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Abstract. There are many researches of various human activity recognitions from the
data of inertial sensors by using machine learning. In these researches, it is important
to consider the individual difference. Even if the subjects perform the same activity,
the data obtained from each subject are of different behaviors. Thus, if we construct
the feature space, there is a possibility that the human activity of each subject does not
concentrate on one region. In this case, if we consider the anomaly detection of the
human activities by using this space, it is difficult to draw the boundary between the
normal and anomaly activities. Therefore, the evaluation index/function that can search
better feature values/space for various people is necessary. In this paper, we propose
an evaluation function named “Consideration of Human motion’s Individual differences-
based Feature Space (CHI-FS) evaluation function” for the anomaly detection. We also
confirm the effectiveness of the CHI-FS evaluation function by using the simulation data
and the data of inertial sensors during car driving.
Keywords: Machine learning, Feature space, Human activity recognition, Anomaly
detection, Mathematical optimization

1. Introduction. Recently, various human activity recognitions from the data of inertial
sensors by using machine learning are investigated, e.g., Khan et al. [1] used a neural
network to classify such motions as walking, running, sitting down and standing up;
Lester et al. [2] classified the human activities such as walking, running, brushing teeth
and riding an elevator with the Hidden Markov Model (HMM); He and Jin [3] classified
the walking, running and jumping with the support vector machine; Ward et al. [4] used
HMM to classify such motions as assembly work (using drills and vises); Omae et al. [5]
classified the swimming styles (backstroke, breaststroke, butterfly and front crawl) with
the random forest.

If we consider the human activity recognitions, the data of inertial sensors (such as
acceleration and gyro data) are of different behaviors since there are individual differ-
ences in human activities by the height, body weight, habits, length of leg and so on.
Therefore, if we investigate the various human activity recognitions by using machine
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learning, it is important to consider the individual differences and search the important
feature values for various people [6]. To achieve it, the evaluation index/function that can
search better feature values/space for various people is necessary. However, the existing
index/evaluation function (e.g., between-class and within-class variance [7] and minimum
reference set [6, 8]) cannot be considered for such individual differences. Khan et al. [1]
and Ward et al. [4] selected the feature values by using the linear-discriminant analysis;
Lester et al. [2] selected the feature values by using a modified version of AdaBoost pro-
posed by [9]; He and Jin [3] performed the feature extraction by using the discrete cosine
transform and the principal component analysis and composed the feature space. These
methods also cannot be considered for individual differences.
The human activity recognition in machine learning is mainly classified into the clas-

sification and anomaly detection. Let us focus on the human activity recognition during
car driving as an example. Figure 1 shows the schematic plot of each activity during car
driving operations in each feature space, respectively. Each legend corresponds to each
driving activity. Figure 1(a) shows the feature space that can classify between normal and
other dangerous driving operations. Figure 1(b) shows the feature space that can classify
normal, one-handed, distracted driving, use of smartphone and other anomaly driving,
respectively. In Figure 1(c), it is difficult to draw the boundary of each operation because
the plots of each driving operation are mixed. The anomaly detection discriminates be-
tween the normal and anomaly plots. Therefore, the desirable evaluation index/function
is to search the feature space like Figure 1(a). On the other hand, the classification clas-
sifies each plot. Therefore, the desirable evaluation index/function is to search for the
feature space like Figure 1(b).

Figure 1. The difference of better feature space of anomaly detection and classification

The classification is highly convenient if the discriminated activity is determined be-
forehand. However, if there are various types of the anomaly activities such as Figure 1(b)
and we cannot determine the discriminated activities beforehand, it is difficult to give the
labels of all activities and obtain the learning data of all activities [10]. In addition, it
is more relatively difficult to find the optimal space in the classification like Figure 1(b)
than that in the anomaly detection like Figure 1(a). In most of the cases, we need to
classify the normal and other dangerous activities.
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Moreover, if we construct the feature space, there is a possibility that the human activity
of each subject does not concentrate on one region. In this case, it is also difficult to
draw the boundary between the normal and anomaly activities. Therefore, the evaluation
index/function that can search better feature values/space for various people is necessary.

