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ABSTRACT. This paper presents a formal verification method for asynchronous circuits.
Previously, formal verification methods for asynchronous circuits were based on state
exploration, and have weaknesses of “state explosion problem”. When a state explo-
ston occurs, the verification result is not provided. In contrast, our method is based on
theorem-proving which guarantees correctness of a circuit by given formal proofs. Those
formal proofs require consistency; that is undertaken by a proof-checking algorithm. This
algorithm will complete in linear time relative to the size of a proof. Thus, proof-checking
will terminate in any case, and the verification result is always available on our method.
Keywords: Formal methods, Proof theory, Modal logic, State explosion

1. Imtroduction. Asynchronous circuits demonstrate several advantages over synchro-
nous circuits as follows. First, their performance speeds become faster. The speed of a
synchronous circuit is determined by the worst delay between flip-flops among the circuit;
thus some elements in the circuit have to wait for completions of the others. Mean-
while, elements do not need to wait for the others in an asynchronous circuit as the name
suggests. Calculations by asynchronous circuits can conclude faster than those by syn-
chronous circuits. Secondly, their power consumption becomes lower. In a synchronous
circuit, flip-flops operate at every clock edges, and each time they latch the data sig-
nals even if the signals are unchanged. On the contrary, an element operates only when
its input signals change in an asynchronous circuit. Therefore, in general, asynchronous
circuits consume less than synchronous circuits. In addition, five more advantages are
pointed out in Chapter 15 of [1].

In spite of the advantages above, asynchronous circuits are currently recessive compared
to synchronous circuits in the industry. One of the central reasons is a difficulty in an
early stage of a design process. In a synchronous circuit, a designer just determines logical
functions between flip-flops. In contrast, a designer of asynchronous circuits has to con-
sider not only logical functions but also the operation order of the functions. This brings
the difficulty on early designs of asynchronous circuit; thus the designs have been only
allowed to the experts who can manage both functions and their order. One proposed
solution to this problem is to employ formal verification methods to check demanded
properties of asynchronous circuits. A formal verification reduces the designers’ burden
because they ease correctness checking of a circuit. Even if a designer has no confidence
in the design, a formal verification guarantees correctness instead. For this purpose, a
number of formal verification methods have been proposed, but all of them have a defect
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of “state explosion problem” as follows. The methods are based on state exploration, a
kind of enumerate method; thus they might give up reaching the result when all compu-
tational resources were spent. In other words, if the size of a design under verification
(DUV) is relatively larger than power of computational resources for verification tools,
a designer cannot get the verification result. This problem prevents taking advantage
of asynchronous circuits; thus we need a scale-robust method, which means ready for
variously-sized DUV, of formal verification to conquer the problem. With a scale-robust
verification method, it compensates the difficulty of asynchronous circuit designing, and
then we will gain efficiency of performance speed and power consumption as mentioned
above.

This paper presents a verification method, or a property checking method, for asyn-
chronous circuits, and the method enables formal verification regardless of DUV size and
power of computational resources. The foundation of our method is theorem-proving, in
which a proof certifies correctness of a DUV. A proof had to be given by hand, and the
size of a proof is linear to the size of a DUV. Then proof-checking algorithm will complete
in linear time relative to the size of a proof. This leads the algorithm is scale-robust, and
therefore the verification result is always available in a theorem-proving manner, in con-
trast to conventional methods having the problem of state explosion. It became possible
to apply theorem-proving to asynchronous circuit verification by reconstructing a circuit
model in modal logic [2], a kind of logical system. Modal logic involves temporal logic,
which is well known as a basis theory of assertion languages for synchronous circuits, and
modal logic is described by using possible worlds and relations between the worlds. From
this point of view, we regard a signal at a time point as a world, and the relations between
the worlds represent abstract passages of time; this makes available to verify circuits even
if actual delay values have not been determined.

The rest of the paper is organized as follows. Section 2 presents related works. Section 3
provides theoretical preliminaries, with which the basis theory of our verification method
is built in Section 4. Section 5 expresses discussions, which includes an issue of validation
of the theory. Section 6 demonstrates a verification example on our method: the DUV is
an asynchronous FIFO (First-In, First-Out) circuit, as a small but practical one. Although
we have not built a whole verification tool of the method, an experimental implementation
on a theorem proving language is demonstrated in Section 7. The conclusions are provided
in Section 8.

