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Abstract. Frequent pattern mining plays an important role in data mining. It has been
widely applied in many fields such as trade, medicine and customer services. Many effec-
tive methods were developed to find out the complete set of frequent patterns by using a
single minimum support threshold. However, using a single minimum support threshold
is not practical for many real-work applications since it does not indicate the character-
istics of each item. If the minimum support threshold is set too high, many interesting
patterns (called rare itemsets) are possibly missed. Conversely, if it is set too low, the
number of patterns will explode. On the other hand, the main problem of these methods
is due to the huge consumption of memory and long execution time. This study proposes
a method named MMS-FPM (Multiple Minimum Support - Frequent Pattern Mining)
for fast mining frequent patterns with multiple minimum support thresholds based on
multi-core processor platforms. Experimental results show that the proposed method is
more effective than MSApriori (Multiple Support Apriori) and scalable on various types
of databases.
Keywords: Pattern mining, Multiple minimum support thresholds, Rare itemset min-
ing, Multi-core platform

1. Introduction. Frequent Pattern Mining (FPM) [1] plays an important role in data
mining and has attracted much attention from researchers because it has been essential in
many areas such as decision support systems [2], networks detection [3], medical treatment
[4], and trade strategy [5]. Frequent Patterns (FPs) refer to itemsets or subsequences, the
appearance frequency of which in the database is not less than a user-specified threshold
value. FPM has substantially affected the data analysis field, and it has a deep impact on
data mining methods and applications. Although numerous efficient methods have been
proposed such as Apriori [6], FP-growth (Frequent Pattern-growth) [7], Eclat [8], PrePost
[9], PrePost+ [10], these methods only used a single minimum support (minsup) threshold.
However, in many real-work applications, using a single minimum support threshold is
not suitable since it does not indicate the characteristics of each item. If minsup is
set too high, many interesting patterns, called rare items will be missed. Conversely, if
minsup is set too low, many patterns will explode. The rare items contain highly valuable
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information, which is essential for many areas such as classification or periodic pattern
mining, particularly in medicine or biology.
Many methods for FPM with Multiple Minimum Support (MMS) thresholds have been

proposed, and they can be categorized into two groups: Apriori-like methods [11,12] and
FP-growth-like methods [13,14].
In Apriori-like methods, the databases have to be scanned many times; hence, they

take a long time to execute. To overcome this weakness, FP-growth-like methods were
proposed. These methods just scan database twice in the mining process. However, these
methods still require a huge amount of memory and high execution time for post prune
and re-construct phase, especially for long patterns. It is, thus, quite challenging and very
important to design an efficient algorithm to solve this problem.
In this study, we propose an effective method named MMS-FPM (Multiple Minimum

Support - Frequent Pattern Mining) for fast mining frequent patterns with multiple min-
imum support thresholds based on multi-core processor platforms. The major contribu-
tions of this paper are as follows.

1) Develop lemmas to early pruning nodes in the tree.
2) Propose a parallel approach for fast mining frequent itemsets with multiple minimum

support thresholds using multi-core processor platforms.

The experiments show that the proposed algorithm is more efficient than MSApriori
algorithm in terms of runtime, due to the effectiveness of pruned strategies and scalability,
especially the improved algorithm considerably outperforms the baseline algorithm.
The rest of this paper is organized as follows. Review related works in Section 2. Sec-

tion 3 summarizes the basic concept. The parallel computing, two lemmas and proposed
algorithm developed for fast pruning candidates are presented in Section 4. Section 5
shows the experimental results. Finally, the conclusions and future works are given in
Section 6.