Therefore, in this paper, we propose an evaluation function named “Consideration of
Human motion’s Individual differences-based Feature Space (CHI-FS) evaluation func-
tion” for the anomaly detection.

The paper is organized as follows. In Section 2, we explain our proposed feature space e-
valuation function named “Consideration of Human motion’s Individual differences-based
Feature Space (CHI-FS) evaluation function”. In Section 3, we confirm the effectiveness
of the proposed CHI-FS evaluation function by using the simulation data and the data of
inertial sensors during car driving. Section 4 is devoted to a summary.

2. Consideration of Human Motion’s Individual Differences-Based Feature S-
pace Evaluation Function.

2.1. Overview. In this paper, since we consider the anomaly detection, we assume that
the obtained data set from individual subject consist of many normal data and a few
anomaly data.

The feature space composed of the feature values x is denoted by ⟨x⟩. We also define
the following sets:

xn, xm ∈ X := {x1, x2, . . . , xFmax}, m, n = 1, . . . , Fmax, m ̸= n, (1)

i ∈ I := {1, 2, . . . , Nsub}, (2)

c ∈ C := {nor, ano}, (3)

where X is the set whose elements are feature values and its size is Fmax, where Fmax is
the number of the considered feature values, I is the set whose elements are the subject’s
label, Nsub is the number of the considered subjects, and C is the set whose elements are
the labels: normal or anomaly.

We aim to search for the effective/optimal feature space ⟨xopt1, . . . , xoptu⟩ to judge
normal and anomaly from the Nsub subjects data. To search for the optimal feature
space, (i) we calculate the function to evaluate the effectiveness of the feature space for
anomaly detection in each subject, (ii) we check the values of the function of all subjects
and if the values of all subjects show uniformly effective then we adopt this feature space
as the optimal feature space.

The overview of the construction of the evaluation function is shown in Figure 2. For
simplicity, we consider u = 2 case in this paper and the feature space in Figure 2 can
be denoted by ⟨xn, xm⟩. The method of the construction of the evaluation function is
explained step by step.

2.2. Probability density function of the normal data. It is natural that the normal
data concentrate on the one region of the feature space like the top left panel of Figure 2
since the normal data consist of the data of the only specified activity. Therefore, we as-
sume the multivariate normal distribution as the shape of the probability density function.
Let the feature vector be x = (xn xm)

T . The mean value of the feature value xn, xm in the

subject i is defined as xi
n, x

i
m and the mean vector is denoted by µi(xn, xm) =

(
xi
n xi

m

)T
.

The variance-covariance matrix of the normal data of the feature values xn, xm in subject
i is defined as V i(xn, xm). Then the probability distribution of the normal data on the
feature space ⟨xn, xm⟩ of subject i is given by:
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P i
c=nor(xn, xm) =

1

2π
√

|V i(xn, xm)|

× exp

{
−1

2

(
x− µi(xn, xm)

)T
V i(xn, xm)

−1
(
x− µi(xn, xm)

)}
. (4)

From the probability distribution of Equation (4), we can estimate the distribution of the
normal data of the subject i on the feature space, like the top middle panel of Figure 2.

Figure 2. Overview of the construction of the evaluation function in fea-
ture space ⟨xn, xm⟩ of subject i (anomaly detection)

2.3. Probability density function of the anomaly data. The anomaly data do not
concentrate on the one region of the feature space like the bottom left panel of Figure 2
since the anomaly data consist of the data deviated from the specified activity. Therefore,
we assume the multivariate kernel distribution as the shape of probability density function.
The number of anomaly data in the feature values ⟨xn, xm⟩ in a certain subject i

is N i and the bandwidth in feature values ⟨xn, xm⟩ of subject i is defined as hi
n and

hi
m, respectively [11]. Additionally, if the kernel function is used to the Gaussian kernel:

K(a) = 1√
2π

exp
{
−1

2
a2
}
and l-th anomaly data in feature values xz of subject i is denoted

as xi
(z)l, then the probability distribution of the anomaly data on the feature space ⟨xn, xm⟩

of the subject i is given by:

P i
c=ano(xn, xm) =

1

N i

N i∑
l=1

∏
z∈{n,m}

1

hi
z

K

(
xz − xi

(z)l

hi
z

)
. (5)

From the probability distribution of Equation (5), we can estimate the distribution of
anomaly data of the subject i on the feature space, like the bottom middle panel of
Figure 2.

