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Abstract. For any method to be adopted and deployed in engineering practice, its relia-
bility should be fully understood. This paper addresses the reliability of the Power Spectral
Density (PSD) method for damage detection. As a vibration-based approach, the method
is classic, but its reliability and how the damage level affects the performance have not
been discussed. We hypothesize that the accuracy of the method strongly depends on the
damage level. We evaluate the reliability by using a large dataset involving 3500 cas-
es with five levels of structural integrity. The dataset is produced by analyzing a seven
degree-of-freedom system subjected to a concentrated dynamic force with random mag-
nitude. A spring on the system is reduced in its stiffness to simulate damages. Our
significant findings are the following: it is challenging for the PSD-based method to d-
ifferentiate the healthy condition from the damaged conditions when the damage level is
small. However, the reliability is high at 95% probability when the structural integrity
has dropped by five percents.
Keywords: Structural health monitoring, Power spectral density, Reliability, Damage
prediction

1. Introduction. Catastrophic failures of engineering structure often lead to great mate-
rial and non-material lost. Gunawan [1], for instance, reported Kutai Kartanegara bridge
in Samarinda, Indonesia, that suddenly collapsed on Nov. 26, 2011, killed 24 people, in-
jured 39 persons, and destroyed dozens of cars and motorbikes. The bridge construction
cost nearly a million of the present dollar, taking the inflation rate into account.

To avoid catastrophic failures, engineering structures should be continuously monitored,
manually or automatically. Manual monitoring is susceptible to human errors and often
unreliable [2]. For the reason, automatic and continuous Structural Health Monitoring
(SHM) is preferable. SHM has been a field of research for a few decades. One of the
earliest publications regarding SHM was found in 1895 [3], and the number of publications
on SHM has been increasing significantly for the last thirty years [4].

In the field of SHM, many developed detection and classification methods were based
on vibration where one of the large classes is called statistical time series methods. In
this class, the detection is performed by applying statistical analysis of structural vibra-
tion responses due to random excitation. This approach has many advantages. Mainly,
damages on any part of structures can be inferred from data collected on a few measure-
ment points. In the class of statistical time series, the methods can be categorized into
the non-parametric method and the parametric method. Within the former category is
the methods of the Power Spectral Density (PSD), Frequency Response Function (FRF),
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model residual variance, and sequential probability ratio test. Within the latter catego-
ry is the methods of the AutoRegressive Moving Average (ARMA) models, the model
parameter based method, state space models, and residual based methods.
Since the last decade, the trend of using machine learning or soft computing technique

for SHM continues [5]. Khodabandehlou et al. [6] developed a convolution neural network
model that classified the structural conditions into healthy, and minor, moderate, and
extensive damages on the basis of the acceleration data recorded on many points on the
structure. Chang et al. [7] developed a simple neural network model to estimate a class
of the structural damage index on the basis of structural natural frequencies and mode
shapes. Gomes et al. [8] used an artificial neural network that minimized an objective
function governed by the ratio of the modal shape on the healthy and damaged conditions.
The mode shapes were measured on some points that maximized the modal information.
In addition to the broad adoption of the machine learning techniques, we also witness a
genuine identification method proposed by [9] that the damage was detected by observing
the change in the dynamic equilibrium equation on the steady state condition. The
approach is simple and has excellent potential. We encourage more investigations on this
approach.
The issue of reliability is critical and needs to be fully understood before prediction

methods can be put into practice. Regarding the PSD method, its reliability has not
been comprehensively discussed even though the method is classic.
To the best of our knowledge, the reliability of the PSD method has only been discussed

by a few articles [10, 11, 12]. The discussion was limited by the type of the engineering
structures, the number of the experimental data, and the damage scenarios and levels. In
[12], the tested structure was a scaled aircraft skeleton. The number of data was 320 in
total: 60 data for the healthy condition, and 40 data for each damage case. Six damage
cases were studied. The damages were simulated by loosing the bolts connecting some
structural members.
Kopsaftopoulos and Fassois [11] tested a simple truss structure hanging in the air by

some strings. The number of data was 200 in total: 40 data for the healthy condition,
and 32 data for each damage case. Five damage cases were also studied. Similarly, the
damages were introduced by loosing some bolts.
Both references reported that the PSD method provided a 100%-reliability level. In