2. Related Works. Asynchronous circuits are often classified according to conditions in
the delay; for example, delay-insensitive circuits are independent of the delay of wires or
gates. However, we do not assume any conditions on the subjects in this paper. For this
kind of non-specific class circuits, a number of formal verification methods were proposed:
some representative examples of them are for Timed Petri Nets [3, 4], for Transition
Systems [5], and for Process Spaces [6]. All of them regard circuits in a perspective of
state representations, and an exploration of the state space corresponds to a verification.
State spaces grow exponentially with the increase of the DUV size; thus these methods
are obliged to fail when the computation environment lacks resources. The problem is
known as “state explosion”. In order to conquer the difficulty of asynchronous design, it
is required to obtain formal verification methods without the state explosion problem.
Theorem-proving has been applied to circuit verifications since the 1980s [7, 8, 9, 10].
These studies are only for synchronous circuits because discrete time is able to manipulate
easily in a formal manner. In contrast, asynchronous circuits essentially require real
number as background time, and real number is hard to treat in a rigorous manner; it is
well known that real number is represented by approximated values in almost all computer
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systems. This paper introduces a logical system to represent abstract time, a substitute
for real number, with which a behavior of an asynchronous circuit is able to be described.
The logical system, named modal circuit logic, is provided in Section 4.

3. Preliminaries. In order to define our logical system in the next section, this section
introduces two notions: categories from category theory [11], and frames for modal logic
[2]. Then we also define graph generated categories, which will play an important role in
our theory.

Definition 3.1. (Categories)

A category (O, M) consists of a set of objects O, a set of morphisms M, and implicit
four functions: the first and second function assign to each f € M 1its domain dom f € O
and its codomain cod f € O, respectively. If dom f = a, cod f = b, then we write

f:a—b or alsb

to indicate morphism f. The third function assigns to each a € O a morphism id, € M
called the identity morphism of a, and the last function makes a composition with assigning
to any f and g of morphisms such that cod f = dom g, f-g:domf — codg (notice order
of that notation). These functions are required to satisfy the following axioms:

e f=1Ff, [ride=f
(f-9)-h=Ff-(g-h)
Definition 3.2. (Frames)
A pair (W, {R;}icr), here I is an index set, of following is called a frame.

o W is a non-empty set of possible worlds.
e Fach R; is a binary relation on W, called accessibility relation.

Such a frame (W, {R;};c;) introduces a multi-modal logic: based on W and modal
operators are determined by {R;}ier [2].

A netlist circuit, that combines components and their connectivity information, is also
considered as a directed graph: a vertex/arc of the graph is a component/signal respec-
tively. However, we point out another interpretation of circuits into directed graph: a
vertex/arc is regarded as a signal/component respectively, by dividing a component into
the number of its paths. We call the result of this interpretation “signal-vertex graph”.
Figure 1 illustrates two kinds of graph description: in the signal-vertex graph, AND,_.
denotes the path on AND from a to c. We employ signal-vertex graphs for our purpose,
and we can assume that graphs have connectivity without loss of generality.

We consider a given circuit as signal-vertex graph G = (V, A), a pair of vertex set and
arc set. The relation between V' and A is represented by domain and codomain function:
for a € A, dom a gives its domain vertex, and cod a also gives its codomain vertex.

Definition 3.3. (Generated category)
For a signal-vertex graph G = (V, A), corresponding free category (O, M) is generated
by the recursive definition below.
1. A vertex v € V is also a member of O.
2. An arc a € A is also a member of M.
3. For ag,a; € M, a composition ag - a1 € M is defined when cod ag = doma,. Then
the domain/codomain of ay - ay is defined as domag/cod a; respectively, and the
composition operator follows the condition:

(f-9)-h=[f-(g-h).

LA category in this paper is equivalent to the small category in [11].
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4. For each v € O, an identity morphism id, exists in M, and follows the conditions:

idy-a=a, a-idy=a (a€ M).

5. For each a € M, an inverse morphism a™' is also included in M, defining doma™" :=

coda and coda™" := doma, and follows the conditions:

a-a " =idepga, & 0= 1dgoma-

The last clause is not usually included in commonly-used definition of free category
[11].