2. Related Works. Frequent Patterns (FPs) mining has attracted a lot of research
in many decades; however, the interest in this problem still persists [15]. In addition,
various methods of FP have also interests such as association rules [16], sequence mining
[17,18], colossal mining [19], and high utility itemsets [20,21], especially on huge database
volume. If minsup is set too high, we will lose rare item patterns. Otherwise, a huge
number of redundant patterns will explode. To overcome the rare item problem [22], many
solutions have been proposed such as MSApriori algorithm [11], which is an extension of
Apriori algorithm [6] so it has the same strategy with Apriori approach. ARIMA (A
Rare Itemset Miner Algorithm) [23] used a level-wise bottom-up approach that can find
rare itemset without generating zero itemsets, and the itemset support was computed by
scanning the database at each level. Apriori inverse algorithm [24] can find the sporadic
itemsets much more quickly than Apriori; however, it cannot generate all the rare itemsets.
Conditional Frequent Pattern-growth (CFP-growth) [13], which is an extension of the FP-
growth [7] approach is developed for mining all frequent itemsets using MIS-tree structure.
Since apriori property no longer holds in multiple minsup contexts, the CFP-growth
algorithm has to carry out a complete search in the constructed tree, thus increasing
the storage requirements of MIS-tree. CFP-growth++ [14] is an improvement of the
CFP-growth algorithm, this method introduced four pruning techniques to reduce the
search space in mining frequent patterns with multiple minimum supports, including Least
Minimum Support (LMS ), conditional minimum support, conditional closure property
and infrequent leaf node pruning. LMS is the least MIS value amongst all MIS values of
frequent items is used to reduce the search space and improve performance. However, it
is still too time-consuming and memory costly.
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3. Basic Concepts. Let I = {i1, i2, . . . , in} be set of n distinct items and a transaction
database D = {T1, T2, . . . , Tm}, where Ti ⊆ I (1 ≤ i ≤ m) is a transaction. A transaction
Ti = (TID , X), which is a tuple including transaction identifier TID and an itemset X.
The itemset X = {x1, x2, . . . , xk} is a set of k items in I, xj ∈ I (1 ≤ j ≤ k). A pattern
containing k items is called k-pattern. In this paper, we use the terms “itemset” and
“pattern” interchangeably. For example, Table 1 contains 6 transactions and 8 items
{a, b, c, d, e, f, g, h} with an assumption that items are sorted by the lexicographical order
in a transaction.

Table 1. Transaction database D

TID Item
1 a, c, d, f
2 a, c, e, f, g
3 a, b, c, f, h
4 b, f, g
5 b, c
6 f, g

Definition 3.1. (Support of a pattern). The support of a pattern X in the transaction
database D, denoted as σ(X), is the number of transactions containing X in D, that is
σ(X) = |{Tk ∈ D|X ⊆ Tk}|. The support of a pattern can also be represented in percentage
of |D|.

Definition 3.2. (Frequent pattern with a single minimum support threshold). The pattern
X is frequent if its support is no less than a user-defined minimum support threshold value
(denoted by minsup), i.e., σ(X) ≥ minsup.

Definition 3.3. (Multiple Item Support – MIS). Given an itemset X = {x1, x2, . . . , xk},
the minimum item support value of X is defined by the smallest MIS value of the items
in X, that is MIS (X) = min(MIS (x1),MIS (x2), . . . ,MIS (xk)).

For example, given an itemset X = {c, d, e} and the MIS value of each item in Table
2, then the MIS (X) = min(MIS (c),MIS (d),MIS (e)) = min(2, 1, 1) = 1.

Table 2. MIS and support of each item in D

Item a b c d e f g h
MIS 1 2 3 3 2 3 2 2
σ 3 3 4 1 1 5 3 1

Definition 3.4. (Frequent pattern with multiple minimum support thresholds). An item-
set X is a frequent pattern if and only if its support is no less than MIS(X), i.e.,
σ(X) ≥ MIS (X).

Definition 3.5. (MIS value of an item). The MIS value of each item is calculated by
the formula: MIS (xk) = max(β × σ(xk), LS), where: σ(xk) is the support of item xk,
β ∈ [0, 1] and LS (Least Support) is a parameter determined by the user.
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4. Mining Frequent Patterns with Multiple Minimum Support Thresholds.

4.1. Theorems and properties.

Theorem 4.1. [14] Let X = {x1, x2, . . . , xk} be a frequent pattern, then σ(xi) ≥ MIS (xi),
∀xi ∈ X, i.e., item xi is a frequent item.

Property 4.1. [14] Let X = {x1, x2, . . . , xk} be a pattern and a subset Y = {y1, y2, . . . , yh}
⊆ X, then σ(X) ≤ σ(Y ).