general, any predictive model that achieves such a level of reliability is considered harm-
ful [13]. We speculate that the scenario of inducing damages by loosing bolts may have
significantly altered the structural stiffness. As a result, the structural responses were
remarkably different from those of the healthy condition; hence, the prediction at 100%
accuracy could be obtained. We do not rule out that the limitation in the number of
data may also become a contributing factor. For evaluating the reliability of a method
convincingly, datasets of large size are required.
We hypothesize that the damage size also influences the prediction reliability. Any

predictive method faces challenges to differentiate healthy condition from conditions with
small damages. Thus, in this paper, we seek to understand how the damage level affects
the prediction reliability.
For SHM, it is essential to have a clear taxonomy about the scale of the imperfection

of the structure: defect, damage, or fault. The defect is the material imperfection in the
nano- or micro-scale level. All engineering materials contain defects. With the inherent
existence of defects, engineering structures can still function satisfactorily. However, with
a fault, the structures can no longer operate satisfactorily. The damage scales the im-
perfection between the defect and the fault. The damage is initiated from a defect and
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potentially develops becoming a fault. With damages, engineering structures may or may
not function satisfactorily. SHM deals with imperfection in the damage scale [14].

The article is structured as the following. Section 2, Research Method, describes the
data collection method and the computation of the damage sensitive F statistic. Section 3,
Research Results, describes the F statistic reliability for structural damage monitoring
and discussion. Finally, the article is completed with Section 4, Conclusions, that briefly
summarized the most important insight obtained from the study and a potential future
research.

2. Research Method. From many SHM publications, we have seen various SHMmetho-
dologies developed for various case studies involving actual or/and laboratory test struc-
tures. Some of them are the I-40 bridge [4], a lumped-mass system of eight freedom
system [4], truss structures [11], and composite beams and plates [8]. In the present
study, we utilize the lumped mass system due to its simplicity.

2.1. Data collection method. Data are produced by a numerical analysis of a seven-
degree-of-freedom system (Figure 1). The system consists of seven lumped masses, 1 kg
each, connected by eight similar linear elastic springs. Each has 1 N/m stiffness. A
dynamic force having a random magnitude is applied to the center mass. The force
magnitude is drawn from a normal probabilistic distribution with a mean of zero and a
standard deviation of 0.09. Initially, the random force data have frequency contents up
to 25 Hz. Then, the data are filtered with a Butterworth filter with a cutoff frequency of
20 Hz and an order of 12.

Figure 1. The model of the seven-degree-of-freedom system

The structural damage is assumed to occur on the spring connecting m3 and m4. It
is also assumed to affect the spring and to degrade its stiffness only. The four levels
of degradation are studied, namely, 1%, 5%, 10%, and 20%. This decision is made to
understand how the damage level affects the accuracy of the classification. We hypothesize
that the classification accuracy is low when the damage level is low, the relation between
the classification accuracy and the damage level is not linear, and when the damage level is
higher than a certain threshold, the classification accuracy is independent to the damage
level.

The analysis results are the displacement of the seven masses. The data are sampled
at a constant rate of 0.1 s and for a duration of 360 s. For each structural condition, the
analysis is repeated for 500 times by varying the distribution of the dynamic force. The
settings of the applied dynamic force and the sampling rate of the structural responses
are determined by considering the structure natural frequencies: 0.62, 1.22, 1.77, 2.25,
2.65, 2.94, and 3.12 in Hz. The frequencies ω are determined by solving the eigenvalue
problem of (K−ω2M)Φ = 0, where K is the stiffness matrix, M is the mass matrix, and
Φ is the eigenvector.

2.2. Power density spectrum by Barlett’s method. In this research, F statistic
is used as the damage-sensitive feature. Its computation requires the Power Spectrum
Density (PSD) data, which are computed by the following procedure by using Barlett’s
method [15].
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We consider an analog, time-varying, and finite-length signal xa(t). In SHM, the signal
may represent the historical data of the displacement at an observation point. The signal
is assumed to be measured at a constant sampling rate of ts such that

xi = xa(i · ts) (1)

where i = 0, 1, 2, . . . , (N − 1). We transform the discrete time-domain signal xi into the
frequency domain by applying the discrete Fourier transform with the formula:

