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ABSTRACT. A technique based on the piecewise cubic Hermite interpolation (PCHI)
model was previously applied to calculating the signal-to-noise ratio (SNR) in scanning
electron microscope (SEM) images. An algorithm was also used by cascading the tun-
ing technique, named adaptive tuning piecewise cubic Hermite interpolation (ATPCHIP)
model. Comparisons were made with the performance of the other methods — adaptive
slope nearest neighbourhood (ASNN), linear least square regression (LLSR) and non-
linear least square regression (NLLSR) through Cramer-Rao lower bound (CRLB), t-test,
scatter plot and Bland-Altman plot. Using different images, the ATPCHIP single-image
model is shown to be much better than other models.

Keywords: Piecewise cubic Hermite interpolation, Signal-to-noise ratio, Scanning elec-
tron microscope images, Image processing

1. Introduction. Signal-to-noise ratio (SNR) is often used to judge the quality of images,
since the amount of noise in an image affects the image clarity. Then, as a parameter, it
is also of importance to provide adaptive averaging. Secondly, SNR can measure image
quality of both on-line and off-line images.

The cross-correlation technique was presented in [1] for the direction of arrival (DOA)
estimation. The cross-correlation was applied in [2] to evaluating SNR using digital image
averaging. It is employed to calculate the resolution and the SNR of CD-SEMs, SNR
evaluation on magnetic resonance imaging (MRI) in [3,4]. The main drawback of cross
relation technique is that two images are required and they need to be aligned well. Cross-
correlation also cannot be used to find the SNR of an extant image like a micrograph or
a stored image. In [5], it was suggested to estimate SNR using a single image, but the
accuracy was poor. A method using the statistical autoregressive model was proposed to
estimate the power of noise-free image [6,32].

Although the performances of various SNR estimation techniques have been discussed
[1,5-9], it is still difficult to compare the relative performance of these estimators since
the performance metrics are not standardized. To make a proper comparison, the authors
propose using the Cramer-Rao inequality. The Cramer-Rao lower bound (CRLB) is a
well-known limit for the variance of any unbiased estimator [10-17]. The derivation of an
approximate Cramer-Rao lower bound (CRLB) for the parameters of a multicomponent
linear frequency modulated continuous wave (LEMCW) signal had been discussed in [15].
In real additive white Gaussian noise (AWGN), [18] has applied the mean square error
(MSE) to measuring the performance. CRLB is derived for the estimation of SNR of
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binary phase-shift keying (BPSK) and quaternary phase-shift keying (QPSK) modulated
signal. The SNR asymptotic of CRLB was applied to estimating the SNR of binary
phase shift keying modulated signals [19]. The fundamental performance limits for image
registration were derived using Cramer-Rao bound [20]. In recent years, CRLB has been
applied to passive radar system that employed signals as illuminators for target detection,
tracking and estimation [10,11,21,22].

In this paper, an SNR estimation algorithm, ATPCHIP, has been proposed to recover
the variance of additively corrupted zero mean noise. The estimation of SNR is computed
through ATPCHIP for a single image. The main contribution is to quantify the bounds
single image SNR estimation through the presented ATPCHIP. In addition, CRLB, t-test,
scatter plot, and Bland-Altman plot are applied to testing the performance of the single
image SNR estimator.

2. Formation of the Problem. Using earlier notations [6,20] w(i, j) = s(i,5) + n(i, j)
represents the sum of a corrupted image with an additive white noise, where s(z, j) is the
noise-free image and n(i, j) is the additive noise, and an example is as shown in Figure
1. The two-dimensional autocorrelation function ¢(i,j) with offset along the z-direction
¢(i) at zero j offset is depicted in Figure 2.

FIGURE 1. Power IC captured at beam diameter 151nm, with noise
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FIGURE 2. Representation of signal and noise components on a plot of
the autocorrelation function, with the filled markers representing the data
derived from the image
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As n(i,7) is considered as white and stationary along axis j, the SNR of a power IC
captured at beam diameter = 151nm with noise can be obtained from the autocorrelation
curve as shown in Figure 2.