AND INV
a— ¢ .
b _/

a AND INV
"\\. c o d
/"

netlist type graph

\ c INV d

—N .o
b.ﬁ

signal-vertex graph

FiGure 1. Graph interpretations

4. Modal Circuit Logic. This section describes a logical system, named Modal Circuit
Logic, in which we can express circuit behaviors. The definitions of modal circuit logic
require the notions of frames and graph generated category which are given in the previous
section.

4.1. Frames for modal circuit logic. The next definition determines a logical system
as a type of modal logic.

Definition 4.1. (Frames for modal circuit logic)

For signal-vertex graph (V, A), its generated category (O, M) and an object o € O, we
build a frame (W, {R;}icr) as follows.

e Let possible worlds W be a set of morphisms {f € M|dom f = o}.

e Let index set I be a set of Arcs A.

e Fori € I, let accessibility relation R; := {(w, w - i)|w € W, codw = dom i}.
We call this “frame at o”.

Let us take a look at two examples of frames.

Example 4.1. (Graph, generated category and frame)

An example of concepts above is given in Figure 2. At the top of the figure, a circuit
Cy is shown, and the next Graph(Cy) denotes the signal-vertex graph of Cy. Graph(Cy)
has arcs of *AND, ,AND and INV : *AND denotes the upside path on AND from a to
¢ and also LAND denotes the downside path from b to c. Then free category Cat(Cy) is
generated as at the middle of the figure: each object a, b, ¢ and d has identity morphism
respectively, and there are compositions and inverse morphisms of original arcs. The
frames determined by circuit Cy are at the bottom of the figure, displayed as Frame(Cy, )
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for each frame at x (where x is a signal on Cy): the nodes correspond possible worlds and
the arrows correspond accessibility relation. In detail, on Frame(Cy,a) in particular,
from world id,, it is accessible to world *AN D by relation R-anp because R« np includes
(idq, *AND) by its definition, and so on. However, every Frame(Cy,x) of four conforms
to Graph(Cy); thus no additional structures are found by category generation and frame
formulation. To conclude, this is a trivial example from our perspective.

Co:
a C
b D—l >0—— d
Graph(Cy): “an,
xc INV d
D/J\ND/'
Cat(Co):

&
a *ANp ide ida
\0 -y 0
’AND-.AND"I LAND [ d
Gb
iy <AND-INV

Frame(C,, a): Frame(C,, €):

*AND!

%-

INV . INV

*AND = *AND-INV ide———— Inv
’}%

ida%
/
*AND: - AND"! W «AND!

Frame(C,, b): Frame(Cy, d):
+AND-*AND? *AN.D INV-1-*AND-t ‘AND
\ NV \ NV .
WAND m—  AND-INV INY ——jidy4
idb.h%’ ._&%'

INV-1- JAND-t

FiGurEe 2. Example of graph, generated category and frame

We have non-trivial example below.

Example 4.2. (Non-trivial frame)

The second example of graph and generated category is given in Figure 3. Circuit
Cy and Graph(Cy) are illustrated in a similar manner to Example /.1. Free category
Cat(Cy) is generated as the middle of the figure: each object a,b, ¢ has identity morphism
respectively, and between any two objects, there are infinite morphisms. Focusing on a to
¢ in particular, the lower part of the figure shows some of basic morphisms.

The determined frame Frame(Cy,a) is shown as in Figure 4. From world id,, it is
accessible to world INV by relation Rrnv, and so on. As a whole, Frame(C,a) has

additional structure when it is compared to Graph(Cy). We will apply such a frame to
analyzing circuit properties.

4.2. Inference rules. To investigate a behavior of circuits, we have to consider propo-
sitions on a signal and their satisfiability.
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C;: . E b
C

Graph(C,): b

o I

<AND

Cat(C,): r

- b -

e ———————J§d
= ————————— 4

INV-*AND

/\ INV-*AND-( AND-1-INV- *AND)
a c

+AND:(*AND-1-INV-1+ LAND)

>

>

a

//\ INV-*AND- (. AND"1-INV - *AND])+ ( L AND!-INV- *AND)

CAND-(*AND-1-INV-1- JAND) - (*AND 1 INV-1- ,AND)

c

FIGURE 3. Second example of graph and generated category

Definition 4.2. (Satisfaction)
For given frame F = (W,{R;}ic1), world w in W and proposition P at w, we introduce

following denotation:
F, wl- P.

which means P holds at w under F'. Frames might be omitted when it is clear from its
contexts.