2.4. Constitution of overlap function. The evaluation function of the feature space
is introduced by using the probability distribution of the normal and anomaly data.
In the feature space ⟨xn, xm⟩ of subject i, the probability distributions of the normal

and anomaly data are compared. If the coordinate of the high probability of each feature
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space overlaps, it is natural that we consider this coordinate causes the misclassification.
Thus, in each coordinate of the feature space, the following overlap function is calculated:

Di(xn, xm) =
∏
c∈C

P i
c(xn, xm). (6)

Note that it takes 0 ≤ Di(xn, xm) ≤ 1 by the definition of the probability density functions
of Equations (4) and (5). Moreover, Di(xn, xm) takes a higher value if the coordinate of
normal and/or anomaly is the higher probability of its occurrence. This schematic view
is in the right middle panel of Figure 2.

2.5. Error risk. The error risk is defined as the function integrating the overlap function
Di(xn, xm) of subject i:

I i(xn, xm) =

∫ 1

0

∫ 1

0

Di(xn, xm) dxndxm. (7)

The error risk I i(xn, xm) corresponds to the volume of the overlap function Di(xn, xm).
Being a one-dimensional real-valued function, it has a higher value if the coordinates of
normal and anomaly with the higher probabilities of their occurrence overlap. Therefore,
it is found that the feature space whose error risk is smaller is the important feature space
for subject i.

2.6. Optimization of the feature space. Two optimal features ⟨xopt1, xopt2⟩ for the
anomaly detection can be obtained by solving the following optimization problem:

⟨xopt1, xopt2⟩ = arg min
xn,xm

[α mean{I(xn, xm)}′ + β std{I(xn, xm)}′] , (8)

where mean{I(xn, xm)} and std{I(xn, xm)} represent the mean and standard deviation
of the error risk of all subjects, respectively. The prime ′ means the standardization. The
standardization is defined as:

v{I(xn, xm)}′ =
v{I(xn, xm)} −min(v{I(xn, xm)})

max[v{I(xn, xm)} −min(v{I(xn, xm)})]
, (9)

where v indicates the mean or std, and α and β represent the weight parameters which
satisfy: α+β = 1, α, β ∈ [0, 1]. If the value of α is higher than 0.5, it treats the mean value
of all subjects as important. In contrast, if β is higher than 0.5, it treats the standard
deviation of all subjects as important. We call Equation (8) “Consideration of Human
motion’s Individual differences-based Feature Space (CHI-FS) evaluation function”.

3. Evaluation of the Effectiveness of CHI-FS Evaluation Function.

3.1. Evaluation by using the simulation data.

3.1.1. Outline. To confirm the effectiveness of the CHI-FS evaluation function discussed
in Section 2, we prepare the feature space of 14 types of simulation data assumed to be
obtained from 5 subjects. We also prepare 4 patterns in the 2-dimensional feature space
plot: ‘Very Good’, ‘Good’, ‘Bad’ and ‘Very Bad’, which mean the degree of mixing of the
normal and anomaly data for each individual subject (the left side of Table 1).

