyzed, and finally, conclusion
are given in Section 6.

2. Predictive Models in Literature. In literature predictive models can be either
traditional predictive models or intelligent soft computing methods [8]. Auto regressive
(AR), moving average (MA), Box-Jenkins’s method (ARIMA) models are traditional pre-
dictive models. Traditional models are not suitable for predicting non-stationary time
series data which are characterized by highly nonlinear and chaotic nature [9]. For such
cases intelligent soft computing techniques are used. ANN models are one of soft comput-
ing techniques that are universally employed in time series predictions. Properties such as
self-organizing, data drivability, self-study, self-adaptability and associability make them
acceptable predictor [10]. The cons of ANN rise from the black box nature of ANN, greater
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computational burden, proneness to over fitting, and the empirical nature of model devel-
opment [11]. To reduce such effects a hybrid model consisting of combination of ANN and
evolutionary or other varieties of optimization algorithms are being applied. For instance,
[4,13,14] investigate use of genetic algorithm for reducing local minima problems of feed
forward and recurrent neural network models. In [15] the same approach is adopted for
wavelet neural networks (WNN). Besides GA other optimization algorithms are available.
In [16] particle swarm optimization is used to train quantile regression neural network
models. Hybrid models with more than 2 independent models are also investigated. In
[17] two hybrid prediction models, each with 3-stage sub models, are proposed. The
first predictor uses chaos theory, followed by multi-layer perceptron (MLP) and multi-
objective particle swarm optimization (MOPSO) while the second model replaces the last
stage with elitist non-dominated sorting genetic algorithm (NSGA-II). Hybrid models are
proved to be effective, but they are complex computationally and did not completely elim-
inate ANN drawbacks, rather reduce it. To solve big data problems efficiently quantum
inspired algorithms are being developed recently. One of such is quantum neural network
(QNN) which is information processing architecture inspired by quantum mechanics. [18]
proposes a QNN architecture incorporating Schrodinger wave equation referred to as re-
current quantum neural network (RQNN) and applies it for filtering electroencephalogram
(EEG) signals. In the work of [19] the concept is further extended for the self-organized
neural network resulting in self-organizing quantum neural network. The application of
QNN is studied in [20] for chaotic time series prediction. However, QNN models are in
infant stage and need to be further investigated.

3. Fuzzy Time Series Predictor. This section presents the basic FTS prediction al-
gorithm which contains four steps initially suggested by Q. Song and B. S. Chissom [2-4].

3.1. Step 1: Universe of discourse definition and interval partition. Step 1 con-
sists of two processes which are universe of discourse, U , definition and interval partition-
ing.

3.1.1. Universe of discourse definition. Universe of discourse is defined as:

U = [(Dmin − c1), (Dmax + c2)] (1)

where Dmin and Dmax are minimum and maximum values of training data, and c1 and
c2 are proper positive constants. c1 and c2 should be selected carefully, which is because
testing data are expected to lie on U . Following are some typical choices of values for the
constants c1 and c2.

a. Arbitrary Positive Number: [2-4,21-26] choose c1 and c2 to be arbitrary positive
numbers without explaining any persuasive reason to the question why to choose ar-
bitrary number [27].

b. Standard Deviation Based Selection: To ensure future testing results fall in the
universe of discourse, U , statistical distribution of training data such as standard
deviation can be used as done in [27,28]. Standard deviation σ measures spread of
training data with respect to the mean value. Thus, universe of discourse is defined as
[28]:

U = [(Dmin − σ), (Dmax + σ)] (2)

where Dmin, Dmax and σ are the minimum, maximum and standard deviation of train-
ing data respectively.
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3.1.2. Interval partition. Let N be the total number of training data: interval partition
involves the partition of this N training data into k intervals [29]. The length of each
interval plays an important role for prediction accuracy [24]. When length of intervals is
too large, there will be no fluctuation in FTS. On the other hand, when the length is too
small, the meaning of FTS will diminish. In general, training data can be partitioned in
to equal or unequal intervals. Following are common methods of interval partitioning.

1) Equal Interval Partitioning. The simplest way to partition U into k interval is to
divide it equally [2-4,21-26]. For U = [(Dmin − c1), (Dmax + c2)] = [L,R], n intervals
are defined as [7]:

ui = [L + (i − 1)l, L + il], i = 1, 2, . . . , n (3)

where l is interval length and n = (R − L)/l [27].
2) Unequal Interval Partitioning

i. Distribution and Average Based: [23] proposes interval partitioning method
based on distribution and average based length of training data. These two meth-
ods consider fluctuations of FTS. Distribution based length is calculated according
to distribution of first difference of training data. Average based length is set to
the largest length that is smaller than half the first differences.