Back to circuit €' in Figure 3. When one considers the circuit under the notion of zero
delay, it holds that “if @ = 0 then b =1 because of a function of INV”. Taking this idea
into our frame, we could state that “if the signal value is equal to 0 at world id,, then
the signal value is equal to 1 at world INV caused by relation R;ny”. We denote this as
follows:

1dg IF 0
INV IF1°
The upper part indicates a premise, and in which 0 means proposition “is equal to 0”.
The lower part is a conclusion. At this point, we propose a point of view: world INV is
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Frame(C,, a): .

.
INV-*AND- LAND-1-INV-*AND
~P~.ND

\

INV-*AND-«  AND - INV

\

INV-*AND- LAND!

*ANp
INV-*AND
e
INV
wy
ida
;AMJ
<AND
.t
+AND-*AND-1
W

\

«AND-*AND-1-INV-!

*ANp

. +AND-*AND-L-INV-1- LAND
L]
.

FIGURE 4. Frame of C;

TABLE 1. Inference rules for INV and AND

wlF0 .
w0 w-*ANDIFo P
WU N
w-INVIF1
_wlk0
—— INV;
“INV IFO
v w-*AND-'IF1 w- ,AND-'I-1
AND
wlF1

accessible from id, with Ryyy, and then in the real circuit, it is regarded as “signal b after
passing through INV gate is determined by signal a at the moment”. With this idea, all
inference rules about €'} are introduced as shown in Table 1, where at the right of each
rule, an identity of the rule is given. Notice that rules are applied only in the worlds; thus
an inference rule does not make sense when it does not fit the worlds. For example, rule
1INV, cannot be applied for w = ,AND because xAND - INV does not make sense.

Example 4.3. (Property inference)
Consider circuit Cy in Figure 2 with condition a = 0, following inference is introduced.
idg IF 0
*AND IFQ
*AND -INV IF 1

The last world *AND-INYV represents signal d, and thus this concludes “d becomes 17. It
18 helpful to illustrate such an inference in a diagram as shown in Figure 5. The vertezxes
denote properties and arcs denote inference rules.

*AND

INV,

4.3. Connection to an environment. To express properties on a circuit, we need
another worlds as an environment of it.
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a=0 *

A
% INVg

C=0 —d=1
FIGURE 5. Property inference on Cj

Definition 4.3. (Environments and connections)

An environment is a partially ordered set (E, R): a pair of a set E and partial order R.
For given frame (W,{R;}icr) at wy € W and such an environment (E, R), corresponding
connected frame is defined as follows:

e Let possible worlds be a Cartesian product E X W,
o Let accessibility relations be a direct sum of R and {R;}icr-

In symbolic expression, the connected frame is (E x W, R ® {R;}icr)-

If a frame is at w, the connecting point between an environment and the circuit becomes
w. Figure 6 illustrates an example of an environment and connection. Consider natural
numbers N and its normal order as an environment, and the frame of Cy at a, then the
connected frame is shown on the right side. Notice that one cannot connect more than one
world because two points connection might result in a contradiction of timing relations.

Enviroment (N, <):

Q 1 2 aew
connect

Frame of C, at signal a :

ida *Anp
INV

LpND

FIGURE 6. Example of environment and connection

4.4. Additional conditions. In closing of our definitions, we need two additional con-
ditions. First, generally, arbitrary accessibility relation determines partial order. For our
frames, we assume that for each signal a, the set {w € Worlds|cod w = a} has the nature
of total order in particular. Henceforth, we call it locally total order.

Secondly, for relation R of a frame, we also assume following linear condition.

Definition 4.4. (Linear condition)
For given frame (W, {R;}icr, R) and i € I,
aoﬂal, aoibo, bgﬁ)bl = ap E)bl,
R; R R; R
ag —r ay, a1—>b1, b0—>b1 = a0—>b0.
where ag, ay, by, by € W and cod ag = cod by = dom i, cod ay, = cod b, = cod .
Figure 7 illustrates this condition. These conditions, locally total and linearity, make

whole relations ({R;}ics, R) imitate a concept of time, as will be illustrated in 5.2.

