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Abstract. Convolutional neural networks have recently achieved great success in Single
Image Super-Resolution (SISR). SISR is the action of reconstructing a high-quality image
from a low-resolution one. In this paper, we propose a deep Convolutional Neural Net-
work (CNN) for the enhancement of Digital Imaging and Communications in Medicine
(DICOM) brain images. The network learns an end-to-end mapping between the low and
high resolution images. We first extract features from the image, where each new layer
is connected to all previous layers. We then adopt residual learning and the mixture of
convolutions to reconstruct the image. Our network is designed to work with grayscale
images, since brain images are originally in grayscale. We further compare our method
with previous works, trained on the same brain images, and show that our method out-
performs them.
Keywords: Deep convolutional networks, Single image super-resolution, Magnification,
DICOM images

1. Introduction. Single Image Super-Resolution (SISR) intends to reconstruct a High-
Resolution (HR) image from a Low-Resolution (LR) image. It aims to focus on recon-
structing the high-frequency information from the image, which is typically lost when
the image is resized to another shape. It is mainly used in applications [1,2] where the
high-detail information is greatly desired. Figure 1 illustrates the problem that SISR
addresses.

Early methods of SISR include interpolation such as nearest-neighbor interpolation,
bilinear interpolation, bicubic interpolation, and other methods that utilize statistical
image priors [3,4]. More recent methods include sparse coding [5,6], an external example-
based method [7], that uses a learned dictionary based on sparse signal representation.
Example-based method includes various phases. For the image pre-processing phase, the
first step is to extract overlapping patches from the input image and normalize them.
Then, these patches are encoded by a low-resolution dictionary. The sparse coefficients
are then passed into a high-resolution dictionary for recovering the high-resolution patches.
The overlapping recovered patches are combined to generate the final output image. These
stages are shared by most external example-based methods, which focus on optimizing
the dictionaries or constructing mapping functions. Moreover, random forests have also
been used [8], and showed improvements in accuracy. Recently, due to the excellence of
deep learning models, and especially Convolutional Neural Networks (CNN) with their
powerful learning ability to images, CNNs have been immensely used to address the
problem of SISR, and have shown superiority over the previous methods mentioned above
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Figure 1. The effect of resizing an image

[9-12]. They can be used to learn an end-to-end mapping from a low-resolution image to
a high-resolution image.

DICOM images play an important role in medical images as many medical institutions
use them for diagnoses illness of patients. Many researchers have focused on enhancing
brain images, including contrast enhancement of brain images [13,14]. Important features
included in the image to detect the illness. Therefore, the quality of the image plays
a crucial role in detecting these features. If the DICOM image or part of it needs to
be magnified for further observation, the quality will then be degraded, and important
features of the image may not be detected. Thus, magnification of the DICOM image
with quality-preserving is necessary.

The majority of super-resolution studies focus on grayscale or single-channel image.
For color images, the image is first transferred to another color space, such as YCbCr,
and the super-resolution is performed only on the luminance channel. The other channels
are then concatenated along with the reconstructed luminance channel to reconstruct the
colored image. However, there are also studies that apply super-resolution to all channels
simultaneously. In this study, we will apply our super-resolution network on grayscale
images, since brain images are originally in grayscale.

Our network adopts some of the features used in existing studies of super-resolution, as
well as features that have significantly improved convolutional networks. Generally, our
network comprises the following features.

• Multi-scale Training: The network is designed and trained on a single network
to tackle the multiple scale super-resolution problem in an efficient manner, rather
than designing a separate network to handle a single scale individually. Our network
is trained on scales ×2, ×3 and ×4. It also turns out that different scales help each
other, and that makes the network more efficient.

• Global Residual Learning: In Global Residual Learning, the output image is the
result of addition of both the input and the residual image from the final layer. The
residual image usually contains the high-frequency components of the image that are
lost when the image is resized. Our network learns to estimate the residual image
which is composed of the high-frequency components.

• Local Residual Learning: In Local Residual Learning, the network learns from
its previous layers within the network. In typical convolutional networks, important
image details may be lost after so many layers. We solve this problem by imposing
identity branches, where the identity branch carries rich image details to late layers,
and helps gradient flow.