ii. Minimum Entropy Based Approach: The entropy of a probability distribu-
tion is a measure of uncertainty of a distribution. A key goal of entropy mini-
mization analysis is to determine the quantity of information in a given data set.
To subdivide the data into k intervals, a threshold line between classes of data
is determined by entropy minimization screening method. Then, segmentation
process is started, first into two classes then into k number of fuzzy sets [27].

iii. Modified Cumulative Probability Distribution Approach (MCPDA)
[28]: Partition U into several intervals based on cumulative probability distri-
bution of each linguistic variable.

iv. Heuristic Search Algorithms: Universe of discourse U on Equation (1) can
be divided into k intervals as:

U1 = [(Dmin − c1), x1], U2 = [x1, x2], . . . , Uk = [xk−1, (Dmax + c2)] (4)

Search algorithms aim at finding the best values of xi (i = 1, 2, . . . , k − 1) which
minimizes prediction error. One can apply genetic algorithm as in [24,26], sim-
ulated annealing (SA) as in [30], imperialist competitive algorithm (ICA) as in
[31]. SA finds interval coordinates xi (i = 1, . . . , k−1) from initial random coordi-
nates. ICA is a global search heuristic which mimics imperialism and imperialistic
competition process as a source of inspiration [31].

v. Clustering Algorithms: Here, training data is partitioned into k interval using
clustering algorithms. The most popular clustering algorithms are K means and
FCM.
a. K Means Clustering Algorithm: K means clustering algorithm partitions

N data points into k disjoint subsets containing Nj data points that minimize
the sum of squares criteria given by:

J =
k∑

j=1

∑
n∈Nj

|xn − µj|2 (5)

where xn is a vector representing the nth data point and µj is geometric centroid
of the data points in Nj. In [32] K means clustering algorithm is used to
partition U .
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b. FCM: Fuzzy c-means clustering algorithm (FCM), developed by Dunn in 1973
and improved by Bezdek in 1981, is unsupervised clustering algorithm. FCM
is the most successful clustering algorithm [33]. Hence, FCM can be used
to determine centers of intervals as in [29,33]. In FCM algorithm, each data
point belongs to a cluster with degree specified by a membership grade. Given
k number of clusters and X = {x1, x2, . . . , xn} a collection of data points,
FCM partitions given data into clusters by minimizing the within group sums
of squared error function [34]:

Jm(M,V ) =
n∑

j=1

k∑
i=1

(µij)
m∥xj − vi∥2, 1 ≤ m ≤ ∞ (6)

where Jm(M,V ) is the sum of squared error for the set of fuzzy clusters repre-
sented by the membership matrix M , and the associated set of cluster centers
V . ∥xk − vi∥2 is the distance between data xk and ith cluster center vi. m
governs the influence of membership grades. The partition becomes fuzzier
with increasing m and it is proven that FCM algorithm converges for any
m ∈ (1,∞) [5]. The necessary conditions for Equation (6) to reach minimum
are:

µik =

(
c∑

j=1

(
∥xk − vi∥
∥xk − vj∥

) 2
(m−1)

)−1

∀i, ∀k (7)

vi =

∑n
k=1(µik)

mxk∑n
k=1(µik)m

(8)

where µik is the membership degree of the kth data with respect to ith cluster
and vi is the ith cluster center. The steps of FCM algorithm are [35]:
Begin
Input: Initial cluster center vector V with cardinality C
Output: A set of cluster centers V and MF matrix µik

While (∆E ≤ ε OR E < δ)
For No Training data = 1 to N

Calculate membership matrix µik by using Equation (7)
End For
For No Cluster Center = 1 to C

Update Cluster center V by using Equation (8)
End For
For No Training data = 1 to N

For No Cluster Center = 1 to C
Calculate the within group sums of squared error
using Equation (6)

End For
End For
Compute ∆E = |EPrevious − ECurrent |

End While
end

where N is number of training data, E is the within group sums of squared error,
δ is a threshold minimum error, ∆E = |EPrevious − ECurrent | and ε is a threshold
number that is used to compare E improvement over the previous iteration.
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3.1.3. Interval partition methods: A discussion. Though equal interval partitioning is the
simplest method, it has several drawbacks. The first is lack of strong persuasive reason
that explains the question why to divide U into equal interval [27]. Besides, it does
not consider distribution of real data. Thus, it fails to generate good result in cases
where the distribution of continuous values is not uniform [33]. Distribution and average
based [23], minimum entropy-based approach [27] and MCPDA [28] have a reason on
how to partition U . However, in terms of accuracy, these methods are outperformed by
search algorithms and FCM [24,26,29-33], GA [24,26], SA [30] and ICA [31] are heuristic.
Heuristic algorithms are designed to give an acceptable answer for a typical problem.
As such they do not guarantee optimum answer all the time [40]. Besides this, search
algorithms are slow and take a lot of execution time. Clustering algorithms are reasonable
and accurate method to partition universe of discourse since they take distribution of real
data points into account [29,33]. In K means clustering algorithm each data only belongs
to one cluster, while in FCM data can belong to more than one cluster. FCM takes
uncertainty into account by giving degree of membership of each data to each cluster.
Therefore, FCM is suitable for capturing real world clustering problems [37]. Therefore,
FCM is the preferred method to partition universe of discourse.