5. Discussions. The previous section provided only the definition of modal circuit logic,
and therefore we have to discuss the validity and related issues in this section. There
are three subsections here as follows. First, we provide the relation to conventional delay
model, which validates modal circuit logic. Secondly, as a related issue, we propose an
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R.
0_"' a ao_"‘l ai
\ R 3R\ R
Ri
—" by bo=———>Db;

X 4 z
a !'Iﬁ
C
b A
yt+z

FIGURE 8. Gate- and wire-delay model and accessibility

approach to express timing constraints in modal circuit logic. Finally, computational
complexities of our method are also provided as a related issue.

5.1. Delay model. Conventional gate- and wire-delay models assume virtual delay ele-
ments at each gate and wire (see Chapter three of [1]). On the semantics of our method,
both of gate- and wire-delay are included in an accessibility relation as shown in Figure
8. The sum of wire-delay x and gate-delay z are regarded as the accessibility from a to c.
Thus our notion is broader than that of gate- and wire-delay model.

5.2. Representation of timing constraints. Back to circuit C) in Figure 3 again,
when “a = 0”7 and followed by “a = 1”7 are given to the input, generally it is unknown
whether output ¢ keeps 0 or a short pulse appears. In order to treat that kind of behavior,
we introduce relative timing constraints. Relative timing constraints have been adopted
on abstract circuit model in a metric-free manner such as [12] for Petri net and [13, 14]
for process space. For our method, relative timing constraints are defined as follows.

As we mentioned at Section 4.4, relations ({R;};cr, R) of our frame assume locally
total ordered and linear. Remarking on Frame(C) in Figure 4, there is a relation ei-

ther id, — w or w — id,, where w = ,AND - *AND ' . INV ! since locally to-

tal. Resulting from linearity, we obtain either {--- , w=! & w® w® & w! ...}, or,

{- w! Lo, w® E ot }, where w® denotes id,. Such a coherent order of {w bnez
is regarded as a relational timing constraint for the signal path a to ¢ of circuit C in Fig-

ure 3; {--- ,w™! Bow® w® Bt } indicates that the signal path from a through TNV
to ¢ is faster than the another wire path, and vice versa.

Example 5.1. (Analysis along with timing constraint)

About circuit Cy in Figure 3, when the signal path from a through INV to c is faster than
another one, the behavior is deduced as shown in Figure 9. Here, dotted arrow P --+ w
denotes “P holds until just before w.” In formal, P at wg --+ wy implies that for arbitrary
x in the world, if there exists wy — x and x — wy in the accessibility relations, then P
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.tP.ND
Y Premise
SA
a=0 -
¢.4ND
‘4"\"0
gﬂ" w—p\ND ————
N )
w Conclusion

FI1GURE 9. () analysis when INV is faster

;p.ND
N Premise
A ’
«AND a=0 ...é..... 1 cervneam
b B,
Y. 1
o 3
2
“Z *
@)
el \ %
34 »pHD c=0 e PR (SR
Wy -
Conclusion

FiGure 10. C] analysis when INV is slower

also holds at x. From the condition, we have A at the upper left of the figure, and we also
have A" at the lower left by linearity. Then the input hypotheses, that indicate a wave
changes its value from 0 to 1, lead c is always 0 as the conclusion. Meanwhile, when the
stgnal path through INV is slower than the other, the behavior is deduced as shown in
Figure 10. The existence of A is introduced, and the conclusion has a short pulse.

We will describe verification example for a more practical circuit in the next section.

5.3. Computational complexities. Since our aim is to avoid state explosion problem,
we have to investigate the computational complexity of our method. Assuming a proof
has given, the issue is about the complexity of the proof-checking process. For example
on circuit 'y in Figure 3, each step of a given proof has to fit to one of the rules in
Table 1. In general, the proof-checking is an iteration of matching check against rules,
and that iteration goes through the whole steps of a proof. The computation amount of
each matching check depends on a number of rules, a constant for the circuit. Therefore,
proof-checking will complete in linear time relative to the size of a proof; in other words,
our method has a linear complexity.

6. Verification of Asynchronous FIFO. This section presents a verification example
of asynchronous FIFO (First-In, First-Out) circuit, by using modal circuit logic defined
in Section 4. Our target circuit is asynchronous FIFO by Molner et al. [15], demon-
strating throughput of 930 million data items per second using 0.6 micron process. In
[15], they adopted an analog simulator to verify the circuit, and thus they have not done
any exhaustive verifications. As far as timing constraints are concerned, they were built
according to an outcome of the simulator in an ad hoc manner. In contrast, using our
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modal circuit logic, we can verify the FIFO along with some timing constraints without
any test patterns. This means an exhaustive verification becomes available.