Property 4.2. [14] Let X = {x1, x2, . . . , xk}, Y = {y1, y2, . . . , yh} ⊂ X be frequent
patterns, if σ(X) < MIS (X), then σ(Y ) < MIS (X).

Theorem 4.2. [14] Let X = {x1, x2, . . . , xk} be a frequent pattern and a subset Y =
{y1, y2, . . . , yh} ⊆ X. If ∃xi ∈ Y , Y ⊆ X then σ(Y ) ≥ MIS (Y ), where xi ∈ X is an item
and MIS (xi) = min(MIS (x1),MIS (x2), . . . ,MIS (xk)).

Lemma 4.1. Let X = {x1, x2, . . . , xk} be a pattern. If σ(X) < MIS (X) then xi is not
a frequent pattern, where xi ∈ X is an item and MIS (xi) = min(MIS (x1),MIS (x2), . . . ,
MIS (xk)).

Proof: Assume that pattern X = {x1, x2, . . . , xk} has the support σ(X) < MIS (X) =
min(MIS (x1),MIS (x2), . . . ,MIS (xk)) = MIS (xi), because σ(X) < MIS (xi) so X is not a
frequent pattern; therefore, xi ∈ X is not a frequent pattern.
For example, pattern X = {e, f} in Table 1 is an infrequent pattern because MIS (X) =

min(MIS (e),MIS (f)) = min(2, 3) = 2 > σ(X) = 1. Item e ∈ X is also infrequent, since
σ(e) = 1 < MIS (e).

Lemma 4.2. Let X = {x1, x2, . . . , xk} be a pattern and a subset Y = {y1, y2, . . . , yh} ⊆ X.
If σ(X) ≥ MIS (X) then Y may not be a frequent pattern.

For example, an itemset X = {a, c, e} in Table 1 is frequent pattern because MIS (X) =
min(MIS (a),MIS (c),MIS (e)) = min(1, 3, 2) = 1 ≥ σ(X) = 1, in which the support
threshold of each item isMIS (a) = 1, MIS (c) = 3 andMIS (e) = 2. A subset Y = {c, e} ⊆
X is not a frequent pattern since the MIS (Y ) = min(MIS (c),MIS (e)) = min(3, 2) = 2 ≥
σ(Y ) = 1, so Y is not a frequent pattern.
Because the well-known apriori property is no longer true with multiple minimum sup-

port thresholds problem, a concept called sorted closure property was proposed in [11],
which assumes that all items within an itemset are sorted in increasing order of their
minimum supports.

Property 4.3. (Sorted closure property). [11] If a sorted k-itemset X = {x1, x2, . . . , xk},
where k ≥ 2 and MIS (x1) ≤ MIS (x2) ≤ · · · ≤ MIS (xk), is a frequent pattern, then all of
its sorted subsets with (k − 1) items are frequent.

The sorted closure property can reduce the number of candidate patterns because a
different order of items will generate a different number of candidate patterns. Hence,
the items in I are sorted in ascending order according to their MIS value. The scanning
times of the database will be lessened when the number of candidate patterns is small;
therefore, it can save much time.

4.2. Parallel computing. Parallel computing is an information processing process that
emphasizes the fact that multiple units of data are processed simultaneously by one or
more processors. Two types of parallel are data parallel and task parallel. Data parallel
is a mechanism partitioning data into multiple parts and using many processing units to
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perform the same operation. Task parallel is the simultaneous execution of many different
tasks running on the same data.

There are many parallel programming models, such as shared memory models (Open-
MP), Message Passing Interface and MapReduce. These models provide powerful tools
and are widely used in parallel processing. Currently, multi-core processor architectures
allow multiple tasks performing at the same time. Programmers just need to focus on
parallel programming models to speed up the processing and optimization of system
resources to reduce the memory cost.

In addition, task parallel is an advantage of multi-core architecture over multi-threads
because (i) tasks require less memory than threads; (ii) a thread runs on only one core,
whereas a task can run on multiple cores; (iii) threads require more processing time than
tasks because the operating system needs to allocate data structures for threads, such as
initialization and destruction, and must perform context switching between threads.

