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Abstract. This paper addresses the robust controller design problem for a class of
fuzzy-neural systems that are robust against both the plant parameter perturbations and
controller gain variations. More specifically, the purpose is to synthesize a piecewise
Static Output Feedback (SOF) controller guaranteeing the stability of the resulting closed-
loop fuzzy-neural dynamic system. Based on piecewise quadratic Lyapunov functions and
the relaxed method with Neural Network Differential Inclusion (NNDI), the intelligent
approach can be stabilized by regulating appropriately the parameters of dither and this
robust controller gains can be obtained by solving a set of Linear Matrix Inequalities
(LMIs). The superiority of proposed method is verified through numerical examples.
Because the design of efficient and high-performance control systems is of fundamental
interest to engineers, systematic methodologies are to be used for the combined intelligent
and active control system synthesis in many applications.
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1. Introduction. Chaotic behavior is abundant both in nature and in man-made devices
and has been extensively demonstrated in the last few years; see, for example, [1-3] and
the references therein. Chaos is an irregular, seemingly random, dynamic behavior of a
deterministic system displaying extreme sensitivity to initial conditions [4]. Moreover,
chaos is occasionally desirable, but usually not expected since it can degrade performance
and limit the operating range of many physical devices. Hence, the ability to control
chaos is of much practical importance [1,5-7]. After the pioneering work of Ott, Grebogi
and Yorke (OGY) [8], controlling chaos has become a challenging topic in the field of
nonlinear dynamics [9].
It has long been known that the injection of a high frequency signal, known as a dither,

into a nonlinear system, just ahead of the nonlinearity may improve its performance.
Better performance is viewed as less distortion in the system output, augmented stability,
quenching of limit cycles and jump phenomena [10]. A rigorous analysis of stability in
a general nonlinear system with a dither control was given in [11]. It was shown that
the trajectory of a dithered system can be predicted rigorously by establishing that of its
corresponding mathematical model – the relaxed system (as defined later), provided the
dither has a high enough frequency.
In brief, if a controller cannot stabilize the chaotic system, a dither of an auxiliary is

injected into the chaotic system and then the chaotic system is stabilized asymptotically
by regulating the dither’s parameters. Moreover, system reliability analysis of modified
support vector machines with particle swarm optimization is proposed for the improve-
ment of the control system [18]. A increasing number of intelligent tools are used to
analyze and design the controlled systems [19-22]. In order to catch up with the previous
techniques, the purpose of this paper is to propose a novel approach to control chaos. The
performance of chaotic systems is the sources of the instability and the criterion of the
controlled system can be guaranteed by the proposed methodology in this paper. Section
2 is to consider a chaotic system with dithers and the parameters of dither are regulated
such that the relaxed system is asymptotically stable. Section 3 is an example which
demonstrated the relaxed system and dithered chaotic system have been controlled with
the methodology. Section 4 shows the conclusions for the proposed design methodology.

2. System Description. Consider the chaotic system depicted by the following equa-
tion:

ẋ(t) = F (x, t), (1)

where x(t) is the state vector and F is a vector-valued function which satisfies those
assumptions of general continuity and boundedness given in [11].
In order to eliminate the chaotic motion, a dither d(t), with a finite number N of

switchings, is injected into the chaotic system (1). Thus, the dithered chaotic system is
described as

ẋ(t) = F (x, t, d). (2)

The algorithm for constructing the dither signal is given as follows: The time interval
[0, T ] is divided into an arbitrary number N of equal subintervals. The beginning of
the first interval, the end of the first interval, the end of the second interval and the
end of the Nth interval are denoted by t0, t1, t2 and tN , respectively. Dividing every
interval [tk, tk+1] for k = 0, 1, 2, . . . , N − 1 into n subintervals, the length of the jth
subinterval will be αj(tk)[tk+1 − tk] for j = 1, 2, . . . , n and the control βj(tk) is applied at
the jth subinterval. Hence the repetition frequency, shape and amplitude of dither can be
determined by regulating the parameters N , αj(tk) and βj(tk). In order to illustrate the
algorithm, an example of constructing a periodic dither is given in the following figure.
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Figure 1. A periodic dither signal

From Figure 1 discussed above, we can infer that if the dither has a sufficiently large
frequency and a proper membership function is chosen in fuzzy relaxed system.

