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Abstract. Noise in medical images can adversely affect the outcome of clinical diag-
nosis. In analyzing medical images, noise estimation is necessary to ensure consistency
and performance quality of image processing techniques. In this study, we present a noise
estimation method, namely Adaptive Tuning Noise Estimation (ATNE) that implements
convolution Laplacian noise estimation. ATNE is based on subtraction of Gabor wavelet
detected edges of images, and involves the relation element based on the parameters of the
input image. This method allows a fast estimation of the image noise variance without a
heavy computational cost. To assess the effectiveness of ATNE, 1000 mammograms are
used. We pre-process these images to be Rician distributed with various noise variances.
ATNE is used to estimate the noise level of the resulting images. We compare ATNE
with other noise estimation methods, and the results show that ATNE outperforms other
related methods with a lower percentage of error for noise variance estimation.
Keywords: Image noise estimation, Rician noise, Medical imaging, Image processing

1. Introduction. Noise in images poses an irregular variation of the color information,
or brightness, in digital images, and it is usually a facet of electronic noise [1]. In medical
image analysis, noise variance estimation is needed to ensure consistency and efficiency
of image processing techniques. In addition, statistical analysis methods applied to MR
(magnetic resonance) imaging often depend on prior assumptions regarding the underlying
noise parameters [4,5]. Noise present in medical images may affect the diagnostic result of
the patient; therefore the importance of noise reduction especially for low quality medical
images. The performance of image processing methods such as image segmentation can
often be improved through noise reduction. However, most of the proposed noise reduction
methods are based on a predefined noise variance [4,5]. In this regard, noise estimation
can provide an adaptive mechanism for many image-processing algorithms, instead of
using fixed values for setting the noise levels.

Noise estimation is one of the most important factors in analyzing medical images.
The effectiveness of all known image processing techniques such as image registration,
segmentation, clustering, noise removal and restoration are affected by noise variance of
the image [6-8]. In most cases, it is vital to be able to correctly predict the noise level in
an image, in order to reduce noise effectively. When we are dealing with medical images,
certain types of noise may be mistaken as brain lesion. Noisy medical images may affect
the accuracy and precision of medical diagnostic outcomes.

Many methods for noise estimation have been suggested over the years. A noise esti-
mation method that uses the Principal Component Analysis (PCA) of image blocks was
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presented [2]. This patch based method shows that the lowest eigenvalue of the image
block covariance matrix can be estimated as the noise variance. It is faster and more
accurate in comparison with other similar methods. The method can successfully process
texture information in images, since it does not consider homogeneous areas in the image.
However, patch selection does not belong to homogeneous selection; therefore, stability of
the results varies. The method may cause under-estimation of the noise variance in cases
containing rich texture information and high noise levels, and over-estimation in cases
containing weak texture information and low noise levels.
Another patch-based method that selects the patches with the minimum standard devi-

ation among all decomposed patches was proposed [3]. The noise level is estimated based
on attributes of the selected patches. Even though the technique is efficient and simple,
it is more likely to underestimate the noise variance in cases with high noise levels, and
to false detect the noise level in cases with low noise levels. The reason might be the
selection of image patches is relying on input images and noise level.
Furthermore, a Weak Texture Patch based Noise Estimation (WTPNE) algorithm was

suggested [4,5]. The patches are produced from one noisy image. The noise variance
estimation method requires the selection of image patches using the PCA and weak texture
images. The algorithm is able to select low texture patches from single noisy image based
on the gradient of the patches and their statistics. The noise level is estimated from
the selected weak texture patches through PCA. This noise level estimation algorithm
outperforms other methods. The maximum eigenvalue of the covariance matrix of the
image gradient is used as the measurement metric for the strength of texture. Unlike
other state-of-the-art methods, the algorithm is independent of the environment, and
presents a significant improvement in accuracy and stability for a range of noise levels in
different scenes. However, this method does not achieve efficient accuracy in cases of low
noise levels and low texture patches.
A simple and rapid noise estimation method was presented [9]. The algorithm can

be used to give a local estimate of the order differential components in the image. The
algorithm uses a 3×3 mask and a summation over a local neighborhood or the image,
and requires 14 integer operations per pixel. It performs well for various settings of noise
variance. However, the method will considered thin lines in high texture images as noise.
A Region of Interest (ROI) based medical image compression algorithm using block-

to-row bi-directional Principal Component Analysis (PCA) is introduced in [28]. The
algorithm first segments the image into the ROI and the non-ROI using the segmentation
method based on the level set. Then, general PCA is applied to non-ROI region whereas
block-to-row bi-directional PCA is applied to ROI region in order to achieve desired image
quality while improving compression ratio.
At present, effective noise estimation methods for noisy images are scarce [1]. Several

reviewed methods showed drawbacks for their estimation methods [2,4,5] as mentioned
in [1]. Motivated by this challenge, we design a noise estimation method using Gabor
wavelet. It is based the noise estimation method in [9], with an adaptive tuning function
added. This noise estimation method implements Gabor wavelet edge subtraction to pre-
process noisy images. The method is applied to estimating the noise variance in medical
images. By using a different parameter setting for a Gabor wavelet, other useful fea-
tures pertaining to medical images can be extracted. The maximum element Convolution
Laplacian is implemented on image after Gabor wavelet edge subtraction operation. This
set of procedure promotes higher accuracy on noise estimation by deduction of affecting
factors such as image edges and lines.
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2. Problem Statement and Preliminaries.

