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Abstract. Recently, there are many researches to detect the anomaly of human motions
by using the machine learning and inertial sensors. In general, the individual differences
exist in human motion by the height, body weight, habits and so on. Classification models
based on the deep learning have often high quality. However, the general deep learning
optimization algorithms do not consider the individual differences in human motions.
By the reason, classification model based on the algorithms does not guarantee to take
into account the individual differences. Therefore, we propose a novel deep learning op-
timization algorithm for human motions’ anomaly detection from the data of the inertial
sensor. The reliability of the proposed algorithm is also confirmed by the collected dataset.
Keywords: Inertial sensor, Human motion, Deep learning, Mathematical optimization,
CHI-FS evaluation function

1. Introduction. By using the machine learning and inertial sensors, many researches
of human activity recognition exist. For example, Morris et al. [1] developed a muscle
training motion recognition system by using a linear support vector machine. Bao and
Intille [2] developed an ordinal activities recognition (e.g., walking, sitting, and running)
by using C4.5 decision tree. Omae et al. [3] developed a swimming style classification
model (butterfly, front crawl, backstroke and breaststroke) by using random forest clas-
sifier. Jensen et al. [4] and Kobayashi et al. [5] developed a swimming motion (stroke
and turn motion) recognition model. Moreover, there are the human activity recognition
models based on the deep learning from the data of the inertial sensors (e.g., Alsheikh et
al. [6], Ordonez and Roggen [7] and Ravi et al. [8]). In general, human motions include
the individual differences among the humans, such as the height, body weight, and habits.
Thus, the signals from the inertial sensors include these differences.

Omae and Takahashi [9] pointed out that we should consider the individual differences
if we use the machine learning algorithm. However, general feature selection algorithms
(e.g., out-of-bug error method [10], reliefF [11] and minimum reference set [12]) to develop
high quality classifier do not consider them. Thus, Omae and Takahashi proposed a
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feature selection algorithm considering them for the classification problems [9]. Moreover,
Mori et al. extended their algorithm [9] for the anomaly detection problems [13, 14, 15].
As their results, the classification quality had higher score than that using other feature
selection algorithms. The algorithm was developed to search for the effective features
from many features of the time and/or frequency domain of inertial sensors. It cannot
use the optimization of deep learning-based classification or anomaly detection model.

Therefore, in this paper, we propose a deep learning optimization algorithm considering
the individual differences by extending previous algorithm. Our target problem is the
human motions’ anomaly detection and target model is the Convolutional Neural Network
(CNN) as the deep learning.

The paper is organized as follows. In Section 2, we briefly explain the CNN-based
feature extraction from the inertial sensors and its model parameters. In Section 3, we
explain our proposed method of the CNN learning algorithm considering the individual
differences of human motions. In Section 4, we show the results of the experiment to
confirm the reliability of the proposed algorithm. Section 5 is devoted to a summary.

2. CNN-Based Feature Extraction and Its Model Parameters. Figure 1 shows
the schematic view of the CNN-based feature extraction from the inertial sensors and its
model parameters.
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Figure 1. CNN-based feature extraction and model parameters θ

Initially, we attach the sensors to a subject’s body. The located points are the back
waist, wrist, and so on (e.g., the located point of the subject in Figure 1 is the left wrist).
The inertial sensors measure the signals (X, Y, Z-axes acceleration and gyro data) from
human motions. The signals processed by the sliding window [16] are inputed into the
CNN. They are transformed into the low dimensional matrix based on the kernel filters.
After that, the feature extraction is performed via the fully connected layers. The CNN
has many model parameters to carry out the feature extraction (e.g., kernel filter, weight
and bias parameters). We line up model parameters θα and make the column vector that
is expressed by,