The corresponding relaxed model of the dithered chaotic system (2) is defined as [11]:

ẋr(t) =
n∑

j=1

αj(t)F (xr, t, βj), (3)

0 ≤ αj(t) ≤ 1,
n∑

j=1

αj(t) = 1. (4)

2.1. The trajectory by dithered chaotic system. It was shown in [12] that the
absolutely continuous curve xr(t) satisfying Equation (3) is the uniform limit of curves
xN(t), N = 1, 2, . . ., satisfying Equation (2). That is to say, as the frequency of dither goes
to infinity, the trajectory described by the dithered chaotic system (2) will approach that
of the relaxed system (3). Hence, the relaxed system may be viewed as the mathematical
model of the chaotic system with a dither of high enough frequency. If the relaxed
system is asymptotically stable and the number N of switchings in d(t) is chosen to be
sufficiently large, then the dithered chaotic system is approximated by its corresponding
mathematical model – the relaxed system and the approximation improves as N increases.
Consequently, the behavior described by the dithered chaotic system and the behavior
of the relaxed system would be made as close as desired, and then the chaotic motion is
converted into a steady state.

2.2. Periodic dither signal. In real systems, the dither is generally chosen to be a
periodic signal and then the parameters αm(t) and βm(t) are independent of time. Hence,
a periodic dither signal is considered in the remainder of this study [13-17].

IF xR1(t) is MRi1(αm, βm) and . . . and xRk(t) is MRik(αm, βm)

THEN uR(t) = −Kix̂R(t), i = 1, 2, . . . , r. (5)

Observer Rule i:
IF xR1(t) is MRi1(αm, βm) and . . . and xRk(t) is MRik(αm, βm)

THEN ˙̂xR(t) = Ai(αm, βm)x̂R(t) +Bi(αm, βm)uR(t) + Li (yR(t)− ŷR(t)) , (6)

where yR(t) = Di(αm, βm)xR(t), ŷR(t) = Di(αm, βm)x̂R(t) and i = 1, 2, . . . , r. (7)
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Thus, the overall machine learning fuzzy controller and machine learning fuzzy observer
can be written as:

uR(t) = −

r∑
i=1

wi(xR(t), αm, βm)Kix̂R(t)

r∑
i=1

wi(xR(t), αm, βm)

, (8)

˙̂xR(t) =

r∑
i=1

wi(xR(t), αm, βm) {Ai(αm, βm)x̂R(t) +Bi(αm, βm)uR(t) + Li (yR(t)− ŷR(t))}

r∑
i=1

wi(xR(t), αm, βm)

, (9)

where

ŷR(t) =

r∑
i=1

wi(xR(t), αm, βm)Di(αm, βm)x̂R(t)

r∑
i=1

wi(xR(t), αm, βm)

. (10)

That means the control force could be regulated by the frequency of injected dither.
Therefore, we get

˙̂xR(t)

=

r∑
i=1

r∑
j=1

wi(xR(t), αm, βm)wj(xR(t), αm, βm)
{(

Ai(αm, βm)xR(t) − Bi(αm, βm)Kj

)
x̂R(t) + LiDj(αm, βm)

(
xR(t) − x̂R(t)

)}
r∑

i=1

r∑
j=1

wi(xR(t), αm, βm)wj(xR(t), αm, βm)

. (11)

The augmented systems can be derived by the following equation:

ẋRa(t) =

r∑
i=1

r∑
j=1

wi(xR(t), αm, βm)wj(xR(t), αm, βm)Ãij(αm, βm)xRa(t)

r∑
i=1

r∑
j=1

wi(xR(t), αm, βm)wj(xR(t), αm, βm)

, (12)

where xRa(t) =

[
xR(t)
x̃R(t)