• Dense Feature Extraction: In the first branch of our network, we densely extract
the features of the image by applying filter concatenation to every new layer. Each
new layer in the feature extraction branch consists of both its output and previous
layers’ output. The final layer of this branch includes all the layer outputs along with
the input image itself. The network densely extracts important features and texture



DEEP CONVOLUTIONAL NETWORKS FOR MAGNIFICATION 727

information from the image that will later act as an input to other convolutional
networks.

• Mixture of Convolutions: We generate multiple convolutional networks branches
with different parameters, with the dense features extracted from the previous layer
as their inputs. We then concatenate their outputs together, and perform other
convolution operations on the concatenated outputs, before we add the final residual
image to the input image.

• Context: We utilize contextual information along large image regions. Usually, for
images that are largely scaled, information within a small patch is not sufficient for
detail recovery. To tackle this problem, our network uses a large receptive field and
considers a large image context.

In summary, we train the network on multiple scales of a large receptive field. We
first densely extract features of the image, and then feed those features to branches of
convolutional networks. We model them to learn the residual image, and finally add the
residual image to the original low-resolution image and reconstruct it to a high-resolution
one.

This paper is divided into the following sections. In Section 1, we give an introduction
of image super-resolution and an introduction of our network. In Section 2, we discuss
the traditional methods used for image super-resolution in deep learning. In Section 3, we
discuss the proposed network architecture, namely DCNMD. In Section 4, we discuss the
training details used in our architecture. In Section 5, we show the results of our method
and discuss them, as well as compare them with the traditional methods. Finally, we
conclude this paper in Section 6.

2. Related Work.

2.1. Super-Resolution using deep Convolutional Neural Networks (SRCNN).
SRCNN model [9] was the first proposed deep learning model using convolutional neural
networks for image super-resolution. It has achieved better results than the previous
state-of-the-art methods, including A+, RFL and SelfEx. The SRCNN model consists
of three layers, which are patch extraction or representation, non-linear mapping and
reconstruction. The filter sizes are 9 × 9, 1 × 1 and 5 × 5, respectively. SRCNN uses
a receptive field of 13 × 13. Patches are first extracted from both the low-resolution
input and its corresponding ground truth output. The network is then trained on these
patches, and directly learns the high resolution image. In other words, SRCNN carries
the input image to the final layer and reconstructs the high-frequency details at the same
time. Therefore, the training time might be spent on learning to reconstruct the same
input image, while ignoring to learn the high-frequency components of the image, which
acts as the crucial part for super-resolution applications. Moreover, SRCNN is trained
on a single scale factor and only copes with that specific scale. Therefore, if we want
to perform multiple image scaling, we need to have a trained network for every scale we
want to perform. The SRCNN model is shown in Figure 2.

One main disadvantage of SRCNN is that the network spends most of its time learning
to reconstruct the complete image from scratch. Therefore, most of the network parame-
ters focus on reconstructing the general image, and thus fine details of the image such as
high-frequency components are lost, and not reconstructed. Another main disadvantage
of SRCNN is that a separate network is required for each scale. Therefore, we need three
networks if we wish to reconstruct an image of scales 2, 3 and 4.
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Figure 2. Super-Resolution using deep Convolutional Neural Networks
model [9]

Figure 3. Accurate image Super-Resolution using Very Deep convolu-
tional networks model [10]

2.2. Accurate image Super-Resolution using Very Deep convolutional networks
(VDSR). VDSR model [10] was proposed after SRCNN to tackle the problems of SR-
CNN, and has achieved better results. VDSR is a deep network, with 20 layers. Except
for the first and last layers, each layer consists of 64 filters of size 3 × 3. The VDSR uses
a receptive field of 41 × 41, in order to cope with image information scaled with large
factors. More importantly, the VDSR network learns the residual image only. Therefore,
the training time is spent on only learning the residual, or high frequency components
of the image, rather than learning the complete image which is composed of the low and
high-frequency components, as in the case for SRCNN. After the network learns to pre-
dict the residual image, the residual image is added to the interpolated low-resolution
image, to give the final high-resolution output. Moreover, VDSR is trained on multiple
scale images. Therefore, there is no need to train an individual network for every scale,
as in the case for SRCNN. VDSR also uses gradient-clipping to clip the gradients to a
pre-defined range, and that greatly speeds up the training. The VDSR model is shown in
Figure 3.