θ = [θ1 · · · θn]T , (1)

where n is the number of model parameters. Then, the feature vector based on the CNN
is expressed by,

f(θ) = [f1(θ) · · · fm(θ)]T , (2)

where m is the number of output neurons of the CNN. By definition of Equation (2), the
feature vector f(θ) depends on model parameter θ.
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3. Optimization Algorithm. In this section, we describe our proposed method of the
CNN learning algorithm considering the individual differences of human motions. The
algorithm aims to detect the anomaly motion, which is independent of the individual
differences, from many subjects. In the proposed algorithm, we use a Variance and Cor-
relation (VC) evaluation function and a Consideration of Human motion’s Individual
differences-based Feature Space (CHI-FS) evaluation function [13, 14, 15]. By using the
VC and CHI-FS evaluation functions, the CNN model parameters θ are optimized based
on the Gradient Descent (GD).

3.1. Variance and correlation evaluation function. We explain the VC evaluation
function. It evaluates the variances of the features and correlations among the features
of i-th subject in the feature space based on the CNN. The schematic view of the VC
evaluation function is shown in Figure 2(a). Initially, we define,
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where Var
(
f i

j,{nor,ano}(θ)
)

means the variance of i-th subject’s feature f i
j(θ) of class label

{nor, ano}. “nor” and “ano” show the normal and anomaly motions, respectively (e.g.,
“nor”: walking, “ano”: falling down, stumbling and so on). Moreover, Cor(f i

j,l(θ), f i
k,l(θ))

means the correlation of i-th subject’s feature f i
j(θ) and f i

k(θ) of class label l ∈ {nor, ano}.
The range of oi

δ1
(θ) is [0,∞). Equation (3) represents the evaluation value of i-th subject’s

feature space. The first term of Equation (3) consists of the variance of the normal and
anomaly data in the feature space. If the variance of normal data is small and the
variance of anomaly data is high, the first term achieves small value. The second term

Figure 2. The relationship between the evaluation functions and the fea-
ture space
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of Equation (3) consists of the correlation of the normal and anomaly data in respective
features value. Note that the number of the correlation in the second term except for the
correlation between the same features is 2m2 −m, then the reason of division 2m2 −m in
the second term is the normalization. It is desirable that we do not have the correlation
relationship between the respective features for the feature space. If the correlation is
small, the second term is small. The third term has an effect to remove the correlation
between the same feature. In the case of the correlation between the same feature, this
value is one. Since the number of their cases in the second term is m, we subtract m in
the third term. Therefore, if oi

δ1
(θ) has small value, it means a good feature space. In

contrast, if oi
δ1

(θ) has high value, it means a bad feature space.
From the calculation of Equation (3), the evaluation values of the respective subject

can be obtained. After that, we transform them into the evaluation value of all subjects
by,

Oδ1(θ) = w1Mean(oδ1(θ)) + (1 − w1)Std(oδ1(θ)), w1 ∈ [0, 1], (4)

where Mean(oδ1(θ)) and Std(oδ1(θ)) are all subjects’ mean and standard deviation of
oi

δ1
(θ), ∀i, respectively. w1 is a weight parameter that is range from zero to one. If the

value of w1 is higher than 0.50, it treats the mean value of all subjects as important.
In contrast, if w1 is smaller than 0.50, it treats the standard deviation of all subjects as
important. In other words, the role of w1 is an adjustment parameter between the mean
value and standard deviation. The evaluation value Oδ1(θ) achieves good value if the
variances of the normal data of all subjects are low, the variances of anomaly data of all
subjects are high and the correlations of the respective features of all subjects are low.

3.2. CHI-FS evaluation function. The CHI-FS evaluation function is developed by
Mori et al. [13, 14, 15] and evaluates the integrated error risk between the normal and
anomaly data in the feature space. The schematic view of the CHI-FS evaluation func-
tion is shown in Figure 2(b). The CHI-FS evaluation function considers the individual
differences of the respective subject and the output value is good if the error risk of many
subjects achieves small error risk. In other words, if the error risk of only some subjects
achieves small, the evaluation value is not small. In this case, the output of the CHI-FS
evaluation function should be bad value. Therefore, we can search for a good feature
space for many subjects by using this function. For example, Mori et al. [14, 15] searched
for the best feature space for the aimless detection from the acceleration and gyro data
of inertial sensors attached on the right and left wrists. However, in this case study, they
did not use deep learning. In other words, the CHI-FS evaluation function in previous
research was used to perform the feature selection.