It is clear in Figure 2 that ¢(0) — ¢(0) and $(0) — 1u? represent the energies of the white
noise and the energy of image signal, respectively, where p is the image mean value. Then,
the SNR is as in (1)
¢(0) — ¢(0)

To estimate the zero-offset autocorrelation point ¢(0) from an autocorrelation sequence,
several single image SNR estimation techniques with different magnifications are corrupted
with various noise levels and discussed below.

SNR =

3. The SNR Estimators. The bias from the 4 methods, adaptive slope nearest neigh-
bourhood (ASNN), linear least square regression (LLSR), non-linear least square regres-
sion (NLLSR) and adaptive tuning piecewise cubic Hermite interpolation (ATPCHIP),
are computed for a collection of single images.

3.1. Adaptive slope nearest neighbourhood. This method was proposed by [7]. Tt
is called as adaptive slope nearest neighbourhood (ASNN). It is an enhanced version of
the existing nearest-neighbourhood method [5]. ASNN calculates the relation of ¢(0)
through nearest-neighbourhood and noisy image zero-offset point ¢(0). Then based on
100 images, 10 relationship graphs which are NV = 0.001 to 0.01 with increment 0.001
are plotted respectively. From the observation of graphs, when NV is increased, the SNR
estimated using nearest-neighbourhood becomes more accurate and ¢(0) is always smaller
than ¢(0). The trend line is defined using y = Sz + C, and Figure 3 shows the linear
trend line of estimated noise-free peak ¢(0) versus noisy peak ¢(0) [7].

Estimated
Noise-free A
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Linear Trendline

» Noisy peak
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FIGURE 3. Linear trend line of estimated noise-free peak ¢(0) versus noisy
peak ¢(0)
The method is implemented with Equation (2).
SNRpredict = (S) X SNRactual - C (2>
where S is the slope of the trend line and C' is the y-axis intercept.

3.2. Linear least square regression. [8] proposed a technique called the linear least
square regression. The nearest neighbourhood point always has value lower than the
peak and the noisy peak is always higher than the noise-free peak. Therefore, there is
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FIGURE 4. The confident interval of estimation in ACF curve

a confident interval between noisy peak and the nearest neighbourhood point. If any
estimation result falls outside the confident interval, the value is void. Figure 4 shows the
confident interval on the autocorrelation function (ACF) curve.

In this method, a line to best fit the data is determined. Equation (3) shows the linear
least square regression equation [21,22].

J=a+xf (3)

The prediction is started using Equation (3) by calculating the o and (3. e is defined
as the random error of Y. After considering the e, Equation (3) can be written as

g=a+zf+e (4)
In matrix form, it is
Y=XB+c¢ (5)
where
1 x €1 hn
¥ _ 1 x]\&l Lo EN+1 Cy- yN.+1 | B:{g}
1 axn eN YN

X, e and Y are substituted into Equation (5) to get Equation (6).

U1 1 T1 €1

YN+1 1 zn4 eN+1
A A (N S (6)
: &)

YN 1 xn en

In order to get accurate estimation, e is assumed to be a value equal to half of the
difference between the noisy peak and the nearest neighbourhood point. Equation of e is
shown in Equation (7). After e is calculated, all the required values have been obtained,
and the g can be acquired using Equation (8) [8].

¢(0) —¢(1)

o= 220 7

o0)=g=a+azf+e (8)



ADAPTIVE TUNING PIECEWISE CUBIC HERMITE INTERPOLATION MODEL 1791

3.3. Non-linear least square regression. [9] also proposed a technique which is called
non-linear least square regression. The first and second quadrants of the ACF curve show
exponential growth. Figure 5 shows the exponential increment of the ACF curve.

Therefore, the idea of non-linear is to introduce the linear least square regression
method.

Equation (8) is modified into non-linear form to fit the exponential characteristic of the
ACF as in Figure 5.

6(0) =In(§) = In(a) + 28 + In(e) (9)
Equation (9) can be simplified into Equation (10).
$(0) =i = (a) exp(a) - (¢) (10)

Equation (10) can be written in Equation (11).