The normal data are prepared of 50 plots by using the normal distribution:

u = (0.5 0.5)T , S =

(
0.12 0
0 0.12

)
, (10)

where u is the mean vector of the normal data and S is the variance-covariance matrix of
the normal data. The anomaly data is prepared 20 plots by using the uniformly random
number.
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Table 1. Evaluation results for feature space of each method

Feature
space

Subjects

CHI-FS
evaluation
function
(α, β) =
(0.5, 0.5)

CHI-FS
evaluation
function
(α, β) =
(0.7, 0.3)

Between
-class and
within
-class

variance

MRS
Expected
ranking

1 2 3 4 5

case1
Very
Good

Very
Good

Very
Good

Very
Good

Very
Good

1 1 3 1 1

case2 Good Good Good Good Good 2 3 11 6 3
case3 Bad Bad Bad Bad Bad 6 7 8 14

case4
Very
Bad

Very
Bad

Very
Bad

Very
Bad

Very
Bad

9 12 12 7

case5
Very
Good

Very
Good

Very
Good

Good Good 3 2 9 2 2

case6
Very
Good

Very
Good

Very
Good

Bad Bad 7 4 2 4 4

case7
Very
Good

Very
Good

Very
Good

Very
Bad

Very
Bad

12 10 10 5

case8
Very
Bad

Very
Bad

Very
Bad

Very
Good

Very
Good

13 11 14 13

case9
Very
Bad

Very
Bad

Very
Bad

Good Good 14 14 1 11

case10
Very
Bad

Very
Bad

Very
Bad

Bad Bad 11 13 7 9

case11 Good Good Good Bad Bad 4 5 13 3 5
case12 Bad Bad Bad Good Good 5 6 6 10

case13
Very
Good

Good Bad
Very
Bad

Good 10 9 5 8

case14
Very
Good

Good Bad
Very
Bad

Bad 8 8 4 12

The ‘Very Good’ is the feature space satisfying the following condition: the anomaly
data do not exist within 1σ region from the mean value of the normal data. This feature
space can divide clearly between the normal and anomaly data. The ‘Good’ is feature
space: 5 anomaly data exist within 1σ region from the mean value of the normal data.
The ‘Bad’ is feature space: 10 anomaly data exist within 1σ region from the mean value of
the normal data. The ‘Very Bad’ is feature space: 5 anomaly data exist within 1σ region
from the mean value of the normal data. It is difficult to divide between the normal data
and anomaly data in ‘Very Bad’ feature space.
The 14 cases obtained from 5 subjects we assumed are summarized in the left side of

Table 1. The robust feature space means the feature space that can clearly distinguish
between the normal and anomaly data of various subjects, i.e., case1, case2, case5. The
case8 (‘Very Bad’ is 3 subjects, ‘Very Good’ is 2 subjects) is considered as the effective
feature space for a few subjects. In contrast, the case11 (‘Bad’ is 2 subjects, ‘Good’ is 3
subjects) can be considered as the effective feature space for various subjects. Thus, in
this paper, we should consider that case11 is also important. The expected top 5 ranking
is shown in the right side of Table 1.
For comparison, the between-class and within-class variance [7] and Minimum Reference

Set (MRS) [6, 8] are also used to evaluate the future space.

3.1.2. Results and discussion. The results obtained for the CHI-FS evaluation function,
the between-class and within-class variance and Minimum Reference Set (MRS) are sum-
marized in the right side of Table 1. The number from 1 to 14 represents the ranking
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in each evaluation method of the 14 feature spaces. The expected top 5 ranking is also
shown in Table 1.

In the case of (α, β) = (0.5, 0.5) in the CHI-FS evaluation function of Equation (8),
the evaluation results were: the first effective feature space was case1, the second one
was case2 and the third one was case5. The case1 was the feature space prepared as the
optimum, i.e., all are ‘Very Good’. Thus, the desirable result was obtained. However, it
was evaluated that case5 (3 ‘Very Good’ and 2 ‘Good’) was the third one and case2 (all
‘Good’) was the second one. This evaluation result was reversed in our expectation. In the
case5, the mean of all subjects is better than that of case2. However, the distribution of
the data is very deviated. As the result, the case2 ranking became higher than case5. From
the point view of the proposed CHI-FS evaluation function of Equation (8), we confirmed
that the second term tended to be emphasized. The same tendency was confirmed, e.g.,
between case4 and case7, between case4 and case8.