However, VDSR does not make use of previous convolutional layers. If the network
is deep, then fine details of the image that were presented in previous layers may be
lost in further layers. This might create a problem, especially in single image super-
resolution networks, where the details and high frequency information of the image are
highly desired.

2.3. Densely connected convolutional networks. Densely Connected Convolutional
Networks (DenseNets) [15] were introduced in 2017. The idea behind DenseNets is that
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Figure 4. DenseNets [15]

each layer is connected to every other layer in a feed-forward fashion. In other words, each
layer contains all previous feature-maps as input. DenseNets can tackle the vanishing-
gradient problem, enhance feature propagation, re-utilize features, and significantly de-
crease the number of parameters. In this study, we utilize DenseNets to perform dense
feature extraction at the first stage of our network. DenseNets are shown in Figure 4.

3. Deep Convolutional Networks for Magnification of DICOM Brain Images.
We propose a deep convolutional network for the purpose of single image super-resolution.
Our network learns an end-to-end mapping. It takes an interpolated low-resolution image,
and outputs a high-resolution image. We utilize the concept of residual learning [16] and
model the network to only learn the residual, since brain images are characterized with
high image details and texture, and the big challenge is to fully recover them. We first
densely extract features from the input image, and then perform a mixture of convolutional
networks and concatenate their outputs together. Finally, we perform other convolution
operations on the concatenated outputs, before we add the final residual image to the input
image to generate the high-resolution output image. Moreover, we train the network on
multiple scales to avoid using multiple networks each trained separately for a specific scale.
We also use a receptive field of 41 × 41 to preserve image information when the image is
largely scaled. Our images are all in grayscale, since that is the originality of brain images.
Therefore, there is no need to extract specific channels (or all) and run them through the
network to get the output. The network is then trained to achieve and end-to-end mapping
between the low-resolution and ground-truth high-resolution patch. In the image post-
processing stage, a slight thresholding is performed to the output image for evaluation
purposes. Modelling our architecture with the above techniques described makes the
network more efficient and robust, achieving better results than existing architectures.
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3.1. Image pre-processing. In our image pre-processing stage, we perform the follow-
ing.

• Image conversion
Usually for colour images (RGB), they are converted to a different colour space (ex.

YCbCr), and then the luminance channel (Y) is extracted and fed into the network.
The output of the network is then concatenated with the other two channels to
construct the complete colour high-resolution image. For the case of brain images,
they are originally in grayscale. Thus, there is no need to extract the luminance
channel and perform the operation as mentioned above. Reducing the number of
channels of the original DICOM brain image from 3 to 1 is sufficient. The grayscale
image is then directly fed into the network.

• Extracting overlapping patches
We choose to extract overlapping patches of size 41× 41, with a stride of 41, from

both the low-resolution image, and their corresponding ground-truth high-resolution
image. This is usually the case when working with super-resolution. For each low-
resolution training patch x of size 41 × 41, there is a ground-truth high-resolution
patch y of the same size (i.e., 41×41). The network is then trained on these patches.

• Multi-scale generation
When generating the image patches as described in the previous step, each patch

is scaled with 3 different scales: ×2, ×3 and ×4. This is to enable our single network
to work with multi-scale images, rather than training a separate network for each
scale. Moreover, different scales help each other while training, making the network
more efficient.

• Image augmentation
Image augmentation is the act of generating different versions of an image from

itself, by using various image transformations such as rotation, translation and flip-
ping. This makes the network much more efficient, since it will be trained to respond
on all possible appearances of the image. Image augmentation includes image ro-
tation, image shifting, image flipping and other types of image transformations. In
this study, we have chosen to perform rotation by 90◦ for each of the training images.
Therefore, if it is necessary to rotate the brain image by 90◦, the network can still
perform well.

3.2. Network architecture. Figure 5 shows the proposed network architecture. As men-
tioned, dense features of the image are first extracted, and then passed to 4 branches of
convolutional networks. A series of concatenation and convolutional operations is then
carried on, and the residual image is predicted. Finally, the input image is added to the
residual image to reconstruct the high-resolution image.

3.2.1. Network parameters.

• Number of Filters: We have used 64 filters for all the layers in the dense feature
extraction stage of the network, denoted as C1 in Figure 5. This is to obtain as much
necessary features from the image before passing those features to other networks.
We have also used 64 filters for the first branch, denoted as C2 in Figure 5. For the
rest of the branches, denoted as C3, C4 and C5, 32 filters are used. Finally, one filter
for all the 1 × 1 convolutions is used.