In(y) = In(a) + 26 + In(e) (11)

Based on Equation (11), we can derive the higher order of § or ryz(0,0). The equation
is shown in Equation (12).

In(g) = In(a) + (61) In(X) + (B2) In (X?) + - + (Bar) In (X)) +1In(e)  (12)
Equation (12) can be simplified into Equation (13).

Y = aeﬁ (Xk)ﬁk (13)

After the z and y axes values are determined, they are substituted into Equation (12).
After the calculation is done, the o and (3 can be obtained. The order of Equation (13)

is decided by the M. Then, a and (), values are substituted into Equation (13) to get
the estimated noise-free peak value g [9].
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FIGURE 6. Four Hermite basic functions

3.4. Adaptive tuning piecewise cubic hermite interpolation. A mathematical mo-
del called piecewise cubic Hermite interpolating polynomial (PCHIP) was proposed in
[26]. The theory behind the PCHIP function is that it is the combination of multiple
sub-functions. Each sub-function is constructed using a cubic polynomial model. These
functions make an interpolation between two known nodes and the derivatives at the nodes
are known. PCHIP function can preserve the shape due to its smooth first derivative.
Other than that, PCHIP function has no overshooting problem and less oscillation when
compared to other models.
The PCHIP model is then defined as:

3hs? — 252 h® — 3hs® + 253 s2(s — h s(s — h)?
=5 Ukt e (1 (h2 )korl + (h—Q)dk (14)

where s =z — x; and h = h;.

Lastly, Equation (14) is applied on —1 < z < 0 to calculating the noise-free zero offset
point 711(0, 0) [24-26].

Based on PCHIP method, a multiplier M is introduced to achieve better performance,
and called as adaptive tuning piecewise cubic Hermite interpolation (ATPCHIP). The
ATPCHIP model is then defined as:

3hs? — 25> h® — 3hs® + 253 s2(s—h
P(z) = s e + e yr + M (%

P(z)

s(s

%h)zdk) (15)

dipq1 +

where s =z — x; and h = h;.
In addition, ATPCHIP is presented as better-performed SNR estimation method for
single image application.

4. The Cramer-Rao Inequality and Statistical Tests for SNR Estimation Per-
formance. Four tests are used to test performance of the SNR estimation results, and
they are Cramer-Rao inequality test and statistical tests. The statistical tests are t-test,
scatter plot, and Bland-Altman plot.



ADAPTIVE TUNING PIECEWISE CUBIC HERMITE INTERPOLATION MODEL 1793
4.1. Statistical tests.

4.1.1. T-test. For the performance of t-test using data analysis tool in Excel, we first
assume that the mean of the two datasets is unknown. From each of the two datasets,
the real noise-free peak value (NF) and the estimated noise-free peak value (y) are found.
The mean and variance of each set of data are then calculated. After that, the p-value,
t-stat, and t-critical of two-tail test are determined. The p-value is the probability of
getting a result equal to or higher than the actual situation if the null hypothesis is true.
The confident or significant level « is set to be equal to 0.05. « is also the probability of
wrongly rejecting the null hypothesis [27]. The null hypothesis (Hy) is set when the g is
the same as NF.

There are two situations to justify the rejection of the null hypothesis. First, when
the p-value is equal to or less than «. Second, when the t-stat does not fall between the
negative t-critical and t-critical.

4.1.2. Scatter plot. Scatter plot or correlation chart is used to determine the correlation
between two variables. It shows the similarity and relevance between two variables. The
independent variable is set as the NF and the dependent variable is the . We can verify
that the g is correlated with the real values, if the plot shows a line or a curve.

4.1.3. Bland-Altman plot. The Bland-Altman plot [31] is a method used to compare two
clinical measurements. It is a new measurement compared with the golden standard. The
first item that needs to be calculated is the mean difference of NF and ¢. The second item
is the 95% limits of agreement, which acts as the mean difference. This value is equal to
1.96 x SD, where SD is the standard deviation. This method presents graphically the
difference of two data sets against the mean for each data in order to test whether the
estimated data match with the real data. The two parameters needed are Equation (16)
and Equation (17), where D is the mean of difference, and N is the number of samples.