3.2. Step 2: Defining fuzzy sets and fuzzifying time series. Recall in Definition
1.1 that, an FS A in U is characterized by an MF, µA(x), which associates with each
point in U a real number in the interval [0, 1]. Thus, in Step 2 MFs corresponding to k
linguistic variables are defined. Q. Song and B. S. Chissom first define a fixed fuzzy set
for each interval. [2-5,24,26] use this kind fuzzy set definition. For example, if there are
five intervals, then for the first interval, fuzzy set A1 may be defined as:

µ1 = 0.8/A1 + 0.2/A2 + 0/A3 + 0/A4 + 0/A5

This type of fuzzy set definition assigns a fixed grade of membership for all crisp values.
The other kind of fuzzy set definition is to define triangular membership function on each
interval [27,30]. For example, given 4 intervals with cluster center:

u1 = [(Dmin − c1), x1], u2 = [x1, x2], u3 = [x3, x4], u4 = [x4, (Dmax + c2)]

then MF is defined by Figure 1.
The problem of this type of traditional triangular MF definition lies on the first and

last fuzzy sets. For crisp values less than x1 and greater than x4, grade of membership
decreases. Because there is no FS beyond the first and last, those values should have a
value of 1. [28] proposes a modified triangular membership function shown in Figure 2.
The other kind of MF is trapezoidal membership function proposed by [27]. This kind

Figure 1. Triangular membership function
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Figure 2. Modified triangular membership function

of definition is like triangular MF except the shape is trapezoid, therefore suffers similar
problem as triangular MF. Modified triangular MF and trapezoidal MF are the most
widely used fuzzy set definitions. In this paper, a method to find the optimum shape of
MF between triangular and modified triangular MF is applied.

3.3. Steps 3 and 4: Prediction model. The most popular prediction models for FTS
are the Q. Song and B. S. Chissom type of prediction model and prediction model that
uses TS fuzzy inference models.

3.3.1. Q. Song and B. S. Chissom prediction. When Q. Song and B. S. Chissom first
propose FTS, they also introduce a method of forecasting students’ enrollment. The
prediction model is given as [2-4]:

Ai = Ai−1 ◦ R (9)

where Ai−1 is the enrollment of year i−1 in terms of FS and Ai is the forecasted enrollment
of year i in terms of FS, and R is a fuzzy relation which indicates fuzzy relationships
between time series. The operator ◦ is a max-min composition operator.

The derivation of fuzzy relation is a very tedious work and the max-min composition
operator will take a large amount of time when the fuzzy relation R is very big [21].
Hence, Chen in [21] replaces max-min composition with simplified arithmetic operations,
as a result, proposes more efficient method. [22-27,33,37,38] use Chen’s algorithms with
some minor modification. For instance, [26] builds weighted fuzzy rules by computing
cardinality of each fuzzy relation. [38] proposes weighted fuzzy rules by calculating the
count of each fuzzy relation.

3.3.2. TS-fuzzy inference model. Inference is the process of obtaining new knowledge from
existing one. In classical logic there are two inference methods: the modus phones and
modus tollens [39]. In modus phones if there is a rule or implication “if x is A then y
is B ” and for the fact “x is A”, then one can infer that “y is B ”. In modus tollens for
the same rule and the fact that “y is not B ”, one can infer “x is not A”. Modus tollens
require knowledge of consequent which is difficult in real world application [40]. In FL
the modus phones inference is defined in such a way that it allows an inference when the
fact is only partially known, i.e., to a certain degree of membership. For instance, for
fuzzy rule: if x is A, then y is B and for the fact that µA(x) = a, 0 ≤ a ≤ 1, then fuzzy
inference answers the question µB(y) =?.
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In general, for a system having n fuzzy rules, the following scheme represents modus
phones [41]:

Rule 1: if x1 is A11 and x2 is A21 and . . . , then y1 is B11 and y2 is B21 and . . .
Rule 2: if x1 is A12 and x2 is A22 and . . . , then y1 is B12 and y2 is B22 and . . .