• Padding: To prevent the output of each layer from shrinking after every convolution
operation, we have padded each layer’s output with zeros in order for the output size
to be equal to the input size. That is mainly referred to as the ‘same’ padding. We
have performed the ‘same’ padding for all the layers in our network.



DEEP CONVOLUTIONAL NETWORKS FOR MAGNIFICATION 731

• “HE Normal” Weights Initialization: To avoid the vanishing/exploding gra-
dient problem, we choose to initialize our weights using “HE normal” initialization
[17]. This technique initializes random weights drawn from a normal (Gaussian) dis-

tribution with mean zero and a standard deviation of
√

2/nin, where nin represents
the number of inputs in the previous layer. This makes the network much more
efficient, and reduces the training time.

Figure 5. Deep Convolutional Networks for Magnification of DICOM
(DCNMD) network architecture
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3.2.2. Network activations.

• Parametric Rectified Linear Unit (PReLU)
PReLU activation [17] is used in the dense feature extraction stage of the net-

work. In PReLU, when the input is positive, the activated output remains the same.
However, when the input is negative, the activated output is a learned parameter
(a), named the leakage coefficient, multiplied with the input, instead of an output
of zero as in the case for ReLU activation. PReLU is claimed by its authors that it
enhances model fitting with nearly zero extra computational cost.

• Rectified Linear Unit (ReLU)
ReLU activation function is used in the other stages of the network. The main

advantage of ReLU is that it introduces non-linearity to the image. It tackles the
vanishing gradient problem. The difference between ReLU from PReLU is that the
learned leakage coefficient is zero. Thus, when the input is negative, the activated
output is zero. However, it remains the same as in the case of PReLU when the
input is positive (i.e., the activated output remains the same). Figure 6 shows the
difference between ReLU (left) and PReLU (right).

Figure 6. ReLU (left) and PReLU (right) [17]

4. Training. Our network has been trained on 785 brain images, and tested on 20, with
a batch size of 64. The following has been considered for training.

• Loss Function
A loss function in a neural network, and more specifically in a convolutional net-

work, is the difference between the expected output and the actual output. Therefore,
the network would be fully trained when the loss function is minimal, implying that
the network has learned the expectations of its inputs. For our network, given a set
of high-resolution images denoted as {Yi}, in order to minimize the loss between the
network’s prediction {hθ(xi)} and the ground-truth high-resolution image {Yi}, we
use the mean squared error as our loss function, shown in Equation (1):

MSE =
1

n

n∑
i=1

(Yi − hθ(xi))
2 (1)

where n = number of training samples in each batch (i.e., n = 64).
• Optimization

In deep learning, optimization is finding convergence, or finding the optimal or
minimum of the error function that generalizes well. Normally, normal gradient de-
scent can guarantee convergence to global minimum in a convex error surface, but
it is very slow. Stochastic gradient descent is faster, but includes high variance
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updates. Mini-batch gradient descent balances between the two. One type of mini-
batch gradient descent is Adaptive Moment Estimation (Adam) [18]. Adam is used
for optimization of our network. Adam computes the adaptive learning rates for
each parameter, and stores an exponentially decaying average of the estimates of the
first moment (the mean) and the second moment (the un-centered variance) of the
gradients, respectively. The Adam update rule is expressed as in Equation (2):

θt+1 = θt −
η√

v̂t + ϵ
m̂t (2)

where m̂t = mt

1−βt
1

and v̂t = vt

1−βt
2
.

• Evaluation
Usually for evaluating image restoration quality, the Peak Signal-to-Noise Ratio

(PSNR) metric is used. We therefore use PSNR as our evaluation metric. The PSNR
is defined as in Equation (3):

PSNR = 20 × log10

(
MAX√
MSE

)
(3)

Since MAX = 1, the PSNR equation simplifies to Equation (4):

PSNR = 20 × log10

(
1√

MSE

)
(4)

• Learning Rate Decay
We have chosen to implement learning rate decay. Through the training, the

learning rate decreases from its initial value. Our initial learning rate is set to be
0.001, with a decrease per 20 epochs.