In this paper, we extend this CHI-FS evaluation function to use in deep learning. We
calculate the class overlapping function expressed by,

Di(f(θ)) =
∏

j∈{nor,ano}
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Cov(f i(θ)) is the m × m size variance-covariance matrix of i-th subject’s feature vector
f i(θ). Mean

(
f i(θ)

)
is the m dimensional mean vector of i-th subject’s feature vector

f i(θ). And,
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where f i,l
z (θ) is the l-th real obtained data of i-th subject’s feature f i

z(θ), N i is the number
of i-th subject’s samples of anomaly data and K(a) is the kernel function, and we use
Gaussian kernel. hi

z(θ) is the i-th subject’s bandwidth [17] of z-th feature f i
z(θ) and

expressed by,

hi
z(θ) = 1.06 Std

(
f i

z(θ)
)
(N i)−1/5, (8)

where Std (f i
z(θ)) is the i-th subject’s standard deviation of feature f i

z(θ). This bandwidth
hi

z(θ) is defined by Sheather [18].
Di(f(θ)) of Equation (5) means the overlapping amount on the feature space by the

features f(θ) of i-th subject. P i
nor(x; f(θ)) of Equation (6) means the probability distri-

bution of the data labeled by “nor” of i-th subject. We assume the Gaussian distribution
as P i

nor(x; f(θ)) because of the normal human motion (e.g., walking). P i
ano(x; f(θ)) of

Equation (7) means the probability distribution of the data labeled by “ano” of i-th sub-
ject. We assume the non-parametric distribution as P i

ano(x; f(θ)) because of the anomaly
human motion (e.g., falling down, stumbling and so on).

After that, we calculate the error risk of i-th subject expressed by,

oi
δ2

(θ) =

∫
· · ·

∫
L

Di (f(θ)) df(θ), (9)

where L is an integration range and we set L = [0, 1]. It is required the standardization
of the feature vector’s range from zero to one. As the result, we can get the risk of the
miss-classification on the features f(θ) of i-th subject.

After we obtain oi
δ2

(θ) of all subjects, we calculate the evaluation value defined by,

Oδ2(θ) = w2Mean(oδ2(θ)) + (1 − w2)Std(oδ2(θ)), w2 ∈ [0, 1], (10)

where Mean(oδ2(θ)) and Std(oδ2(θ)) are the all subjects’ mean and standard deviation of
oi

δ2
(θ), ∀i, respectively. w2 is a weight parameter that is range from zero to one. Note

that Equation (10) has the same meaning of Equation (4).

3.3. Optimization. We carry out the optimization of the CNN model parameters based
on the VC and CHI-FS evaluation functions. If the value of evaluation functions achieves
low score, the CNN performs the good feature extraction such as the right side figures of
Figure 2. Therefore, as the best model parameters θopt, we defined,

θopt = argmin
θ

Oδc(θ), c ∈ {1, 2}. (11)

However, there are many model parameters (i.e., n is very large value). Because we cannot
find a minimum value of it, we adopt the suboptimal solution as the CNN model param-
eters by using the GD method. In other words, we update the CNN model parameters
by using,

θt+1 = θt − γ∇Oδc(θ), ∇ =

[
∂

∂θ1

· · · ∂

∂θn

]T

, (12)

where θt means the t-th parameters of θ, and γ means the learning coefficient.



204 Y. OMAE, M. MORI, T. AKIDUKI AND H. TAKAHASHI

Initially, we use the VC evaluation function (c = 1) to obtain the CNN model param-
eters for the feature extraction such as the right side figures of Figure 2(a). After the
converged VC evaluation function, we use the CHI-FS evaluation function (c = 2). By
switching the evaluation functions, the CNN aims to extract the features such as the right
side figures of Figure 2(b).