X(fk) =
N−1∑
i=0

xi · exp(−ȷi2πfts) (2)

where f ∈ [0, fs/2] and fs = 1/ts, which is called the sampling frequency, and fk are
discrete frequencies of fi = i · fs/N . To shorten the expression, we use the symbol Xi to
denote X(fi). We partition the signal into M -equal-length sub signals as illustrated by
Figure 2. Barlett’s method computes a signal PSD by averaging PSDs of the sub signals.
The resulted PSD is more reliable and less sensitive to the signal noises. However, the
method is only applicable for long signals. The Barlett’s formula for computing PSD is:

Si(f) =
1

LM

M−1∑
m=0

∣∣∣X(m)
i

∣∣∣2 . (3)

The signal length N and the number of sub signals M is related by N = LM , where L is
the length of the sub signal (see Figure 2).

Figure 2. The partition of the signal x(t) into M -equal-length sub signals

2.3. F statistic for SHM. The method is simple and practical, depending only on the
data of structural responses, which can be collected on a few measurement points. It
turns the damage monitoring problem into a direction-less hypothesis test that can be
solved in three steps.
The first step is the statement of the null and alternative hypotheses, which for this

case, are:
H0 : Sh(ω) = Su(ω) and Ha : Sh(ω) ̸= Su(ω). (4)
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The symbol S(ω) denotes PSD. The subscript h denotes the healthy condition, and u
means the unknown-to-be-sought condition. The healthy condition is the reference con-
dition, from which the other structural conditions are measured. It should be determined
previously. The structure is assumed healthy if the null hypothesis, H0, prevails. It is
considered healthy if its PSD is very much similar to the PSD of a healthy condition.
The degree of similarity is measured statistically. The structure is assumed to contain
damage if the alternative hypothesis, Ha, prevails, which means that the PSD has changed
significantly. The structure that is associated with Su(ω) is considered damaged if Su(ω)
deviates significantly from Sh(ω).

The second step is to compute the relevant F statistic. This statistic is simply a
comparison of two PSDs: Sh(ω) and Su(ω). The statistic has the value of one when
the two PSDs are identical. When the structure contains damages, some values of the
F statistic may deviate from one to be very big or very small. The level of change in
PSD determines the magnitude of the F statistic. The statistic is computed by: F =[
Ŝh(ω)/Sh(ω)

]/[
Ŝu(ω)/Su(ω)

]
. The hat denotes the estimated PSD. This expression

can be made simpler. Under the condition of (4), it can be simplified to

F = Ŝh(ω)
/
Ŝu(ω). (5)

The third state is to establish the upper and lower limits of the statistic from which the
change of PSD can be categorized as significant or not. The lower limit is F(1−α/2,2K,2K)

and the upper limit is F(α/2,2K,2K). The symbol α denotes the statistical significance,
which represents the probability of rejecting the null hypothesis given that the structure
condition is healthy. The symbol K denotes the degree of freedom, which represents the
number of windows in Barlett’s method (see Subsection 2.2).

An expression similar to Equation (5), as discussed by [16], is susceptible to perturba-
tion, producing highly fluctuating statistic, and often exceeding the lower and upper limits
on a healthy structural condition. The F statistic is unreliable and must be computed
with great care.

2.4. Performance indicator and evaluation method. We adopt five performance
measures from [17] to evaluate the classification performance. They are: True Positive
Rate (TPR), True Negative Rate (TNR), False Positive Rate (FPR), False Negative Rate
(FNR), and accuracy. They are computed by the following formulas: TPR = TP/(TP +
FN),TNR = TN/(TN+FP),FPR = FP/(FP+TN),FNR = FN/(FN+TP),Accuracy =
(TP + TN)/(TP + TN+ FP + FN) where TP is True Positive, TN is True Negative, FP
is False Positive, and FN is False Negative. TPR is also called recall.

3. Research Results. In this article, we wish to provide a better and detail descrip-
tion regarding the reliability of a PSD-based method for structural health monitoring.
Specifically, we focus on the use of the F statistic.

We structure this section as the following. We start by presenting the structural de-
formations as responses to a dynamic load having a random magnitude applied to the
structure. Then, we present the deformations on various damage levels. Subsequently,
we show the deformations in the form of the F statistic for structural health monitoring,
followed by the statistic in misclassification cases. Finally, we present the roots of the
misclassification.