2.1. Rician noise. In the work of [10], noise present in MR images belongs to the Rician
Probability Distribution Function (PDF). It is not considered as additive noise, as Rician
noise relies on the data. In order to add Rician noise to medical imaging, we simulate the
data to be Rician distributed [11]. MR signals can be acquired at quadrature channels.
An image formed by using the standard deviation of zero-mean Gaussian noise, σ0, is
used to degrade the signals. The combination of these images formed the magnitude part
of the image; therefore, the Gaussian noise PDF is changed into the Rician noise PDF.
We can express the joint probability density of noise as [12]

p(sr, si) =
1

2πσ2
0
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2πσ2
0

)
, (1)

where sr is the signal of Rician distribution while si denotes the input image original
signal.
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where I0 and I1 are the improved Bessel functions of order 0 and 1. The function
I1(x)/I0(x) is zero at x = 0.

Asymmetry of the Rician distribution leads to a non-constant intensity bias, which
relies on the local Signal-to-Noise Ratio (SNR). To lower such bias, one way is to remove
the bias in the squared magnitude image [13].

2.2. Gabor wavelet edge detection. Gabor functions can be modeled as different
filters, depending on the frequency and orientation settings [14]. Over the years, it has
been applied to many edge detection problems (REF). The 2-D Gabor wavelet filter is
actually a Gaussian kernel function, which can be regulated by a sinusoidal wave, as
follows.

G(x, y) = exp

[
−x2 + y2

2σ2

]
exp[jω(x cos θ + y sin θ)], (4)

where σ is the Gaussian function standard deviation in the y- and x- directions, ω denotes
the spatial frequency. The output of the Gabor filter ∅(x, y) is given by:

∅(x, y) = g(x, y)⊗ I(x, y), (5)

where ⊗ defines the 2-D convolution calculation.
The Gabor wavelet reacts to the edge of an image when the edge is in perpendicular to

the wavelet vector. The imaginary and real parts of ∅(x, y) oscillate with the characteristic
frequency when such an edge exists. Furthermore, the magnitude part of the filter response
can produce local properties of the image effectively [15]. The convolution of the Gaussian
function is represented by the Fourier transform of the impulse response of a Gabor filter.
The imaginary and real components of the filter represent an orthogonal direction [16].
These components may be associated into a complex number as in Equation (6), or can
be used separately as a real part as in Equation (7) or an imaginary part as in Equation
(8).

Complex:

G(x, y;λ, θ, φ, σ, γ) = exp
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Real:

(x, y;λ, θ, φ, σ, γ) = exp
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cos
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, (7)

Imaginary:

(x, y;λ, θ, φ, σ, γ) = exp

(
−x′2 + γ2y′2

2σ2

)
sin

(
2π

x′

λ
+ φ

)
, (8)

where, x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ, λ represents the wavelength of
the sinusoidal factor, θ represents the orientation of the normal to the parallel stripes of
the Gabor function, φ is the phase offset, σ is the standard deviation of the Gaussian
envelope, and γ is the spatial aspect ratio, which denotes the ellipticity of the Gabor
function.
The imaginary part of the Gabor filter is useful for edge detection [17]. Mostly, a group

of U × V Gabor wavelets is needed to perform multi-orientation and multi-resolution
analyses. {

φdiscrete(fu,θv ,γ,n)(x, y)
}
, (9)

fu =
fmax

u
√
2
,

θv =
v

V
π, u = 0, . . . , U − 1, v = 0, . . . , V − 1,

where θv and fu denote the scale and orientation of a Gabor wavelet, fmax is the maximum
central frequency while the factor of spacing among different central frequencies is 2.
Figure 1 shows a Gabor wavelet with 8 different orientations and 4 different scales.

Figure 1. The real part of a Gabor wavelet with 8 different orientations
and 4 distinct scales [18]

By using a different parameter setting for a Gabor wavelet, other useful features per-
taining to medical images can be extracted.