...
Rule n: if x1 is A1n and x2 is A2n and . . . , then y1 is B1n and y2 is B2n and . . .
For the fact: if x1 is A11 and x1 is A21

One can conclude that: y1 is B11 and y1 is B21 and . . . .
where x1 is input variable of the system, y1 is output variable of the system and Aij is
the ith fuzzy set of rule j. Consider rules of the form:

if f(x1 is A1 and,. . . , xk is Ak) then y = g(x1, . . . , xk) (10)

then, the fuzzy inference is called TS fuzzy model, first proposed by T. Takagi and M.
Sugeno [42]. In Equation (10), y is variable of the consequence whose value is inferred,
i.e., output variable of the system. x1, . . . , xk are inputs to the system, A1, . . . , Ak are
fuzzy sets, f is logical function that connects proposition of the premise and g is a crisp
mathematical function. When g is constant, the resulting fuzzy inference system is called
zero order TS fuzzy model. When g is first order polynomial, the resulting fuzzy inference
system is called first order TS fuzzy model. A first order TS model has rule of the form
[40]:

if x1 is A1 and . . .xn is Al then y = p0 + p1 ∗ x1 + · · · + pn ∗ xn (11)

In TS fuzzy model the consequence is a crisp output. The truth value of consequent
proposition y = g(x1, . . . , xk) is calculated from aggregate of truth values in the antecedent
proposition. Given a system modeled by TS fuzzy system, how to adjust parameters of
consequent is discussed next.

3.3.3. Least square learning. Take a system modeled by first order TS fuzzy rules. Let Yd

be N × 1 vector of output data, X be N × M input data and Y be output of the fuzzy
system. Each Xi is 1 × M data the system inputs to produce output Yi:

Yd = [y1, y2, . . . , yN ]T (12)

Out of R number of TS fuzzy rules, the ith TS rule and crisp output corresponding to ith

rule is given by:

Rulei = if x1 is µ1 and . . . and xM is µM

then yi = pi0 + pi1 ∗ x1 + · · · + piM ∗ xM
(13)

Equivalently, yi can be written as,

yi = µi1(p10 + p11 ∗ x1 + · · ·+ p1M ∗ xM) + · · ·+ µk(pk0 + pk1 ∗ x1 + · · ·+ pkM ∗ xM) (14)

Each rule is evaluated to have a truth value µi and satisfy the condition:
∑k

i=1 µi =
1. For N number of input output training data, the task of LS learning is estimating
consequent parameters: p10, p11, . . . , p1M , . . . , pk0, pk1, . . . , pkM . Collecting all ith output
in Equation (14) and rearranging terms, the output of the fuzzy system Y is N ×1 matrix
given by [39]:

Y = A ∗ K (15)
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where A is N × k ∗ (1 + M) matrix given by:

A =


µ11 µ11x1 µ11x2 · · · µ11xM · · · µ1k µ1kx1 µ1kx2 · · · µ1kxM

µ21 µ21x1 µ21x2 · · · µ21xM · · · µ2k µ2kx1 µ2kx2 · · · µ2kxM
...

...
...

. . .
...

...
...

. . .
...

...
...

µN1 µN1x1 µN1x2 · · · µN1xM · · · µNk µNkx1 µNkx2 · · · µNkxM

 (16)

Here, µij is truth value of jth rule corresponding to ith output. And K is k ∗ (1 + M)× 1
vector of unknown coefficients of consequent parameters given by:

K = [p10 p11 p12 . . . p1M . . . pk1 pk2 pk3 . . . pkM ]T

Usually the number of input-output patterns used in training is greater than the number
of consequent parameters, i.e., N ≥ k ∗ (1 + M). Hence, the problem of finding unknown
coefficients K is an over determined problem in which exact solution may not even exist.
However, list square estimate of K, K∗, that minimize the squared error ∥Y − Yd∥2 can
be found using pseudo inverse technique [43]:

K∗ =
(
AT A

)−1
AT Yd (17)

where AT is the transpose of A, and
(
AT A

)−1
AT is the pseudo inverse of A if

(
AT A

)
is

non-singular.

3.3.4. Prediction models: A comparison. The main drawback of Q. Song and B. S. Chiss-
om prediction model and its varieties is that it fails or produces large error for larger
number of input-output data. Therefore, it is inappropriate for chaotic time series data
[32]. It also lacks the ability of tuning parameters for learning. TS fuzzy inference
model is appropriate for prediction of large number of input-output data. TS fuzzy model
combines the advantages of classical linear regression models from the coefficients of con-
sequent parameters and accepts uncertainty and non-linearity via linguistic variables in
the antecedent of TS fuzzy rules [32]. Consequent parameters are also tunable, e.g., LS
learning can be used to tune consequent parameters [39,43]. Therefore, TS-fuzzy model
is the preferred FTS prediction model for chaotic time series prediction [39,40,42,43].

4. Proposed Fuzzy Time Series Predictor. Like basic FTS predictor, the proposed
FTS prediction method (PFP) contains four regular steps and an extra additional step.
In this section detailed explanation of PFP is presented.