The structural deformations of the seven nodes on the model are presented in Figure 3.
The figure also shows the random magnitude of the associated dynamic load applied to
the center node, Node 4. The deformations follow, to some extent, a pattern with a larger
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Figure 3. The seven-degree-of-freedom model, the typical applied force,
and the typical responses on the healthy condition

Figure 4. The model responses at Node 4 for healthy and damaged con-
ditions with the damage levels of 1%, 5%, 10%, and 20%

magnitude on the center node and smaller magnitude on the nodes distancing from the
center.
How the structural deformations affect the damage level is shown in Figure 4. We

should note that the damage is assumed occurring on the spring connecting Node 3 and
Node 4, the spring to the left of Node 4. It only affects the spring stiffness. We reduce
the stiffness by factors of 1%, 5%, 10%, and 20% to simulate various damage levels.
The results are rather interesting. Generally, in the static loading condition, structures

containing damage tend to become less stiff in comparison to that on healthy condition,
resulting in a larger deformation on the same loading condition. However, in the dynamic
loading condition, the phenomenon may be different, and may even be in the contrary. The
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figure shows that the deformation is larger on the healthy condition than on the damaged
conditions. Particularly, the deformation of the case of 20% damage level is much smaller
than that of the healthy condition. Generally, we conclude that the magnitude of the
structural deformation due to dynamic loads may not be a reliable indicator of structural
integrity.

Unlike the structural deformation, the F statistic is a good indicator of structural
integrity. Theoretically, the F statistic should lie within the range of F(α/2,2K,2K) and
F(1−α/2,2K,2K) when the structure is healthy. The variable α denotes the statistical signif-
icance and is usually assigned to a value of 1 × 10−6. Figure 5 shows how the damage
level affects the statistic. For a healthy condition, the statistic completely lies within the
limits. For the damaged conditions, the F statistic at the frequency 1.7684 Hz exceeds
the upper limit of 7.4014. For the cases of high damage levels, the F statistic crosses the
critical statistic at several frequencies. The figure suggests that the F statistic associated
with some natural frequencies are sensitive to the damage. The value of the F statistic
tends to increase with the damage level.

Figure 5. The F statistic on the center node for the cases of healthy
condition and damaged conditions with the damage levels of 1%, 5%, 10%,
and 20%. The vertical grid lines denote the natural frequencies of the
structure obtained by a modal analysis. The natural frequencies, in Hz,
are 0.62099, 1.2181, 1.7684, 2.2508, 2.6466, 2.9408, and 3.1219. The critical
statistic F(α/2,2K,2K) is 7.4014 and F(1−α/2,2K,2K) is 0.1351.

Although the F statistic is a good indicator of damages, it is not entirely reliable.
The use of the statistic may lead us to some erroneous classifications. We support this
assessment with the facts presented in Figure 6. Theoretically, we know that a structure
is considered damaged if F > F(α/2,2K,2K) or F < F(1−α/2,2K,2K). In these examples, we
witness that F statistic exceeds the critical statistic although the structure is known to
be healthy. On the contrary, we also witness that F statistic is within the range of the
critical statistic although the structure is damaged. How accurate or reliable F statistic
for structural health monitoring is a subject of discussion to follow.

The characteristics of the classification accuracy by the PSD method is shown in Fig-
ure 7. These results are obtained from analyzing 3500 cases involving the healthy condition
and the damage conditions of four damage levels, 500 cases for each condition. In general,
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Figure 6. Three examples of misclassification. On the left panel, a healthy
structure is classified to be damaged leading to a false negative classifica-
tion. On the middle and right panels, a structure on two damaged states is
classified to be healthy, leading to false positive classifications.

Figure 7. The classification performance of the power spectral density
method. Respectively, the correct classification is 74%, 28%, 95%, 100%,
and 100% for healthy condition, and damaged condition at the damage
levels of 1%, 5%, 10%, and 20%.

the method works well, or it can detect the damages. The accuracy is very high when
the structure contains the damage at high levels. In the current case, the classification
accuracy is 100% when the structural stiffness has been degraded by 10% or higher. For
the damage level of five percents, 95% cases of the damaged structure are accurately
classified, suggesting one false positive classification for every 20 cases.
Alamdari [18] noted that: “Salawu [19] found that in order to reliably detect damage

by monitoring natural frequency, a minimum of 5% change in the natural frequency



RELIABILITY OF THE POWER SPECTRAL DENSITY METHOD 1725

is required.” The present finding advises that 5% change of the structural integrity is
required for the PSD-based method to detect damages reliably.