Multi-core has been applied in many data mining fields such as mining frequent se-
quences [26], mining frequent closed sequences [27], subgraph mining [28], PGP-mc (Par-
allel Gradual Pattern-multiple core): an approach for parallel gradual pattern extraction
[29], GapMis-OMP: a tool for pairwise short-read alignment [30], SW (Smith-Waterman):
a method based on comparing sequence lengths [31].

4.3. The proposed algorithm. In this section, we describe the proposed method,
named MMS-FPM (Multiple Minimum Support - Frequent Pattern Mining) for fast min-
ing the complete set of frequent patterns with multiple minimum support thresholds using
MIS-tree. All items are sorted in ascending order by their support value instead of the
MIS value, shown in Table 3(a). Their information is stored in the Sup-list, which is a
list with three fields: item name, support and the MIS value of the item. In addition, to
decrease the search space, we perform early pruning on the itemsets that cannot generate
any frequent patterns. Starting from the first item in the Sup-list, the items that have
support value less than MIS value will be pruned. Next, we compare the support value
of the remaining items in the Sup-list with the least support LS value, the items having
support value less than LS value are also pruned. For example: in Table 3(a), item e has
σ(e) = 1 < MIS (e) and the same applies to items h and d, these items cannot generate
any frequent patterns at higher-order; hence, it will be pruned as shown in Table 3(b).

Table 3. Items’ supports are sorted in ascending order (a), pruned the
items have support less than MIS value (b)

Item e h d b a g c f
MIS 2 2 3 2 1 2 3 3
σ 1 1 1 3 3 3 4 5

Item b a g c f
MIS 2 1 2 3 3
σ 3 3 3 4 5

(a) (b)

The MMS-FPM pseudo code can be described as Figure 1.
First, the MMS-FPM algorithm determines the support and MIS value for each item

(line 3) and identifies the set of frequent 1-patterns F1 (line 4), which is an initial collection
of items that can be extended. To reduce the search space and more effectively balance
the workload in the system, the F1 is sorted in ascending order according to their support
value instead of the MIS value (line 5) and each item in F1 is added to MIS-tree as a child
node (line 6). Next, the MMS-FPM creates new tasks corresponding to each pattern in
F1 (line 9). Each task is assigned to a processor core pi to execute the procedure FPM-
Extension (line 10) to extend all the patterns. If all processor cores are busy, new tasks
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Input: Database D, β and LS parameters
Output: The full set of frequent patterns
1. Begin
2. Initial root = ∅
3. Compute(D, β, LS)
4. F1 = {f |f ∈ F1, σ(f) ≥ MIS (f)}
5. Sort all items in F1 in ascending order by their support value
6. root.add-child(f ∈ F1)
7. for each pattern x in F1

8. create new task ti
9. FPM-Extension(x, β, LS)
10. end for
11. End

Procedure FPM-Extension(F, β, LS)

12. Begin
13. for each pattern Si in F
14. Ri = ∅
15. for each pattern Sj in F , where i > j
16. if (Si is not pruned)
17. Sij = Join-pattern(Si, Sj)
18. if (Sij is not pruned && σ(Sij) ≥ MIS(Sij))
19. Ri = Ri∪ pat[Sij]
20. end if
21. end if
22. end for
23. FPM-Extension(Ri, β, LS)
24. end for
25. End

Figure 1. The MMS-FPM strategy

will be put into a task queue. In contrast, when a processor core pi is idle and the queue
is not empty, it will push a task from task queue and handle the task, this process is
repeated until the task queue is empty. Tasks run in parallel to generate a partial set of
FPMs and the final set of FPMs is the union of all the partial results.
In the FPM-Extension procedure, all pattern extensions of an equivalence class F is an

empty set (line 14), denoted by Ri. Before extending new patterns, the algorithm performs
the check function and eliminates prefixes that cannot extend frequent patterns based on
Theorem 4.2 and Lemma 4.1 (line 16). Each node is extended by calling Join-Patterns
(line 17) to create a new pattern Sij. If Sij patterns do not satisfy the MIS value, it can
be immediately discarded. Otherwise, they are then put into equivalence class Ri (line
19) and this process is repeated for the new equivalence class Ri (line 23).
For example, the set of frequent patterns for database D in Table 1, with β = 0.2 and

LS = 0.2, is shown in Figure 2.