4.1. Step 1: Universe of discourse, U , definition and interval partitioning. The
first step is to define universe of discourse U . U is defined based on Equation (2) as:

U = [(Dmin − σ), (Dmax + σ)]

where Dmin, Dmax and σ are minimum, maximum and standard deviation of training data
respectively. Then training data is partitioned into k interval to define LVs. As discussed
in Section 3.1.3. FCM is the preferred method to partition training data. Hence, FCM is
used for interval partitioning. See Section 3.1.2 for FCM algorithm.

4.2. Step 2: Defining fuzzy sets and fuzzifying time series. The outputs of FCM
invoked in Step 1 are k cluster centers. In Step 2, depending on the number of cluster
centers, k LVs are defined. Linguistic variables, in literature, are represented by triangular
MF, modified triangular MF or trapezoidal MF. Here, the optimum shape of MFs is
selected by linearly searching the width of trapezoidal MFs. The method used by PFP
to find the optimum shape of MF between triangular MF, modified triangular MF and
trapezoidal MF is discussed next.
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Optimum shape of membership function. Let the number of LVs be 4, i.e., k = 4. The
PFP searches the best shape by sequentially or linearly searching discrete value of width at
upper base of a trapezoidal MF. The best shape is the one which yields the smallest mean
square error during training. Figure 3 shows modified triangular MF for two different
width values. When the first width width1 is changed to width2, so are points a, b, c
and d changed to a′, b′, c′ and d′. These points define the slops that make up legs of the
trapezoid. When both width1 and width2 both equal 0, the trapezoidal MF is reduced to
modified triangular MF. Width can take positive value starting from zero to the maximum
allowed value. The limit in the maximum value is due to the condition for all values of
x, the sum of degree of MFs a particular value, i.e., x ∈ U can take should not exceed 1.
In other words, any values of width must satisfy the condition:

4∑
i=1

µi(x) = 1, ∀x ∈ U (18)

Consider the following observations to determine the maximum value of width. From
Figure 3, point a can take any value in between cluster center two (c2) and cluster center
one (c1). When a is at c1, width1 attains maximum allowed value and is equal to the
difference of c2 and c1. Similarly, d can take values from center of cluster 3 (c3) to the
center of cluster four (c4). When d is at c4, width2 is maximum allowed value and is equal
to the difference between c3 and c4. However, for points b and c the maximum width is
determined by the point where the two meet. a and b meet at half the difference of cluster
center 3 (c3) to that of cluster center 2 (c2), i.e., c3−c2

2
.

Figure 3. Search process for optimum shape of MF

Varying width1 and width2 starting from centers (i.e., from width1 = width2 = 0), the
maximum width is determined by whether point a reaches c1 first or d reaches c4 first or
b and c meet first. The first to happen from the three determines the maximum value of
width. For four linguistic variables the maximum width is formally defined as:

Definition 4.1. (Allowed maximum width for 4 fuzzy set): For four fuzzy set width
of trapezoidal membership function can take values which lie in the interval [0-maximum
width], where maximum width is given by:

Max Width =

{
2 ∗ min(∆1, ∆3) if ∆1 or ∆3 <

∆2

2
∆2 otherwise

(19)

∆1 = cluster center 2 − cluster center 1, ∆2 = cluster center 3 − cluster center 2 and
∆3 = cluster center 4 − cluster center 3.
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Equation (19) is valid only for 4 linguistic variables. For N numbers of fuzzy sets similar
logic can be applied. Allowed maximum width is defined as:

Definition 4.2. (Allowed maximum width for N fuzzy set): For N fuzzy set width
of upper side of trapezoidal membership function take values which lie in the interval
[0-maximum width], where maximum width is given by:

Max Width =

{
2 ∗ min(∆1, ∆n) if ∆1 or ∆n <

∆i

2
∀i ∈ [2, n − 1]

min (∆2, ∆3, . . . , ∆n−1) otherwise
(20)

where ∆1 = cluster center 2 − cluster center 1, ∆i = cluster center (i) − cluster center
(i − 1), i = [2, 3, . . ., n − 1].

The PFP searches the optimum MF between triangular MF, modified triangular MF
and trapezoidal MF. As discussed in Section 3.2 another approach to find the best coor-
dinates, a, b, c and d, is to use search algorithms. Search algorithms find the best value
of these coordinates. Here in PFP, the best coordinates are searched by controlling only
one valued variable: width of trapezoidal MF. Therefore, searching optimum shape of
MF takes no more than a loop. Compared to search algorithms this makes the proposed
method fast.