The classification accuracy is abysmal when the damage level is minimal. In this case,
the classifier can hardly differentiate the healthy condition from the damage condition.
Only 28% cases are accurately identified. More than 70% cases of the structure containing
the damage at 1% level are considered healthy.

When the structural condition is healthy, the classifier produces about 25% false neg-
ative classification where the structure in good condition is classified as damaged. The
proportion seems rather big. However, when we look into the detail, we begin to un-
derstand the issue better. The detail is presented in Table 1, which comprehensively
summarizes the number of correct and incorrect classifications.

Table 1. The number of correct and incorrect classifications for the
healthy condition and the damaged conditions at the levels of 1%, 5%,
10%, and 20%

Damage level (%)
0 1 5 10 20

Damage level (%)

0 2586 949 0 0 0
1 2529 971 0 0 0
5 187 0 3313 0 0
10 0 0 0 3500 0
20 0 0 0 0 3500

From Table 1, the issue becomes clear. The false negative classification occurs due
to the difficulty differentiating the healthy condition from the one-percent damage-level
condition. The table reads nearly a thousand cases of the identified healthy condition
contain the small damage. The majority of the cases of the damaged condition are
considered healthy. The number of the false negative classifications is about 1000, and
the number of the false positive classifications is about 2500. The rate of the false positive
classification is prevalent in the rate of the false negative classification. For the case of five
percents damage level, a small fraction of 187 cases are classified as healthy. However, if
the data from the one-percent damage case are not considered, the classification accuracy
of the healthy condition would be 100%.

The misclassification issues can be traced back to the features used for the classification:
Fmax and Fmin. The distribution of these statistic is depicted in Figure 8 for the healthy
condition and the damage conditions with the damage levels of 1%, 5%, 10%, and 20%.
The distribution of the statistic for the healthy condition greatly overlaps with the case of
1% damage level; thus, misclassification occurs frequently. The figure also suggests that
the classification criterion F(1−α/2,2K,2K) = 0.1351 seems to pass through the boundary of
the case of five-percent damage level, and the cases of healthy and one-percent damage
level. Differentiating the five-percent damage cases from the healthy and one-percent
damage cases is possible. Finally, when the damage level has significantly increased to
the levels of 10% and 20%, the resulted F statistic completely lie on the left side of
F(1−α/2,2K,2K) = 0.1351. Thus, the cases are predicted with high reliability.

4. Conclusions. The recent development of the methods for Structural Health Monitor-
ing (SHM) tends to adopt and deploy computationally-extensive soft computing approach
where damages are detected based on patterns extracted from large-size datasets. In the
other side, the traditional methods detect damages from the understanding of the struc-
tural mechanics, for example, by monitoring the vibration modes. Generally speaking, the
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Figure 8. The distribution of the Fmax and Fmin statistic for the damage
levels of 0, 1%, 5%, 10%, and 20%. The statistic tends to increase in line
with the increase in the damage level. The distribution of the statistic for
the healthy condition largely overlaps with that of one-percent damage level.
The critical statistic F(α/2,2K,2K) and F(1−α/2,2K,2K) are for α = 1×10−6 and
K = 14.

traditional methods require much less computational resources than the soft computing
approaches.
Although the computational power has increased tremendously in recent years, to bring

those power into the vast and remote areas where engineering structures are situated is
still a challenging issue. The safe use of soft computing approaches is also required training
in advanced mathematics, which is inaccessible to many engineers. Therefore, developing
easy-to-use detection methodologies from sound engineering principles is still crucial.
This article discusses further the use of F statistic for SHM. The statistic is easy to

compute and understand to engineers trained with the structural dynamics. We compose
this article to describe the reliability of F statistic, a PSD-based method, for structural
health monitoring. Our finding suggests that the method works well when the damage has
reached a size larger than a threshold, in this case, more extensive than 5% damage level.
We are certain that this characteristic is general for all damage classification methods.
Therefore, to use any method in practice successfully, we should first address the issue
of what is the critical size of the damage of the structure and whether the deployed
method can detect the damage before it reaches the critical size. The second is what is
the remaining lifetime from the time the damage is detected to the time that the damage
is critical.
For future work, we suggest to use the current dataset and use other classification meth-

ods from which a comparison regarding the reliability of the structural health monitoring
methods can be made.
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