]
, x̃R(t) = xR(t)− x̂R(t) and

Ãij(αm, βm) =

[
Ai(αm, βm)−Bi(αm, βm)Kj Bi(αm, βm)Kj

0 Ai(αm, βm)− LiDj(αm, βm)

]
. (13)

The premise variables xR(t) depend on the state variables estimated by the machine
learning fuzzy observer, which are unknown. The controller is

uR(t) = −

r∑
i=1

wi(x̂R(t), αm, βm)Kix̂R(t)

r∑
i=1

wi(x̂R(t), αm, βm)

. (14)

Moreover, a machine learning fuzzy observer is

˙̂xR(t) =

r∑
i=1

wi(x̂R(t), αm, βm) {Ai(αm, βm)x̂R(t) +Bi(αm, βm)uR(t) + Li (yR(t)− ŷR(t))}

r∑
i=1

wi(x̂R(t), αm, βm)

, (15)
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where 0 ≤ αj(t) ≤ 1,
n∑

j=1

αj(t) = 1. (16)

The closed-loop machine learning fuzzy relaxed system is rewritten as follows:

ẋR(t) =

r∑
i=1

r∑
j=1

wi (x̂R(t), αm, βm)wj (x̂R(t), αm, βm) {Ai(αm, βm)xR(t)−Bi(αm, βm)Kj x̂R(t)}

r∑
i=1

r∑
j=1

wi (x̂R(t), αm, βm)wj (x̂R(t), αm, βm)

, (17)

˙̂xR(t) =

r∑
i=1

r∑
j=1

wi
(
xR(t), αm, βm

)
wj

(
x̂R(t), αm, βm

) {(
Ai(αm, βm) − Bi(αm, βm)Kj

)
x̂R(t) + LiDj(αm, βm)

(
xR(t) − x̂R(t)

)}
r∑

i=1

r∑
j=1

wi
(
xR(t), αm, βm

)
wj

(
x̂R(t), αm, βm

) . (18)

Therefore, the augmented systems can be represented as follows:

ẋRa(t) =

r∑
i=1

r∑
j=1

r∑
s=1

wi(xR(t), αm, βm)wj (x̂R(t), αm, βm)ws (x̂R(t), αm, βm) ÃijsxRa(t)

r∑
i=1

r∑
j=1

r∑
s=1

wi(xR(t), αm, βm)wj (x̂R(t), αm, βm)ws (x̂R(t), αm, βm)

, (19)

where

xRa(t) =

[
xR(t)
x̃R(t)

]
, Ãijs(αm, βm) =

[
Ai(αm, βm)−Bi(αm, βm)Ks Bi(αm, βm)Ks

S1
ijs(αm, βm) S2

ijs(αm, βm)

]
,

S1
ijs(αm, βm) = (Ai(αm, βm)− Aj(αm, βm))− (Bi(αm, βm)−Bj(αm, βm))Ks

+Lj(Ds(αm, βm)−Di(αm, βm)),

and S2
ijs(αm, βm) = Aj(αm, βm)− LjDs(αm, βm)− (Bi(αm, βm)−Bj(αm, βm))Ks.

3. Neural Network Model for Chaotic Systems. From the discussion above, we
can infer that if the dither has a sufficiently large frequency and a proper membership
function in fuzzy relaxed system and dithered chaotic system is suitably chosen. This
enables a rigorous prediction of the stability of the closed-loop dithered chaotic system
by establishing that of the closed-loop machine learning fuzzy relaxed system.

A neural-network-based model is described as follows:

Ẋ(t) = ΨS
(
W SΨS−1

(
W S−1ΨS−2

(
· · ·Ψ2

(
W 2Ψ1

(
W 1Λ(t)

))
· · ·
)))

, (20)

where ΛT (t) =
[
XT (t) UT (t)

]
, with XT (t) = [ x1(t) x2(t) · · · xδ(t) ]. We assume

S layers and each layer has Rσ (σ = 1, 2, . . . , S) neurons, in which x1(t) ∼ xδ(t) and
u1(t) ∼ um(t) are the input variables. The notation W σ denotes the weight matrix of the
σth (σ = 1, 2, . . . , S) layer. The transfer function vector of the σth layer is defined as

Ψσ(v) ≡
[
T (v1) T (v2) · · · T (vRσ)

]T
.