4.3. Steps 3 and 4: prediction model. The PFP uses first order TS model for pre-
diction. First order TS rules are of the form (Equation (11)):

if x1 is µ1 and . . .xn is µl then y = p0 + p1 ∗ x1 + · · · + pn ∗ xn

where xi, i = 1, 2, . . . , n are input variables, µl is degree of membership of x to the FS
Al and pj, j = 0, 1, . . . , n are consequent parameters. The consequent parameters are
obtained using LS learning algorithm (Section 3.3). TS fuzzy rules are extracted from
training data. The maximum number of rules is related to the order of FTS and number
of MFs defined in Step 2. The maximum number of rules is given as:

Max no of rules = (No of fuzzy sets)n (21)

where n is the order of FTS. However, all rules may not present in the training data,
in such cases the number of rules is less than the maximum number of rules given in
Equation (20). Recall in Section 3.3.2 that T-norms are used in antecedent evaluation.
Most FTS predictors [21-32] use the default minimum T-norm operator. PFP has a T-
norm selector which selects the best T-norm operator. The best operator is the one with
minimum absolute error during training phase. Table 1 shows T-norm operators used by
T-norm selector of the PFP. In the testing phase the best T-norm is used.

4.4. Output validator. The output validator is an extra step to the common fuzzy
time series predictor algorithm. This step is introduced to avoid sudden spike errors in
the testing phase. On some occasions PFP may produce an invalid output. Invalid output
occurs when PFP predicts an output which lies outside universe of discourse, U . In such
cases, the output should be corrected to a reasonable value. When the output is invalid,
PFP replaces the result with training data which have similar characteristics to inputs
that produce invalid output. To find the best match, Euclidean distance is used. For
example, if invalid output is predicted for the inputs, x1, x2, x3 and x4, then from n
training data the output validator searches minimum distances given by(

x1 − xt
i

)2
+
(
x2 − xt

i+1

)2
+
(
x3 − xt

i+2

)2
+
(
x4 − xt

i+3

)2
, i = 1, 2, . . . , (N − 3) (22)

where xt
i is the ith training data. The invalid output is replaced by the output of the
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Table 1. T-norms used by T-norm selector of PFP

Minimum TM(µA(x), µB(x)) = min(µA(x), µB(x))

Drastic Product

TD(µA(x), µB(x))

=

{
min(µA(x), µB(x)) if max(µA(x), µB(x)) = 1

0 otherwise

Algebraic Product TAP (µA(x), µB(x)) = µA(x) ∗ µB(x)

Bounded Difference

or Lukasiewicz

and Operator

TL(µA(x), µB(x)) = max(0, µA(x) + µB(x) − 1)

Einstein Product TE(µA(x), µB(x)) =
µA(x) ∗ µB(x)

2 − (µA(x) + µB(x) − µA(x) ∗ µB(x))

Hamacher Product TH(µA(x), µB(x)) =
µA(x) ∗ µB(x)

µA(x) + µB(x) − µA(x) ∗ µB(x)

Yager Intersection
TY (µA(x), µB(x))

= 1 − min

{
1,
(
(1 − µA(x))b + (1 − µB(x))b

) 1
p

}
, P ≥ 1

Dubois and Prade TDP (µA(x), µB(x)) =
µA(x) ∗ µB(x)

max{µA(x), µB(x), α}
, α ∈ [0, 1]

Figure 4. Proposed fuzzy predictor

predictor with inputs: xt
i, xt

i+1, xt
i+2, xt

i+3, where i is the index of training data that result
in minimum distance among n number of input data.

4.5. PFP summary. Figure 4 summarizes PFP for n order FTS. The knowledge base
contains the prediction algorithm database which includes universe of discourse U defined
by Equation (2) in Step 1, linguistic variables defined in Step 2 and the fuzzy rules defined
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in Step 3. Linguistic variables are defined after linear search of optimum membership
function. The optimum shape occurs in between the triangular MF, modified triangular
MF or trapezoidal MF. The fuzzifier, fuzzy inference engine and deffuzzifier perform the
whole prediction mechanism in Step 3 and Step 4.

TS fuzzy model is used as inference engine. In the inference engine, the truth value
of consequent proposition is calculated from aggregate of truth values in the antecedent
proposition. The aggregate of antecedent proposition is calculated using the best T-norm.
The T-norm selector, during the training phase, selects the best T-norm operator with
minimum absolute error. PFP evaluates the best one from 8 T-norm operators. For TS
type rules, the crisp output is equivalent to defuzzification performed by using centroid
of area. Finally, output validator checks the validity of the output.

5. Simulation Results.

5.1. Performance evaluation matrix. PFP algorithm is evaluated using well-known
performance evaluation metrics: mean square error and root mean square error which are
defined as:

MSE =
1

N

N∑
i=1

(Y (i) − Yp(i))
2 (23)

where Y (i) is actual output, Yp(i) is the predicted output and N is the no of data points.
Root mean square is defined as the square root of mean square error.