G==) ===

J—x ~ (16)

~ =\ 2
. P (9~ NF) - (5= NF)) -
N -1
After the D and SD are calculated, two lines are drawn on the diagram, which are
D+1.96 x SD, and D —1.96 x SD. The graph of (§ — NF) versus % is then plotted.
If the majority of the points fall in the confident range, we can conclude that the y data
(estimated values) is able to replace the z data (real value).

4.2. Cramer-Rao lower bound. The Cramer-Rao lower bound (CRLB) is a method
to get the lower bound of the data mean squared error (MSE). If the performance of
the unbiased estimator is the same as or slightly higher than the CRLB, the estimator
can be concluded as an efficient estimator. In this paper, CRLB is used to quantify the
performance bounds for the estimator [14,31-34].

Given that an SEM image g(z,y) = s(z,y) + w(x,y), where g(z,y) is the noisy image,
s(x,y) is the noise-free image, and w(z,y) is the additive Gaussian white noise

1 (w—s)?

p(w) = p(z,0) = Tt (18)

The SNR of single image is defined as in Equation (19).

52

o2
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The estimated of « is based on the L observed pixels of w(n), which is the resolution
of the image. The estimator is dependent on two parameters, which are the signal S and
the noise variance 0. Therefore, the § in Equation (19) is defined as in Equation (20).

49 = (91,02) = [S, 0'2} (20)

The estimated SNR is commonly calculated in dB unit. Therefore, Equation (20) can
be represented in Equation (21).

2
g(0) = SNR;5 = 10log (5_2) (21)
o

The CRLB function of the multi-parameter is shown in Equation (22)

CRLB(g(6)) = 898(09)17‘189 gz)

where F'(0) indicates the Fisher information matrix, defined:

0*Inp(z,0) 9?Inp(z,0)
_E( 052 ) _E< 95002 >

B 0*Inp(x,0) 5 0?Inp(x,0)

9(a?)0(5?) d(a?)?
where p(z,0) indicates the pdf of additive Gaussian white noise and E indicates the
expected value. The Inp(z,0) is

F(0) = (23)

lnp(x, 9) = —5 111(27T) — 5 ln(g2) — 27‘2(10 _ S)Z (24>
The expected values in Fisher information matrix are calculated and shown in Equation

(25) to Equation (28).

0*Inp(x,0)

-F ( 95> ) =EB(7) = >

9*Inp(x,0) A

—p (2P0 o g - S) = 2
( 950(0%) ) oc"'E(w—5)=0 (26)
0?Inp(x,0) 4
(Feore) =o't =9)=0 0
0*Inp(x,0) ot
_p | £ ) 2
(o) =3 2
Therefore, Equation (23) can be written as
1

— 0
Fioy=|° (29)

204

Since we have L observed pixels, Equation (29) is rewritten as
1

— 0

F@)=L| ° 1 (30)
o
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By applying the inverse matrix formula, F'~1(0) is
2

o
— 0
o= | T, (31)
VT
Next, the derivative of g(f) is calculated with respect to S and o.
9g(0) _ [09(6) 9g(0)
00 { a5 do (32)
dg(0) 20 —10
o0 [ln(l())S ln(lO)JQ] (33)

Equation (32) and Equation (33) are substituted into Equation (22) and shown in
Equation (34). Equation (34) is simplified into Equation (35).

CRLB(g()) = 8%;9)1?—189;2) (34)
CRLB(9(6)) = Lli(()fm? (SN;de + %) (35)

5. Results.

5.1. Statistical test using ATPCHIP and other existing methods. The t-test,
scatter plot and Bland-Altman plot are used to test the results. The 1240 samples of
different noise variance between in the range of 0.001 to 0.01 are used for the data analysis.

5.1.1. Performance of the ATPCHIP compared with existing methods using t-test. Table
1 shows the mean and variance of the real value and the estimated value of ATPCHIP
and other existing methods.