6.1. The FIFO under verification. Molner’s asynchronous FIFO is shown in Fig-
ure 11. The whole circuit consists of a series connection of the Units; each Unit con-
tains D-Latch, RS-FF (Reset-Set Flip-Flop) and ANDN (one-side-negated AND gate).
Though the FIFO was represented with transistors and gates originally in [15], we adopted
a relatively-coarse interpretation by using latch and FF. These are minimum elements of
our verification. Signal D indicates data, R(@) indicates a request for latching the data,
and ACK indicates an acknowledgment of completion of latching.

=+ Dout

Unit b= Empty (=RQ)
— Read (=ACK)

Din — —
write (=RQ) —o  Unit f= Unit
Full (=ACK) *=] —

RS:
til

ANDN RS-FF
s QF——> rQ
RQ .

ACK <4 ACK

FiGUuRrE 11. Molnar’s asynchronous FIFO

Its behavior is described as follows. We assume that all RQs and AC Ks are stabilized
at 0 at the beginning. It follows that D-Latch is transparent. When R() = 1 comes from
left-hand unit, ANDN sends ACK =1 to left-hand unit. Meanwhile RS-FF is set, then
R = 1 is sent to right-hand unit and D-Latch holds the current data. Later, when
ACK =1 is reached from right-hand unit, D-Latch turns back to transparency. To wrap
up, this sequence forms that latching data from the left and passing data to the right.

Next, we should express local properties of each element on modal circuit logic. Prop-
erties of ANDN are shown as in Figure 12, where ; and p denote left- and right-hand
side, *YANDN denotes the path from inverted input to the output, and ,ANDN denotes
the other path. For RS-FF', properties are shown as in Figure 13. The lowest part rep-
resents holding state, in which, reg denotes a feedback-loop that is supposed to included
in RS-F'F', and it works as a value holder. We assume a delay value of reg is sufficiently-
smaller than the others. In the case of D-Latch, its properties are shown as in Figure 14:
the upper part represents transparent state and the lower part represents holding state.
Note that we use same name reg for RS-FF' and D-Latch, but they are different; and
one can distinguish them by the world of its domain or codomain.

Finally, we will give a whole image of a frame of the FIFO, as in Figure 15. It describes
relations on three consecutive units and each dotted line separates them. (We substituted
dotted lines for previous ;/ notation.) These D and R(Q have self-referential arrows that
denote reg, feedback-loops.

6.2. Timing constraints required. This subsection describes timing constraints which
is required for proving a desired property. (The “desired property” will be discussed in
the next subsection.) These constraints have been built during a course of deductions we
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ANDN
—
" RQs

Ak 4 ACK =1 —=2— RQg=1
RQr=1 —228 5 ACK, =0 ACKp=1—="2—> RQz=0
RQ=0 === ACK =0 RQgr=a

RQr=0 ~2Noy S'Q\?‘

> ACK,=1 ACKL=07 RQr=a
RQL= 1 ‘hNDN ACKR =0 9‘-’0‘

FIGURE 12. Properties of ANDN FIGURE 13. Properties of RS-F'F

D-D
D,=a —— Dy=a

RQR=O
D2 p2p?
2 P
'8,
N _— RQ°  RQ®  RQ°
)
< l ,//' lT,//' T
RQu=1 ACK = ACK = ACK
FIGURE 14. Properties of D-Latch FIGURE 15. Whole image of
a frame
D-Latch

fo

RS-FF ANDN

RS-FF

_ =
™ =

FIGURE 16. Timing constraint A

had; when we felt impossible to reach the target property due to an absence of hypothesis,
we suggested that some timing constraints were needed.

Timing constraint A: One of required constraints is described with Figure 16. From
the branch point of R(Q), the dotted path which goes up, then goes through the left
D-Latch, and finally gets to the right D-Latch’s output, must be faster than the
dashed line which goes right and also gets to D-Latch’s output. This constraint
provides that the right D-Latch should take data after being delivered valid ones
from the left D-Latch.

Timing constraint B: The other constraint is described with Figure 17. From the
branch point of ACK, the dotted path which goes right and gets to the right
D-Latch’s output, must be faster than the dashed line which goes down, goes through
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D-Latch
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a few elements, then also gets to the D-Latch’s output. It provides that the right
D-Latch should take data before finishing holding state of the left D-Latch.