RMSE =
√

MSE (24)

However, MSE and RMSE are summaries of error distribution for a specific model.
Moreover, MSE and RMSE do not address the problem of quantifying a given model
regarding its sensitivity to initial parameterization [44]. For models like neural network
and fuzzy systems, different results are obtained at each run of algorithm. This is because
of random initialization of certain parameters in training process. Hence, performance
metrics from [44] that account this effect are applied for evaluation. First the proposed
algorithm is trained and then tested multiple times. For every training run i of training
algorithm, absolute mean error E(i) and standard deviation Std(i) are obtained for N
test data as follows [45]:

E(i) =
1

N

N∑
j=1

∣∣(Y i
p (j) − Y (j)

)∣∣ (25)

Std(i) =

√√√√ 1

N

N∑
j=1

(
Y i

p (j) − Y (j)
)2

(26)

where Y i(j) is the jth output obtained by the ith run and Y (j) is the jth actual output.
The performance evaluation algorithm is given as [44]:

1) For i = 1 to M
2) Train the system using training data set
3) Test system using test data set
4) Calculate the absolute mean prediction error E(i)
5) Calculate the standard deviation Std(i)
6) Next i
Depending on the above algorithm, the following performance metrics are defined.
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A. The Timeliness. The Timeliness is given by global mean of all the M values of
E(i):

Timeliness = E =
1

M

M∑
i=1

E(i) (27)

where M is the number of runs, and E(i) is absolute mean error Equation (25) at run
i. The perfect predictor score is Timeliness = 0. For small value of Timeliness the
probability to have a prediction close to real value is significant. On the contrary, if the
Timeliness value is large, the probability to have a wrong prediction is very high.

B. The Precision. The Precision is the global mean of all the M values of Std(i):

Precision = Std =
1

M

M∑
i=1

Std(i) (28)

where Std(i) is standard deviation of each running test i. Precision = 0 is the perfect
score. For a small value of Precision, the probability to have predictions grouped together
can be significant. On the contrary, if the Precision value is high, the predictions are
dispersed.

C. The Repeatability. The Repeatability is given by the standard deviation of both
E(i) and Std(i).

Repeatability =
σ(Std) + σ(E)

2
(29)

where σ(Std) and σ(E) represent the standard deviation of the M values of E(i) and
Std(i) values respectively.

σ(Std) =

√√√√ 1

M

M∑
i=1

(
Std − Std(i)

)2
(30)

σ(E) =

√√√√ 1

M

M∑
i=1

(
E − E(i)

)2
(31)

The perfect score is Repeatability = 0. This parameter indicates how close the different
values of E(i) and Std(i) are grouped or clustered together. For small values of σ(Std)
and σ(E), it means that at each running time i, the model gives the same performance
on test set. Repeatability parameter reveals the random initialization influence of some
learning parameters. The training process is completely repeatable for small values of
Repeatability.

D. The Accuracy. Accuracy is defined as:

Accuracy =
1

Repeatability + Timeliness + Precision
(32)

If a model has a good Timeliness, Precision and is completely Repeatable, then the
prediction given in that model is very close to real data. The prediction confidence is
very high. A big value of the Accuracy parameter gives a great confidence of prediction.

5.2. Mackey-Glass time series results. Mackey-Glass (MG) represents a model for
white blood cell production in leukemia patients. MG time series is the solution of differ-
ential equation:

dx(t)

dt
=

αx(t − τ)

1 + x10(t − τ)
− βx(t) (33)
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The series is chaotic which makes it universally acceptable representation of nonlinear
oscillations of many physiological processes [47]. For this reason, it is widely used for
testing the performance of prediction models [32,45,48]. Fourth-order Rung-Kutta method
with time step size 0.1 is used to obtain time series values at integer points. The initial
parameters are set to:

τ = 17, α = 0.2 and β = 0.1

Input-output is constructed using embedded theorem. The retardation of the series for
chaotic time series is described as [46]:

X(t) = [x(t − (Em − 1)td), . . . , x(t − td), x(t)] (34)

where X(t) is the embedded vector, x(t) is the value of the sequence at time t, td denotes
retardation of the time series and Em denotes the embedding dimension. The embedded
vector X(t) is used to predict sequence values at x(t + v), where v is the prediction step.
Here v, td and Em are set to: v = 1, td = 1 and Em = 4.

Embedded vector or input to PFP is set to: X(t) = [x(t − 3), x(t − 2), x(t − 1), x(t)].
Similar to [32] 1000 data from x(124) to x(1123) are selected for simulation. The first
500 data are selected for training and remaining for testing. Input output data has the
form: x(t − 3), x(t − 2), x(t − 1), x(t); x(t + 1). From the training phase the following
parameters are obtained.

• The optimum shape of MF occurs at width value 0.08.
• The best operator with minimum MSE from Table 1 is the Yager operator.