TABLE 1. Comparison of t-test two-sample results of ASNN, LLSR, NLLSR
and ATPCHIP by assuming unequal variances

ASNN LLSR NLLSR ATPCHIP
Real |Estimated| Real |Estimated] Real |Estimated] Real [Estimated
Mean  |0.214438] 0.204963 [0.214438 0.21574 |0.214438| 0.21276 |0.214438| 0.214495
Variance |0.005242] 0.005162 |0.005242| 0.005203 |0.005242| 0.005154 |0.005242| 0.005240
Observations| 1240 1240 1240 1240 1240 1240 1240 1240
Hypothesized
Mean — 0 — 0 — 0 — 0
Difference
t-stat 1.39 0.4484 0.5793 — [0.01960
p-value 0.15 0.65 0.65 - 0.90
t-critical 1.960922 1.960922 1.96 — ] 1.960922
two-tail
Mean 0.009475 0.001302 0.001678 0.00005
Difference
Variance 0.00008 0.000039 0.000088 0.000001
Difference

From Table 1, the p-values are larger than the confident level a. Therefore, we cannot
reject the null hypothesis. The second criteria are shown as below:
1) t-stat = 0.016951 > — t-critical = — 1.960922
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2) t-stat = 0.016951 < t-critical = 1.960923

Since the t-stat and t-critical values do not fulfil the criteria, we cannot reject the null
hypothesis. We conclude from t-test that the null hypothesis cannot be rejected, as the
estimated noise-free peak using ATPCHIP method is similar to the real noise-free peak.

According to Table 1, ATPCHIP is the lowest in mean difference and variance difference
which indicated that it outperforms other methods by having the output values nearest
to the real noise-free peak value. This indicates ATPCHIP method has better SNR
estimation.

5.1.2. Performance of the ATPCHIP compared with existing methods using scatter plot.
Figure 7 shows the scatter plots of estimated points versus the real points by using ASNN,
LLSR, NLLSR and ATPCHIP.

(b) (©)
FIGURE 7. Scatter plots of estimated values versus real values using:
(a) ASNN, (b) LLSR, (c¢) NLLSR, and (d) ATPCHIP

Scatter plot is applied to verifying the similarity of the two datasets. It is obvious
that the data form a line. In comparison, ATPCHIP estimated noise-free peak results as
shown in Figure 7(d) are more consistent and nearer to the real noise-free peak. ATPCHIP
utilized adaptive tuning onto the PCHIP model and achieved better SNR estimation.

5.1.3. Performance of the ATPCHIP compared with existing methods using Bland-Altman
plot. For the Bland-Altman plot, D and SD are calculated. Therefore, the confident range
is between D + 1.96 x SD and D — 1.96 x SD.

Figure 8 shows the Bland-Altman plot of the real and the estimated peak for ASNN,
LLSR, NLLSR and ATPCHIP respectively. For ASNN and NLLSR, it can be observed
in Figures 8(a) and 8(c) that the majority of the points are falling within the confident
range. We can conclude that the estimation values can replace the real value. Figure 8(b)
shows the poor performance of LLSR as majority point fell outside the confident range.
This shows that a lot of LLSR output values are in error.

From Figure 8(d), we observe that almost all the output points of ATPCHIP are within
the confident range. Therefore, it can be concluded that the ATPCHIP outperforms
the other methods and its results can replace the real-noise-free peak value. ATPCHIP
implements adaptive tuning properties to PCHIP model and is capable of generating the
output point with confident range.

Concluded from the conducted t-test, scatter diagram and Bland-Altman diagram of
the three proposed methods, the ATPCHIP shows best results, as it has the least mean
difference with the real value. Besides, in the Bland-Altman diagram, almost all the
output points are within the confident range. Henceforth, the ATPCHIP method is
preferred against other compared methods.

5.2. Performance of the ATPCHIP compared with existing methods using
Cramer-Rao lower bound. As a performance of the ATPCHIP model, the noise vari-
ance is estimated. We take four kinds of SEM noise-free images with size 256 x 256 pixels,
namely, images of wood fibre composite material, silver paint, IC wire bonding, and solder
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F1cure 8. Bland-Altman plot of: (a) ASNN, (b) LLSR, (c) NLLSR, and
(d) ATPCHIP

FIGURE 9. Four selected images to test the performance of the ATPCHIP
method: (a) wood fiber composite material; (b) silver paint; (c) IC wire
bonding; (d) sample images of power IC captured at beam diameter =
151Inm

bolding as in Figure 9. White noise is augmented into the images, and the autocorrelation
functions are then computed.