In order to prove in the next subsection, we need to arrange these constraints. We can
redraw constraint A on a frame as in the upper left part of Figure 18. There exists A
because the clockwise path from R(Q) is faster than the other. Then, we can transform the
existence as from left to right in the figure. As in the upper right of the figure, there also
exists an accessibility relation before reg by linear condition we assumed: the top part of
the figure explains it in detail. At last, we obtain A; as in the lower part of Figure 18.
We will use A; in a process of an inference in the next subsection.

Meanwhile, about constraint B, an original expression is shown in the left part of Figure
19. Asin the right of the figure, we definitely obtain A, which is also used for a verification
of the FIFO in the forthcoming subsection.
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6.3. Reasoning as a verification. We describe a verification example on the asyn-
chronous FIFO. In our logical system, modal circuit logic, reasoning corresponds to a
verification; and a proof corresponds to an evidence of correctness.

One of required properties for the FIFO is that “under the circumstances of stability,
when data and RQ) = 1 are given, the data will be taken by the D-Latch of the next unit
after a reasonable period of time”. Here “stability” is defined as “R() = 0 and ACK =0
everywhere”; in the condition, all D-Latch have transparent states. We will prove the
claim as discussed below.

The proof outline is shown as in Figure 20. There are the premise “data and RQ =1
are given” at (1), as D = a and RQ = 1 during each appropriate period. RQ = 1 leads
(2) ACK =1 by the lowest property in Figure 12 and stability assumption. Then it turns
(3) RQ back to 0 and activates (3’) RQ = 1 in the next unit. Where the relations at
asterisks(*), their existences come from a shortness hypothesis for reg. Next we use A;
and A, from the previous subsection, as if pinching the principal D = a, which leads up
to the (4) conclusion. In fact, it is deduced by the upper and lower property in Figure
14 in sequence. The conclusion is placed over (3’) RQ) = 1, which means D-Latch holds
and also implicates “the data are taken”. Thus the claim is proved along with timing
constraints A and B.

7. Implementation in a Theorem Proving Language. This section describes an
example implementation of the system of modal circuit logic. In the previous section,
we demonstrated a verification and its inferences are developed in a natural language.
Since our aim is formal and rigorous verification, any obscurity should be excluded; for
example, any leaps in logic should be avoided. Here we propose a solution: building our
logical system in theorem proving language, in which inference processes will be confirmed
accurately. Our implementation is in Agda [16], a theorem proving language and also a
functional programming language.

7.1. Implementation of definitions. In order to represent circuits and frames, we
adopt a concept of Arrow [17] as a basis of our implementation. Arrow is a class of func-
tional programming language Haskell, or a framework for expressing some sort of abstract
calculations. On it, a calculation is expressed in a combination of lesser calculations with
the operators shown as in Figure 21. We use these operators to represent circuits and
frames.
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In Arrows manner, circuit definition in Agda is as follows.

data Arrow where
pure : (A — B) — Arrow A B

_>>_ : Arrow A B — Arrow B C
— Arrow A C
_*x_ : Arrow Ay By, — Arrow A, B,

— Arrow (Ao X A; ) (By X By )
first : Arrow Ay By

— Arrow (Ag XAy ) (Bg XBy )
loop : Arrow (A X C) (B X C)

— Arrow A B

Next, frames are defined as an extension of Arrow: by adding following to

id : ExArrow A A

Ll : ExArrow (A, X A; ) B — ExArrow A, B
R| : ExArrow (A, X A; ) B = ExArrow A, B
IL : ExArrow A (Bg X B; ) — ExArrow A B,
IR : ExArrow A (By X B; ) — ExArrow A B,
- : ExArrow A B — ExArrow B A

ExArrow represents frames: for example, ExArrow A B represents a path, or accessibility
relation, from world A to world B. id is a path to itself. When f : Arrow (Ao, XA, ) B,
L|f denotes the path from A4 to B, qualified its input to left-hand. The denotation “-”
makes it inside out.