4. Experiment.

4.1. Outline. We perform an experiment to confirm the reliability of the proposed al-
gorithm. We use the data form the swimming situation. The number of subjects is six
who are the university students. A single inertial sensor is attached on the back waist.
We used an inertial sensor made by Sports Sensing Co., Ltd with the following specifi-
cations: accelerations (±5 G); angular velocities (±1500 dps); sampling frequency (100
Hz); weight 20 g; size 67× 26× 8 mm [19]. After starring measurement of inertial sensor
data, the subject performs walking and jumping and so on (various human motions).
After that, they carry out the butterfly as swimming with the full force (distance: 50
m). Finally, they leave from the pool and perform walking, jumping, and so on (various
human motions).

We took the movie of their motions by using video camera (30 fps). Then, we gave the
label “nor” to butterfly motions and label “ano” to those except butterfly motions. In
other words, the normal motion means the butterfly and the anomaly motions mean the
various motions (walking, jumping, leaving motion from the pool and so on).

4.2. Result and discussions. The six subjects were divided into two groups. One of
them is the training data for the CNN and the other is the test data. The training data
is the dataset for the parameter optimization and consists of three persons’ data. The
test data is the dataset for the evaluation of the proposed method and consists of three
persons’ data. We set γ = 0.1 in Equation (12) and optimized the CNN model parameters
by using the training dataset. The CNN is constructed by: the convolution layer on 50×1
kernel filter as the first layer, the convolution layer on 50 × 1 kernel filter as the second
layer, the fully connected layer of five neurons as the third layer and the fully connected
layer of two neurons as the fourth layer. Thus, the role of the fourth layer is the feature
extraction.

First, Oδ1(θ) was used as evaluation function. The number of updating by the GD
method is 500. As the result, the evaluation value Oδ1(θ) converged. We called it “op-
timization of Oδ1(θ) model”. Next, we switched from Oδ1(θ) to Oδ2(θ). As the result of
the GD method for the optimization Oδ2(θ), the evaluation value declined many times.
We stopped the updating model parameters at the 104 times. We called it “optimization
of Oδ1,2(θ) model”.

The optimization of Oδ1(θ) model and optimization of Oδ1,2(θ) model are optimized
by our proposal evaluation functions. To compare their models and general models of
detection quality, we developed other two CNN models. One of them is non-learning
model. It uses initial model parameters and we call it “initial model”. The other is
the CNN model optimized by cross entropy cost function. As the result of parameters
updating of thirty thousand times, mini-batch error rate converged. Since it is general
optimization algorithm of CNN, we called it “normal model”.

After that, we developed the anomaly detection models based on the One Class-SVM
(OC-SVM) in the feature spaces of the four CNN models (initial model, normal model,
optimization of Oδ1(θ) model and optimization of Oδ1,2(θ) model). The kernel function of
the OC-SVM we used was the Gaussian kernel. The parameter learning of the OC-SVM
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was performed by the normal data of the training dataset. In other words, this is the
non-supervised learning.

After that, we evaluated anomaly detection quality based on F -measure. F -measure is
expressed by,

F =
2NA

N + A
, (13)

where N is the accuracy of the normal data detection and A is the accuracy of the anomaly
data detection. The range of F -measure is from 0 to 1. If F -measure achieves high value,
it means high quality detection model.