As a single indication of error, the square root of the MSE matrix trace for each esti-
mator and the bound of Equation (36) and Equation (37) are computed. The square root
of the trace of the MSE matrix gives a valid computation of the mean magnitude bounds
as for the CRLB, as shown in Tables 4 and 7.

Figures 10, 11, 12, and 13 show the performance of the various methods as a function
of SNR. The MSE shown in the tables has been normalized using Equation (36) and
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Equation (37).

MSE = MSE/(SNR etuat) (36)
CRLB = CRLB/(SNRueruat), (37)

—_——

where MSE is the mean square error after normalization and CRLB is the Cramer-Rao
lower bound after normalization.

Figure 9 shows the four images selected randomly from database. These images are
used to represent the performance of the ATPCHIP method by comparing with ASNN,
LLSR and NLLSR. There are images with noise variance (NV) of 0.001 to 0.01 for each
image as shown in Figure 9. The SNR in dB is calculated and the mean square error
(MSE) is calculated by comparing with the noise-free (NF) image. Table 2 shows the
SNR in dB using various methods.

From Table 2, we can observe that the ATPCHIP method has the closest estimated
SNR by comparing with NF in different noise variances. For NLLSR, the estimated value
has larger difference when NV is smaller. ASNN method has similar estimation results
compared to NLLSR. LLSR shows least accurate among the four methods. The perfor-
mance of each method can be seen clearly if the results are represented using MSE. The
results of Table 2 in terms of MSE are shown graphically in Figure 10.

From Figure 10, the ASNN has the highest MSE. This means that the difference between
ASNN and the NF is the highest. Hence, the estimation results are not satisfactory. The
second highest MSE is the NLLSR. Although NLLSR gives better estimation compared
to ASNN, the MSE is still very high. LLSR has lower MSE compared to NLLSR and
ASNN. ATPCHIP shows better results compared to the other three existing methods.
The MSE values of ATPCHIP are the lowest among all methods. As the NV is higher,
the ATPCHIP gives better estimation and has lower MSE value.

Figure 10 shows that the performance of ATPCHIP for wood fiber composite material
with horizontal field width of 50um is better than other methods. For the SNR range
from 0.001 to 0.01, the error variance of ATPCHIP is about 1% different from the CRLB.
For the noise variance from 0.001 to 0.01, the other methods, except ATPCHIP, have the
MSE deviating further from CRLB. The ATPCHIP can predict accurately the zero-offset
point at low noise.

From Table 3, the ASNN shows the lowest estimated SNR values. It has large differences
compared to the NF. For NV = 0.001, ASNN estimated SNR is 11.37dB, but the actual

TABLE 2. Comparison of calculated SNR of NF, ASNN, LLSR, NLLSR
and ATPCHIP, using Figure 9(a)

SNR (dB)

Noise variance | NF | ASNN | LLSR | NLLSR | ATPCHIP
0.001 34.75| 19.62 | 20.55 | 22.95 34.75
0.002 28.63 | 17.82 | 20.79 | 18.66 28.64
0.003 25171 16.24 | 19.94 | 17.47 25.18
0.004 22.07 | 15.20 | 18.33 | 16.02 22.08
0.005 20.19 | 14.13 | 17.08 | 14.90 20.18
0.006 18.47 | 13.24 | 15.34 | 13.57 18.47
0.007 17.54 | 12.33 | 14.37 | 12.62 17.55
0.008 16.29 | 11.68 | 13.60 | 11.91 16.29
0.009 15.06 | 11.02 | 12.80 | 11.14 15.09
0.010 13.96 | 10.35 | 12.52 | 10.61 13.96
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F1GURE 10. The comparison of mean square errors for various methods on
wood fiber composite material image

SNR of that particular image is 41.04dB. LLSR has better SNR estimation compared
to ASNN. However, the difference between the LLSR and the NF is still large. For
the NLLSR, the SNR is higher than ASNN. When NV = 0.001, the accuracy of the
NLLSR is better than LLSR. However, the overall result of LLSR is better than the
NLLSR. ATPCHIP shows better estimation compared to ASNN, LLSR and NLLSR. The
estimated SNR using ATPCHIP is slightly higher than NLLSR. The MSE of each method
is calculated by comparing to the real NF SNR, and the results are shown in Table 4 and
Figure 11.