As one solution, we changed the weight parameters: increase the α and decrease the
β, i.e., we considered the case of α > β. In the case of (α, β) = (0.7, 0.3), the evaluation
results are also shown in the right side of Table 1. We found that the desirable result was
obtained in the case of (α, β) = (0.7, 0.3).

In the case of the between-class and within-class variance, the first effective feature
space was case9, the second one was case6 and the third one was case1. The evaluation
of the between-class and within-class variance is suited for class classification problem [7].
Thus, we found that this evaluation result was not desirable for our purpose.

In the case of MRS, the first effective feature space was case1, the second one was case5
and the third one was case11. Although the first and second one was obtained in the
desirable result, the third one or later could not be obtained in the desirable result. For
example, the case6 and case7 were not more robust than the case2, but the case6 and
case7 have higher ranking than the case2.

These results suggest there is a possibility that we can search for the effective feature
space considering the human motion’s individual differences for anomaly detection by
using the proposed CHI-FS evaluation function.

3.2. Evaluation by using the data of the inertial sensors during car driving.

3.2.1. Outline. In Section 3.1, we confirmed an effectiveness of the proposed CHI-FS
evaluation function. In this section, we confirm more effectiveness of the proposed CHI-
FS evaluation function by using the data of the inertial sensors during care driving [12].
Nagasawa et al. [12] tried to detect the aimless driving including the drowsy driving by
using inertial sensors worn on the left and right wrists. By using these data and the
proposed CHI-FS evaluation function, we search for the effective feature space to detect
the aimless driving. From the inertial sensors worn on the left and right wrists, the data
of X/Y/Z-axis acceleration, its composited acceleration and X/Y/Z-axis angular velocity
are obtained with sampling frequency 100Hz. We set the 60sec window and 1sec slide
width. To downsample the data, within 60sec window, we calculate the mean values of
these data in 1sec sub-window. After that, the dynamic changes of these values are also
calculated. The dynamic change represents the amount of the differential value from just
before and current measurements. The mean, standard deviation, variance, skewness and
kurtosis of the dynamic change within 60sec window are calculated. After that, we slide
the window with 1sec slide width and repeat this procedure.

We use the mean, standard deviation, variance, kurtosis and skewness of the dynamic
changes as the feature values. As the result, the 70 feature values are obtained. We also
gave the label of normal and anomaly to the data. More details were explained in [12].
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The number of the constructed feature spaces in this paper is 70C2 = 2415. We evaluate
and rank each feature space by using the CHI-FS evaluation function. Moreover, we
evaluate the F -measure [12] as the anomaly detection quality of each subject by using
the obtained each feature space and One Class Support Vector Machine (SVM).

3.2.2. Results and discussion. The results of the evaluation and the F -measure of each
subject by using the obtained each feature space and One Class SVM are shown in Table 2.
To confirm the effectiveness of CHI-FS evaluation function for various people, we calculate
the mean and standard deviation of F -measure for all subjects. By definition of them,
the large mean value of F -measure and the small standard deviation value of F -measure
have to be selected at higher rank. We show the results of these values to the ninth line
and tenth line of Table 2.

Table 2. Evaluation results by CHI-FS evaluation function and the quality
of anomaly detection by using its space and One Class SVM

CHI-FS
evaluation value

Feature space∗
F -measure (Individual subject)∗∗ F -measure
Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Mean Std

Evaluation
value of
the top
10 ranks

.0056 (1st rank) (gy-r-sd, ax-l-ku) .846 .076 .381 .528 .485 .463 .277

.0060 (2nd rank) (gx-r-sd, am-r-sd) .488 .572 .694 .167 .439 .472 .196

.0061 (3rd rank) (am-r-sd, az-l-ku) .241 .515 .527 .264 .496 .409 .143

.0062 (4th rank) (gx-r-sd, az-l-ku) .258 .076 .502 .426 .504 .353 .184

.0063 (5th rank) (gx-r-sd, ax-l-ku) .789 .133 .574 .496 .538 .506 .237

.0063 (6th rank) (az-l-sd, am-r-sd) .318 .615 .324 .247 .641 .429 .185

.0064 (7th rank) (gx-r-sd, gz-l-sd) .390 .578 .131 .469 .503 .414 .172

.0069 (8th rank) (am-r-sd, ax-l-ku) .377 .199 .510 .340 .508 .387 .130

.0070 (9th rank) (gx-r-sd, ax-l-sk) .431 .236 .539 .394 .621 .444 .147

.0071 (10th rank) (gx-r-sd, am-l-sd) .588 .000 .231 .711 .595 .425 .298
Evaluation