We show the results of F -measure in Table 1. Sub 1, 2 and 3 are the subjects assigned
to the training dataset. Sub 4, 5 and 6 are the subjects assigned to the test dataset.
In the case of initial model, F -measures are below .500 to all subjects. It means bad
anomaly detection quality. In the case of normal model, anomaly detection qualities of
training dataset are high. However, the values of test dataset are middle. In the case
of optimization of Oδ1(θ) model, the F -measures are similar values to all subjects and
range from .612 to .782. The mean values of train and test are .718 and .699, respectively.
In the case of optimization of Oδ1,2(θ) model, the F -measures are similar values to all
subjects and range from .685 to .837. The mean values of train and test are .776 and
.761, respectively. As the results of calculating F -measure to the test dataset, it achieved
a good score in order of optimization of Oδ1,2(θ) model, optimization of Oδ1(θ) model,
normal model, and initial model. Therefore, the CNN optimized our proposed algorithm
which can extract the features for human motions anomaly detection.

Table 1. F -measure of the anomaly detection models

Training dataset Test dataset Mean
Model name Sub:1 Sub:2 Sub:3 Sub:4 Sub:5 Sub:6 Train Test

Initial model .142 .160 .215 .481 .390 .375 .172 .415
Normal model .819 .880 .878 .651 .552 .642 .859 .615
Optimization of Oδ1(θ) model .733 .649 .772 .703 .782 .612 .718 .699
Optimization of Oδ1,2(θ) model .805 .837 .685 .767 .791 .724 .776 .761

We also survey the boundary line by the OC-SVM on the CNN-based feature space.
We show the results in Figure 3 (the training data: sub 1, 2 and 3) and Figure 4 (the test
data: sub 4, 5 and 6). The light gray area means the normal motions area and the dark
gray area means the anomaly motions area. The white circles mean the normal motions’
plot and the black circles mean the anomaly motions’ plot. The left side of the figures
means 0 times updating, i.e.: “initial model”. The center or right sides of the figures
means 500 or 104 times updating. These correspond to the optimization of Oδ1(θ) and
optimization of Oδ1,2(θ), respectively. In the case of not sufficient learning, the detection
areas were not appropriate. In contrast, they were properly formed in the cases of the
learned CNN model parameters. However, there are some anomaly plots in the normal
area even in the case of learned parameters. Therefore, it is required more learning to
reduce the miss-detection.

These results suggest that the CNN has acquired the robustness to human motions’
individual differences by our proposal optimization algorithm because the variances of F -
measure among all subjects are low in the case of optimization. However, the validation
is not sufficient because the number of subjects is low. We need more verification of the
reliability.
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Figure 3. The boundary line of the OC-SVM (training data). The left side
figures are “initial model”, the center figures are “optimization of Oδ1(θ)
model” and the right side figures are “optimization of Oδ1,2(θ) model”.

5. Conclusion. In this paper, we proposed a deep learning optimization algorithm con-
sidering the individual differences of human motions from the data of inertial sensors. In
our proposed algorithm, we use the Variance and Correlation (VC) evaluation function
Oδ1(θ) and Consideration of Human motion’s Individual differences-based Feature Space
(CHI-FS) evaluation function Oδ2(θ). By using VC and CHI-FS evaluation functions, the
CNN model parameters are optimized based on the Gradient Descent (GD).

We performed the experiment to confirm the reliability of our algorithm. We use
the data from the swimming situation. We set the butterfly as the normal motion and
the various motions (walking, jumping, leaving motion from the pool and so on) as the
anomaly motions. The four CNN based-feature extraction models are (1) initial model, (2)
normal model, (3) optimization of Oδ1(θ) model and (4) optimization of Oδ1,2(θ) model.
As the result of comparing their F -measures, we verified that the CNN-based feature
optimized Oδ1,2(θ) achieved most high quality as the anomaly detection models. These
results suggest that by using our proposed algorithm, we can develop the human motions’
anomaly detection considering the individual differences via inertial sensors based on the
CNN and the OC-SVM, although the previous CNN optimization algorithms did not
consider it.

As the future works, we will perform more verification of the reliability to other case
studies, the reduction of the number of calculation.
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Figure 4. The boundary line of the OC-SVM (test data). The left side
figures are “initial model”, the center figures are “optimization of Oδ1(θ)
model” and the right side figures are “optimization of Oδ1,2(θ) model”.
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