From Figure 11, we can clearly see that the method with the highest MSE is the LLSR.
By comparing to LLSR and ASNN, the MSE of the NLLSR and the ATPCHIP are low.
However, ATPCHIP gives lower MSE as compared to NLLSR.

Figure 11 compares the performance of the various methods for the silver paint sample
with horizontal field width of 100um. The error variance of ATPCHIP algorithm is about
0.1%, close to that of the CRLB. The other methods are considerably less accurate, with
error variance further away.

TABLE 3. Comparison of calculated SNR of NF, ASNN, LLSR, NLLSR
and ATPCHIP, using Figure 9(b)

SNR (dB)

Noise variance | NF | ASNN | LLSR | NLLSR | ATPCHIP
0.001 41.04 | 11.37 | 31.78 | 32.82 40.66
0.002 31.71 | 10.40 | 26.60 | 26.65 31.88
0.003 2751 9.54 | 23.33 | 23.11 28.44
0.004 24.48 | 8.73 | 21.00 | 20.53 24.00
0.005 22.64 | 8.00 19.15 | 18.53 22.82
0.006 20.58 | 7.41 | 17.64 | 16.88 20.77
0.007 19.67| 6.69 | 16.37 | 15.61 19.09
0.008 1788 | 6.22 | 15.14 | 14.39 17.70
0.009 16.87 | 5.61 | 14.16 | 13.36 16.75
0.010 15.67 | 5.02 | 13.29 | 12.40 15.85
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TABLE 4. Comparison of calculated mean squared error results with
Cramer-Rao lower bound for Figure 9(b)

Noise variance | ASNN | LLSR | NLLSR | ATPCHIP CRLB
0.001 0.412537 | 0.7229 | 0.2256 0.0093 0.000152745
0.002 0.355146 | 0.6720 | 0.1611 0.0054 | 0.000154646
0.003 0.326055 | 0.6530 | 0.1520 0.0340 0.000156187
0.004 0.30599 | 0.6434 | 0.1421 0.0196 0.000157654
0.005 0.298438 | 0.6465 | 0.1540 0.0081 0.000158992
0.006 0.279181 | 0.6400 | 0.1427 0.0094 | 0.000160534
0.007 0.286779 | 0.6598 | 0.1677 0.0293 0.000161667
0.008 0.287176 | 0.6519 | 0.1530 0.0099 0.000162814
0.009 0.265192 | 0.6671 | 0.1604 0.0068 0.000164574
0.01 0.272012 | 0.6796 | 0.1519 0.0115 0.000165835
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F1GURE 11. The comparison of mean square error versus noise variance for
silver paint material

From the results in Table 5, ATPCHIP has the highest estimated SNR values. The
second highest estimated SNR is the LLSR method. In this table, LLSR has better
performance compared to ASNN. However, the differences between the estimated SNR
values and the real NF values are higher. The MSEs are calculated and shown in Figure
12 graphically.

From Figure 12, we can clearly see that the ASNN has the highest MSE when compared
to the other three methods. NLLSR has lower MSE than ASNN but is slightly higher than
the LLSR. Among the four estimation methods, ATPCHIP shows the best performance.

From Table 6, the LLSR and NLLSR methods show similar results. Both LLSR and
NLLSR give poorer estimation as compared to ATPCHIP. For NV = 0.001, the estimated
SNR using ASNN is only 42.53dB, when the real value is 48.78dB. NLLSR has slightly
better performance compared to LLSR. The estimated SNR using ATPCHIP is better
than NLLSR and the result is closer to the real NF SNR. Therefore, it has the best
estimation. The MSEs of the four estimation methods are shown in Table 7.