value
∼ 0.10

.1001 (2061st rank) (gx-r-sk, gy-l-sk) .000 .047 .267 .288 .549 .230 .220

.1002 (2062nd rank) (ax-r-me, ax-r-sk) .000 .503 .117 .604 .446 .334 .261

.1006 (2063rd rank) (gy-r-me, am-r-va) .417 .016 .414 .076 .043 .193 .204
Evaluation

value
∼ 0.20

.2000 (2341st rank) (gx-l-me, ay-l-va) .000 .000 .006 .211 .310 .105 .146

.2002 (2342nd rank) (gx-l-me, am-r-ku) .000 .000 .008 .168 .022 .040 .072

.2031 (2343rd rank) (gz-r-me, am-l-me) .491 .016 .057 .494 .280 .267 .229
Evaluation
value of the
lowest ranks

.6251 (2413th rank) (gx-l-me, gy-l-me) .284 .000 .000 .146 .064 .099 .120

.7340 (2414th rank) (gz-r-me, gx-l-me) .283 .031 .003 .088 .279 .137 .135

.9316 (2415th rank) (gx-l-me, gz-l-me) .000 .000 .000 .123 .104 .045 .063
∗ 1st-digit: (ax/ay/az/am, x/y/z/composited acceleration) (gx/gy/gz, x/y/z angular velocity), 2nd-
digit: (r/l, inertial sensor of the right/left wrist), 3rd-digit: (me/sd/va/sk/ku, mean/standard devia-
tion/variance/skewness/kurtosis of the dynamic change)
∗∗ Boldface means F -measure ≥ .400 and the underline means the maximum of F -measure in its space.

In case of the top 10 ranks, the mean value of F -measure for all subjects is .353 ∼ .506,
and the F -measure of each subject is large overall (Especially, the 4 out of 5 F -measures
of the feature spaces of the 2nd and 5th rank exceed .400.). Moreover, about the standard
deviation value of F -measure of all subjects, there are no extremely large dispersion in
the feature space of top 10 ranks.
If the CHI-FS evaluation value becomes larger, then the mean of F -measure also tends

to become worse. On the other hand, the standard deviation of F -measure is overall
smaller dispersion, but this is because of extremely small F -measure of each subject if the
evaluation value becomes larger. If the evaluation value of the CHI-FS evaluation function
shows good value (small value), the detection accuracy for the normal and anomaly data
is good. Note that even if the feature space is evaluated as the top rank, there are some
cases that F -measure of subject 2 is low. There is a possibility that the subject 2 has the
specific individual difference.
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These results also suggest even if we use the real data of the inertial sensors, there
is a possibility that we can search for the effective feature space considering the human
motion’s individual differences for anomaly detection by using the proposed CHI-FS eval-
uation function. However, we emphasize that we need more verification.

4. Summary. We proposed the feature space evaluation function named “Consideration
of Human motion’s Individual differences-based Feature Space (CHI-FS) evaluation func-
tion”. We also confirmed the effectiveness of the proposed CHI-FS evaluation function by
using the simulation data and the data of the inertial sensors during car driving. Howev-
er, the validation is not sufficient because the number of subjects is low. We need more
verification.

As the future work, we will perform more verification of the effectiveness and reliability
to other case studies. In this paper, for simplicity, we discuss the case of the 2-dimensional
feature space. The extension of Equation (8) for the n-dimensional feature space is not
so difficult. However, it is easy to notice that the calculation cost becomes high. Thus,
the reduction of calculation cost is also an important issue.
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