5. Experimental Results. This section compares the mining time of MSApriori and
MMS-FPM, to show the effectiveness of the proposed method. The experiments were
performed on a computer with an Intel Core i7 - 4770HQ (6M Cache, 2.2GHz, 8 cores),
16GB main memory and using .NET Framework 4.5 for implementation.
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Figure 2. The set of frequent patterns for database D in Table 1 with
β = 0.2 and LS = 0.2

Table 4. Databases used in the experiments

Database #transaction #items #Avg. Items Source
Mushroom 8,142 119 23 UCI repository
C20D10K 10,000 385 20 Synthetic database
BMS-POS 515,597 1657 6.5 KDD Cup 2000

(a) (b)

Figure 3. Running time of MMS-FPM and MSApriori for Mushroom
database with varying β and (a) LS = 0.2; (b) LS = 0.1

Experiments were carried out on two synthetic databases and a real-life database having
varied characteristics and representing different types of data. Information about the
databases is shown in Table 4. The definitions of the parameters used to generate the
synthetic databases are as follows: C was the average number of item per transaction,
and D was the number of transactions. The experiments of both algorithms run on each
database while the LS parameter is varied and β is changed from 0.1 to 0.8.

In Figure 3, we compare the runtime of MMS-FPM to MSApriori for the Mushroom
database with various settings. Figure 3(a) fixed LS = 0.2 and changes β from 0.1 to 0.8,
and we easily found that the runtime of MMS-FPM is less than that of MSApriori. In a
similar way, Figure 3(b) fixed LS = 0.1, and MMS-FPM is much better than MSApriori
for this database.
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(a) (b)

Figure 4. Running time of MMS-FPM and MSApriori for C20D10K data-
base with varying β and (a) LS = 0.1; (b) LS = 0.05

(a) (b)

Figure 5. Running time of MMS-FPM andMSApriori for BMS-POS data-
base with varying β and (a) LS = 0.01; (b) LS = 0.001

Figure 4 performs the same for the C20D10K database, Figure 4(a) fixed LS = 0.1 and
Figure 4(b) fixed LS = 0.05, and we easily found that the runtime of MMS-FPM is much
better than MSApriori.
In Figure 5, we compare the runtime of MMS-FPM and MSApriori for the BMS-

POS database with various settings. Figure 5(a) fixed LS = 0.01 and Figure 5(b) fixed
LS = 0.001, MMS-FPM is always better for BMS-POS database, and the runtime of
MMS-FPM is less than nearly three as that of MSApriori. Especially, when we decrease
β, and the runtime of MSApriori has significantly increased while that of MMS-FPM has
slightly increased. In general, MMS-FPM outperforms MSApriori for this database.
The gap between the memory usage of MMS-FPM and MSApriori is insignificant, the

memory usages of both algorithms are nearly the same. Sometimes, the memory usage of
MMS-FPM is slightly larger than that of MSApriori (although it is quite small), and this
can be explained as follows: MMS-FPM requires more memory usage because parallel
processing divides the tasks to be processed into independent branches, and thus needs
more memory to store the results. When LS and β parameters were decreased, more
patterns were obtained, and thus the runtime and memory usage increased. Besides the
execution time of MMS-FPM method is better than MSApriori, the proposed method is



A PARALLEL METHOD FOR MINING FREQUENT PATTERNS 487

also improved memory usage, and the memory size is not explosive in mining processing,
especially on large databases.

6. Conclusions. Mining frequent patterns with multiple minimum support thresholds
is an important problem because the items in the database do not often have the same
characteristics. In this paper, we proposed the MMS-FPM algorithm using multiple core
technique to solve the rare item problem. We have compared MMS-FPM with MSApriori
in runtime details to evaluate the effectiveness of the proposed method. Additionally,
MMS-FPM applied an early pruning mechanism to eliminating infrequent candidates
generated to reduce the search space. The experimental results have shown that MMS-
FPM was much more efficient than MSApriori.

As a part of future work, we will extend this work by conducting extensive experiments
by considering different types of databases. Due to the effectiveness of N-list structure, we
are also planning to re-implement CFP-growth++ algorithm based on this structure to
mine FPM with multiple minimum support thresholds and to compare it with MMS-FPM
and CFP-Growth++.
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