The ASNN has the highest MSE among the four methods, as shown in Table 7 and
Figure 13. The MSE of LLSR is closed to NLLSR when NV = 0.006. ATPCHIP has
the lowest MSE among the four methods. The tabulated results showed that ATPCHIP
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TABLE 5. Comparison of calculated SNR of NF, ASNN, LLSR, NLLSR
and ATPCHIP, using Figure 9(c)

SNR (dB)

Noise variance | NF | ASNN | LLSR | NLLSR | ATPCHIP
0.001 42.63 | 12.55 | 32.88 | 31.97 42.91
0.002 34.59 | 11.74 | 28.31 | 27.33 35.24
0.003 30.92 | 11.04 | 25.27 | 24.33 30.16
0.004 27.05| 10.44 | 23.16 | 22.25 27.41
0.005 25.53 | 9.74 | 21.36 | 20.41 24.96
0.006 23.77 1 9.23 | 19.93 | 18.94 23.85
0.007 22.43 | 8.63 | 18.69 | 17.68 22.04
0.008 20.80 | 8.09 | 17.63 | 16.59 20.90
0.009 19.61| 7.67 | 16.67 | 15.61 19.49
0.010 18.61 | 7.20 15.83 | 14.74 18.74
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FIGURE 12. The comparison of mean square error versus noise variance for
Figure 9(c)

TABLE 6. Comparison of calculated SNR of NF, ASNN, LLSR, NLLSR
and ATPCHIP, using Figure 9(d)

SNR (dB)

Noise variance | NF | ASNN | LLSR | NLLSR | ATPCHIP
0.001 48.78 | 42.53 | 34.94 | 39.95 49.75
0.002 39.64 | 34.14 | 29.33 | 30.96 38.91
0.003 32.30 | 28.56 | 25.87 | 26.59 31.73
0.004 28.96 | 25.01 | 23.47 | 23.80 30.29
0.005 26.36 | 23.12 | 21.62 | 21.68 27.02
0.006 24.85| 20.62 | 20.02 | 19.86 24.34
0.007 2293 | 19.14 | 18.70 | 18.42 22.46
0.008 21.68 | 17.83 | 17.56 | 17.19 21.48
0.009 20.14 | 16.42 | 16.60 | 16.17 19.63
0.010 19.32 | 15.59 | 15.71 | 15.19 18.91
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TABLE 7. Comparison of calculated mean squared error results with
Cramer-Rao lower bound for sample images of power IC captured at beam
diameter 151nm from Figure 9(d), with a horizontal field width of 100um

Noise variance | ASNN | LLSR | NLLSR | ATPCHIP | CRLB
0.001 0.1282 | 0.2837 | 0.6886 0.0198 0.000152
0.002 0.1388 | 0.2601 | 0.2190 0.0184 | 0.000153
0.003 0.1158 | 0.1991 | 0.1768 0.0178 0.000154
0.004 0.1365 | 0.1896 | 0.1782 0.0458 0.000155
0.005 0.1230 | 0.1798 | 0.1775 0.0250 0.000156
0.006 0.1704 | 0.1944 | 0.2008 0.0204 | 0.000157
0.007 0.1653 | 0.1845 | 0.1967 0.0206 0.000157
0.008 0.1774 1 0.1900 | 0.2071 0.0094 | 0.000158
0.009 0.1847 | 0.1758 | 0.1971 0.0251 0.000159
0.01 1.0000 | 0.1869 | 0.2138 0.0214 0.00016
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F1GURE 13. The comparison of mean square error versus noise variance for
sample images of power IC captured at beam diameter 151nm

performed well on all experimental setup and proved its potential for other applications,
for example, application on medical images [36-39].

6. Concluding Remark. An SNR estimation algorithm, ATPCHIP, has been proposed
to recover the variance of additively corrupted zero mean noise. The method estimates
SNR through a single image. The added noise is considered white, and details in the image
are correlated over distances of at least a few pixels. The ATPCHIP needs a moderate
amount of computation and in return can give the needed accuracy and independence.
Consequently, the proposed methodology has potentials in real-time imaging system.
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