In addition, we introduce an equation of ExArrow as follows.

data _=_ : {A B : Set} —
ExArrow A B — ExArrow A B — Set; where
refl : {A B : Set}{f : ExArrow A B} —
f =1
symm : {A B : Set}{f g : ExArrow A B} —
f=g—2g=f
trans : {A B : Set}{f g h : ExArrow A B} —
f=g—=>g=h—>f=h
assoc : {ABCD : SetHf : ExArrow A B}
{g : ExArrow B C}{h : ExArrow C D} —
(f >>g) > h = £ > (g > h)
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where expressions enclosed by “{}” denotes implicit arguments in Agda. The equation =
is defined as in the nature of reflectivity(refl), symmetry(symm) and transitivity(trans).
assoc determines associativity of >>.
In fact, the definition of ExArrow contains the opposites of accessibility relations to
form worlds of frames, but we have to distinguish them after all as follows.
data Positive : {A B : Set} —
ExArrow A B — Set; where

pure :
{A B : Set} —
(f: A—=>B) —
Positive (pure f)

pure indicates that all paths from the circuit under verification should be positive.
Finally, we define PROP for express properties, or propositions.

data PROP : {A B : Set} —
Time — ExArrow A B = B — Set,; where

pure : {t : Time}{A B C : Set} —
{f : ExArrow A B}{g : B = C}b : B} =
PROP t £ b = PROP t (f >> pure g) (g b)

PROP takes time, accessibility relation and output value, then returns a set. For given
t : Time, r : ExArrow A Band v : B, if PROP t r v has any elements, it means that
proposition v holds at the world where reached from t through r. pure expresses that
when PROP t f b holds, then g b also holds after g.

7.2. Verification example. We demonstrate a verification example here. The DUV is
C in Figure 3, and we show the deduction at the right-side of Figure 9 again. We show
that: assuming the signal path from a through TNV to c is faster than the another wire
path, when the input wave is given, c is always 0.
The timing constraint is represented as follows.
record Constraint : Set,; where
field

Delta : ExArrow Bool Bool

posDelta : Positive Delta

conEq :

Delta >> fork |L >> INV >> L| AND = fork |R >> BUF >> R| AND

Delta is a positive ExArrow, and satisfies the equation as shown in the lower left of Figure
9.
Input waves are represented as follows.
record Input : Set, where
field
inpe
{f : ExArrow Bool Bool} —
Positive f —
PROP t (- f) false
inp,
{f : ExArrow Bool Bool} —
Positive f —
PROP t f true
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t indicates the changing point of the values, as a world in the environment. Before t,
false is given by inpyg, and after t, true is given by inpj.

On the premises above, we deduced two theories below; in words of Agda, proof terms
were obtained and type-checking passed.

Th
(f : ExArrow Bool Bool) —
4 (A g = Positive g X (f >> - (R| AND) >> g = - A)) —
PROP t £ false

Th,

(f : ExArrow Bool Bool) —
3 (A g — Positive g X (f >> - (L| AND) >> - INV = g)) —
PROP t £ false

Tho expresses a case that R| AND dominates output, and Th, expresses the other case
that L| AND dominates output. Reverting to Figure 9, on the right side, Th, indicates
the left half of conclusions, and Th, indicates the right half. Therefore, our method is
basically implemented in a theorem proving language. However, some issues are pointed
out in the next subsection.

7.3. Issues on the implementation. On the implementation, we leave three issues.
First, since Arrow was adopted, we gave up a distinction of worlds. As the previous
subsection shows, all worlds have type Bool. It is convenient to define functions of gates,
but might bring confusion during reasoning. Secondly, proving needs non-negligible labor.
We wrote 24 lines total by the hand to prove Th and Th4. Although such a toy example
cost like that, proving labor will be a large problem toward the practical use. Finally, the
totality of the proof was not guaranteed. We proved Tho and Th, individually, and we
suppose these compose the demanded property, “c is always 0.”; but we could not prove
the final property in Agda at this point. There is no way to prove that Tho and Th 4 cover
whole worlds for signal ¢. In general, the problem is lack of a judgment algorithm for
worlds’ totality.

8. Conclusions. We presented a verification method for asynchronous circuits and a
verification example of an asynchronous FIFO on the method. The method is based on
a theorem proving manner; thus the state explosion problem is avoided on a fundamen-
tal level, and a verification result is always available regardless of the size of a design
under verification and computational resources. We also demonstrated an experimental
verification of an FIFO and an implementation of our logical system in theorem proving
language, and these show practical utility of our method. Although our method needs
hand-proving at this moment, this could be a practical barrier. Future works will attempt
to implement a description language and to automate proving on it.
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