The Neural Network Differential Inclusion (NNDI) system can be described in the
state-space representation (see Hu [23] and Liu et al. [24]) as follows:

Ẏ (t) = A(a(t))Y (t), A(a(t)) =
r∑

i=1

hi(a(t))Āi, (21)

According to the interpolation method and Equation (19), we can obtain:

Ẋ(t) =

[
2∑

ςS=1

hςS(t)G
S
ς

(
W S

[
· · ·

[
2∑

ς2=1

hς2(t)G
2
ς

(
W 2

[
2∑

ς1=1

hς1(t)G
1
ς

(
W 1Λ(t)

)])]
· · ·

])]
=
∑
Ωσ

hΩσ(t)EΩσΛ(t). (22)
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Finally, based on Equation (22), the dynamics of the NN model (18) can be rewritten as
the following Neural Network Differential Inclusion (NNDI) state-space representation:

Ẋ(t) =
r∑

i=1

hi(t)ĒiΛ(t). (23)

The NNDI state-space representation (23) can be further rearranged as follows:

Ẋ(t) =
r∑

i=1

hi(t){AiX(t)}, (24)

where Ai is the partitions of Ei corresponding to the partition Λ(t).
Based on the above modeling schemes for the NN-based approach, the nonlinear struc-

tural system can be approximated as an NNDI representation (24). The NNDI represen-
tation follows the same rules as the T-S machine learning fuzzy model, which combines the
flexibility of machine learning fuzzy logic theory and the rigorous mathematical analysis
tools of a linear system theory into a unified framework. To ensure the stability of the
TLP system, the T-S machine learning fuzzy model and the stability analysis are recalled.
First, the ith rule of the T-S machine learning fuzzy model, representing the structural
system, can be represented as follows:
Rule i: IF x1(t) is Mi1 and · · · and xp(t) is Mip,

THEN Ẋ(t) = AiX(t) + ĀiX(t− τ) + Eiϕ(t), (25)

where i = 1, 2, . . . , r and r is the rule number; X(t) is the state vector; Mip (p = 1, 2, . . . , g)
are the machine learning fuzzy sets and x1(t) ∼ xp(t) are the premise variables. Through
using the machine learning fuzzy inference method with a singleton fuzzifier, product
inference, and center average defuzzifier, the dynamic machine learning fuzzy model (25)
can be expressed as follows [16,17]:

Ẋ(t) =

r∑
i=1

wi(t)
[
AiX(t) + ĀiX(t− τ) + Eiϕ(t)

]
r∑

i=1

wi(t)

=

r∑
i=1

hi(t)[AiX(t) + ĀiX(t− τ) + Eiϕ(t)].

4. Example. In order to verify the feasibility of our approach in a practical physical
system, a modified Chua’s circuit system is considered as follows [3]:

ẋ1 = p(x2 − f(x1)) = p

(
x2 −

1

7

(
2x3

1 − x1

))
ẋ2 = x1 − x2 + x3

ẋ3 = −qx2

(26)

where p > 0 and q > 0 are system parameters; x1 and x2 are the voltages across two
capacitors; and x3 is the current through the inductor. According to the tests in [3],
the system parameters (p = 10, q = 100/7, and the initial condition 0.65) would make
the uncontrolled modified Chua’s circuit (26) exhibit a chaotic attractor (as shown in
Figure 2); specifically the so-called double scroll attractor. Therefore, a dither d(t) with
sufficiently high frequency is added in front of the nonlinearity f(·) to eliminate the chaotic
motion. Hence, the modified Chua’s circuit with dither can be written as follows:

ẋ1(t) = 10(x2(t)−f(x1(t)+d(t))); ẋ2(t) = x1(t)−x2(t)+x3(t); ẋ3(t) = −100

7
x2(t) (27)
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Figure 2. Phase portrait of the Chua’s circuit