Hence, these values are used to test the performance of PFP. The predicted and real
value of the MG time series is shown in Figure 5. The difference between predicted and
real data is so small that it is not visible with naked eye, unless zoomed. The zoomed
portion of one of hills in MG data shows minimum difference between real and predicted

Figure 5. Real and predicted output of MG time series
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values. For t < 500, i.e., for the training data error is almost zero, while for testing data
error is less than 0.001 except for some points. The maximum and minimum errors for
testing data are 0.0849 and 3.5124 × 10−7.

Table 2 shows MSE and RMSE of training and testing data. Performance comparison
of PFP with other models listed in [32] is shown in Table 3.

Table 2. MG time series results

Performance

Evaluation Metrics
Training data Testing data

Perfect

Predictor Score

MSE 6.6120 × 10−7 8.1314 × 10−4 0

RMSE 1.1444 × 10−5 0.0038 0

Timeliness − 3.1892 × 10−4 0

Precision − 2.1753 × 10−5 0

Repeatability − 1.2051 × 10−6 0

Accuracy − 2925.0472 ∞

Table 3. Performance comparison with other models listed in [32]

No of fuzzy set
Root Mean Square Error (RMSE)

WANG MCM-1 MCM-2 Young-Chul PFP
4 − − − − 0.0038
5 − − − 0.0085 −
7 0.0372 0.0374 0.0340 − −
11 0.0253 0.0265 0.0235 − −
15 0.0191 0.0197 0.0187 − −
19 0.0161 0.0162 0.0159 − −
23 0.0135 0.0142 0.0131 − −
27 0.0115 0.0115 0.0113 − −
31 0.0108 0.0108 0.0105 − −

PFP has high accuracy compared to other models in [32]. This is achieved using 4
linguistic variables. The number of rules is related to the number of fuzzy sets (Equation
(20)). From Table 3 one can see that the number of fuzzy set for the PFP is 4, while for
others it is more than 4. Hence, the PFP uses lower number of rules than other models.
The accuracy is achieved by carefully searching optimum shape of MF and the best T-
norms in addition to adopting the preferred methods at each 4 steps of basic time series
prediction algorithm.

5.3. Box-Jenkins gas furnace data simulation. Box-Jenkins dataset represents CO2

concentration as output y(t) in terms of input gas flow rate u(t) from a combustion
process of a methane-air mixture [46]. The Box-Jenkins dataset consists of 296 input-
output measurements. In order to compare PFP to [45] and other models listed in [45],
u(t − 1), u(t − 2), u(t − 3) and y(t − 1), y(t − 2), y(t − 3) are selected as input variable.
Separate LVs are defined for both input gas flow rate u(t) and CO2 concentration y(t).
The cluster centers are obtained by FCM. For CO2 concentration linguistic variables, low
and high CO2 concentrations are defined. Similarly, for input gas flow rate low and high
flow rates are defined. Cluster centers for input gas flow rate u(t) are −1.0123 and 0.7704.
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Cluster center of input CO2 concentration are 50.8298 and 56.2945. The number of rules
using Equation (20) is 64. Results of PFP do not vary from one run to another. Hence, the
performance is evaluated using MSE and RMSE. The MSE is 2.5115×10−4, while RMSE
is 0.0158. The real and predicted outputs are plotted in Figure 6. The predicted and
real outputs are so similar that, even if zoomed, it is difficult to see the difference. Table
4 shows performance comparison of PFP to other models. All data except the PFP is
obtained from [45]. The PFP model has the lowest MSE compared to other models. The
PFP learns only one time, while other models require 100 epochs to train. The number
of epochs affects the speed of the algorithm. As a result, the PFP is a fast predictor
compared to other models listed in the table. In general, the PFP has the lowest MSE
only learning for an epoch.

Figure 6. Box-Jenkins dataset prediction

Table 4. Comparison of PFP with other methods

Model No of training epochs MSE
[49] 100 0.055
[50] Not available 0.055
[51] Not available 0.066
[52] Not available 0.068
[53] Not available 0.202
[45] 100 0.0512
PFP 1 0.0021
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6. Conclusion. In this paper a fuzzy model for predicting non-stationary chaotic time
series is proposed. The basic FTS prediction algorithm contains four basic steps. PFP
selects the best available methods in each step. Further improvement on the accuracy
is obtained by linear search of optimum shape of membership functions and selecting
T-norm operators with the lowest MSE on the antecedent of TS fuzzy rules. In cases
when the output is outside U , PFP replaces the invalid output with a reasonable value.
The performance is evaluated using standard data. It is compared with perfect predictor
using MG time series data. PFP is compared with some methods in the literature using
Mackey-Glass and Box-Jenkins gas furnace data. PFP has the lowest MSE. In future
PFP can be improved in terms of accuracy and in terms of reducing number of rules. The
number of rules can be reduced by eliminating rules that have little contribution to the
antecedent evaluation. The PFP accuracy can be improved by using type 2 fuzzy sets.
Therefore, rule reduction and applying type 2 fuzzy sets are worth of future investigating.
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