• Epochs and Early Stopping
Normally, it is a good practice to monitor the error on the validation set during

training and stop (with some patience) if the validation error does not improve
enough. We have used an early stopping with patience of 15. If the validation error
does not improve much for 15 times, the network stops training. We choose to use
100 epochs; however, the network stops at 30. Figure 7 illustrates the training and
testing validation loss plot.

Figure 7. The training and testing validation loss plot
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5. Results and Discussion. VDSR has achieved better results than SRCNN. Therefore,
we choose to directly compare our results with VDSR.

5.1. Comparison with scale 4. The results of Structural Similarity (SSIM) [19]
for scale 4 are shown for 5 full testing images in Table 1. Following Table 1, the results
of SSIM for patches taken from the image, shown in white, are demonstrated in Figures
8-11.

Table 1. SSIM comparison with scale 4 for 5 full testing images

Test Image Image 1 Image 2 Image 3 Image 5 Image 7
Bicubic 0.828 0.818 0.802 0.818 0.827
VDSR 0.849 0.841 0.825 0.837 0.849
Ours 0.920 0.920 0.912 0.910 0.919

Figure 8. Test image 7 patch comparison results for scale 4

Figure 9. Test image 3 patch comparison results for scale 4
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Figure 10. Test image 1 patch comparison results for scale 4

Figure 11. Test image 5 patch comparison results for scale 4

5.2. Comparison with scale 2. The results of SSIM for patches taken from the image,
shown in white, are demonstrated in Figures 12-14 for the image with scale 2.

5.3. Comparison with scale 3. The results of SSIM for patches taken from the image,
shown in red, are demonstrated in Figures 15 and 16 for the image with scale 3.

In Subsection 5.1, comparison with images of scale 4 is carried on. Firstly, Table 1 is
shown to demonstrate the results of the SSIM between the reconstructed image and the
original image. It can be seen from Table 1 that the proposed method outperforms the
existing methods. For example, test image 2 achieves an SSIM of 0.920 using the proposed
method, while VDSR achieves 0.841. Moreover, to further illustrate the comparison and
the effectiveness of the proposed method, patches of size 41 × 41 are chosen from the
original image, bicubic interpolated image, reconstructed image using VDSR and the
proposed method. The patches are shown and the SSIM calculation for each patch is
calculated. It can be seen that the SSIM comparison has outperformed the existing
methods. A similar procedure is carried on for images with scale 2 in Subsection 5.2 and
for scale 3 in Subsection 5.3.

5.4. Comparison of the full image with PSNR. The results of the Peak Signal-
to-Noise Ratio (PSNR) expressed in dB for 5 of the full test images and for 2 different
scales are shown in Table 2.
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Figure 12. Test image 3 patch comparison results for scale 2

Figure 13. Test image 2 patch comparison results for scale 2

Table 2. PSNR comparison with scale 2 and 4 for 5 full testing images

Scale Type Image 1 Image 2 Image 3 Image 5 Image 7

×4

Bicubic 26.377 26.005 25.389 26.527 26.454
VDSR 27.287 26.913 26.156 27.150 27.318
Ours 31.623 31.153 30.307 30.403 31.219

×2

Bicubic 33.805 33.236 32.438 33.477 33.505
VDSR 35.479 35.289 34.046 35.138 35.107
Ours 36.860 36.913 35.641 35.557 35.366
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Figure 14. Test image 4 patch comparison results for scale 2

Figure 15. Test image 3 patch comparison results for scale 3

It can be clearly observed from the results of the testing images that the proposed
method outperforms VDSR in both the structural similarity and PSNR evaluation meth-
ods.

6. Conclusion. We propose a deep convolutional network that is capable of reconstruct-
ing high-resolution images of DICOM brain images, from the interpolated low-resolution
images. The network learns an end-to-end mapping between the low and high-resolution
images. In the first stage of our network, we densely extract features from the input
image. We then adopt residual learning and the mixture of convolutions to generate
the high-resolution output image. We have shown that our network outperformed both
bicubic interpolation, and the previously proposed VDSR model, in which we train on
the same brain images. The proposed method has successfully managed to enhance the
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Figure 16. Test image 8 patch comparison results for scale 3

quality of the brain image, and outperforms existing methods. Further research may be
carried on to focus on recovering all the details of the image such that the comparison
with the reference image is nearly equal.
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