We try to find a dither signal for the modified Chua’s circuit in the form of a square-
wave. Based on (3), the corresponding relaxed model of the dithered Chua’s circuit (27)
is established as the following equations:

ẋ1r(t) = 10 (x2r(t)− α1(t)f(x1r(t) + β1(t))− α2(t)f(x1r(t) + β2(t))) ;

ẋ2r(t) = x1r(t)− x2r(t) + x3r(t); ẋ3r(t) = −100

7
x2r(t)

(28)

in which

α2(t) = 1− α1(t), (29)

α1(t) = 0.5, α2(t) = 0.5, (30)

β1(t) = −β2(t) = A, (31)

where A is a real constant number. Substituting (30) and (31) into (28), we have

ẋ1r(t) = 10

(
x2r(t)−

1

7
(2x3

1r(t) + 6A2x1r(t)− x1r(t))

)
;

ẋ2r(t) = x1r(t)− x2r(t) + x3r(t); ẋ3r(t) = −100

7
x2r(t).

(32)

Every temporary state of the inverted pendulum system can be decomposed by fuzzy
IF-THEN rules; by combining all decomposed fuzzy IF-THEN rules, the whole nonlinear
system can be approximated. Similar schemes can be found in previous studies. Hence,
the approximated nonlinear system via T-S fuzzy model is decomposed as follows:

Rule 1: IF x ≥ π
3
, THEN ẋ = A1x̃+B1u; Rule 2: IF x ≈ π

90
, THEN ẋ = A2x̃+B2u.

We approximate the nonlinear function g(vC1) by a fuzzy model. A fuzzy approximation
method, proposed by [14,15], is used to approximate the nonlinear function. The nonlinear
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function can be exactly described by a fuzzy model,

g1(vC1) ≤ g(vC1) ≤ g2(vC1).

By means of Laypunov’s direct method, one can get that the relaxed system (32) is
asymptotically stable if A (the amplitude of dither) is greater than 1.65. Here, we let the
frequency of the symmetrical square-wave dither be 2000 rad/s and plot the bifurcation
diagram (maxima of x1(t) versus A) of the dithered Chua’s circuit (27) in Figure 3. It
shows that the dither with amplitude greater than 1.65 can convert the chaotic motion
into a steady state. When the symmetrical square-wave dither with A = 1.7 is added
after 60 seconds, the time responses of x1(t) for the relaxed system (11) and the modified
Chua’s circuit with dither (ω = 200 rad/s and ω = 2000 rad/s) are shown in Figure 4.

Figure 3. Bifurcation diagram with a symmetrical square-wave

We can see from Figure 4 that the system converges to a steady state after injecting
the dither signal. The phase portrait of the relaxed system (11) with A = 1.7 is shown
in Figure 5. Moreover, Figure 6 and Figure 7 are the phase portraits of the modified
Chua’s circuit with a symmetrical square-wave dither (A = 1.7, ω = 2000 rad/s) and a
symmetrical square-wave dither (A = 1.7, ω = 200 rad/s), respectively. It is obvious that
the trajectory of the dithered Chua’s circuit system is approximated by the trajectory
of its corresponding relaxed system and the approximation improves as the frequency
of dither increases. This fact enables us to get a rigorous prediction of the dithered
chaotic system’s behavior by establishing that of the relaxed system. The results should
be generally applicable to other chaotic systems as the principle is the same.

5. Conclusions. A novel fuzzy controller for chaotic systems is proposed in this paper.
If a fuzzy controller cannot stabilize the chaotic system, a dither, as an auxiliary of the
controller, is injected into the chaotic system and then the chaotic system is stabilized
asymptotically by regulating the dither’s parameters. In this study, a fuzzy controller
and a fuzzy observer are proposed via the parallel distributed compensation technique to
stabilize the chaotic system.
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Figure 4. Time responses of the state x1

Figure 5. Phase portrait of the relaxed system with A = 1.7
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Figure 6. Phase portrait Chua’s circuit dither (2000 rad/s)

Figure 7. Phase portrait with a symmetrical square-wave dither
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