2.3. Fast Noise Variance Estimation using Convolution of the Laplacian oper-
ator (FNVECL). The Fast Noise Variance Estimation using Convolution of the Lapla-
cian operator (FNVECL) was introduced as a fast and simple noise variance estimation
method based on the Laplacian operator [9]. Figure 2 shows the flow of the method.
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Figure 2. The flow of fast noise variance estimation [9]

According to Figure 2, input image is processed through Laplacian operator. Then
the processed image matrix is processed through convolutional operation. Convolution
operates on two signals (in 1D) or two images (in 2D). In 2 dimensional practice, “input”
signal may refer to image, and the other (called the kernel) as a “filter” on the input
image, producing an output image. Hence, convolution takes two images as input and
produces a third as output. Averaging operation is applied to reduce the density of
intensity variation between neighboring pixels with integral image method. Each output
pixel contains the mean value of the 3-by-3 neighborhood around the corresponding pixel
in the input image. As suggested in [6], a noise estimator should be insensitive to the
Laplacian of an image, since the image structures such as edges have strong second order
differential components. The difference between two masks, M1 and M2 is applied to the
noise estimation operator, N , as in (12) [9].

The elements of M1 and M2 are

M1 =

 0 1 0
1 −4 1
0 1 0

 , (10)

M2 =
1

2

 1 0 1
0 −4 0
1 0 1

 . (11)

The noise estimation operator N is the mask operation:

N = 2(M2 −M1)

 1 −2 1
−2 4 −2
1 −2 1

 , (12)

which has zero mean and variance by assuming that every noise has a standard deviation
of σn.

Let I(x, y) ∗N represent the value of applying mask N at position (x, y) in image I.
By calculating the output variance of the N operator that is applied to image I, an

estimate of 36σ2
n at every pixel is produced, which can be averaged over a local neigh-

bourhood or the entire image to provide an estimate of the noise level, σ2
n. The standard
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deviation of the noise variance can be calculated as follows

σn =

√
π

2

1

6(W − 2)(H − 2)
Σimage I |I(x, y) ∗N |, (13)

where W and H are the width and height of an image, respectively.
Since there is no complex calculation involved in this method, it can produce the

estimated noise in a fast manner. This calculation uses one multiplication for an estimate
of the noise variance per pixel. This may lead to detecting lines as noise, and affect the
estimated noise level. As a result, we propose to include an edge detector to subtract
the detected edge lines from the image, in order to enhance the performance of the noise
estimation method in [9].

2.4. Adaptive Tuning Noise Estimation. Adaptive Tuning Noise Estimation (ATNE)
is implemented based on the fast noise variance estimation method in [6], with improve-
ment to the algorithm. Firstly, assume that the images are corrupted with noise by making
it Rician distributed. Then, perform edge detection on the images by using the Gabor
wavelet due to its adaptability. The Gabor wavelet parameters are set to 1 scale and 8
orientations for fast computation. Once the Gabor kernel based on the preset parameter
is obtained, it is used to filter the Rician distributed images, and to produce the edge map.
The acquired edge map is subtracted from the original image. The edge map generated
by the Gabor wavelet is applied to subtracting unnecessary lines and edges in the noisy
images. The edge lines of the images may influence the accuracy of noise estimation. So,
it should be excluded in order to achieve robust noise variance estimation.
We assume that there is a relation element between noise free images and noisy images.

This relation element is studied using 1000 DICOM images with different simulated Rician
noise variances, ranging from 0.01 to 0.20. Specifically, an image can be expressed in term
of an m× n matrix, as follows.

Image, I =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 = (aij) ∈ Rm×n. (14)

The global maximum element is identified from the whole image matrix. The maximum
elements of both noise-free and noisy images are plotted. Through the graphs of 1000 CT
images, we can observe a linear relationship, as shown in Figure 3.

Figure 3. A linear trend for the maximum elements of noise-free and noisy images
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From the experimental results, we notice that the slope and y-intercept change, re-
spectively. We compute the relation element and substitute it into our noise estimation
equation, as follows

σn =

√
π

2

1

6(W − 2)(H − 2)
Σimage I |I(x, y) ∗N |, (15)

σATNE =
σn

R̃3
, (16)

where R̃3 is the third iterated relation element,

σATNE =

√
π

2

1

6(W − 2)(H − 2)
(
R̃3

)Σimage I |I(x, y) ∗N |. (17)

The adjusted noise estimation shown in (17) is employed on the edge-subtracted image
to estimate the noise variance present in the image. ATNE is adaptive to the input image
values, and can provide robust and rapid noise estimation. Figure 4 shows a block diagram
of our proposed method.

Figure 4. The block diagram of our method

2.5. Adaptive Tuning Fast Nonlocal Mean Denoise Filter (ATFNLM). The es-
timated noise variance obtained from ATNE is used in Adaptive Tuning Fast Nonlocal
Mean Denoise Filter (ATFNLM) for medical images denoise purpose. Adaptive estimation
of noise variances allows accurate and practical application of image denoise filters.

Nonlocal Means (NLM) is defined as the nonlinear filter, which depends on a Weighted
Average (WA) of pixels inside a relatively large search window. The pixels within the
search window are weighted according to their similarity with the pixel of interest to
sustain the structures of the image [19-21]. The nonlocal means denoising presented
practical result for filtering out noisy medical images [19-21]. NLM had been improved
and suggested for different medical imaging methods [22,23].

NLM computation can be expressed in the following mathematical equations.
Generally, u(xi) represents the pixel at position xi and the filtered output is calculated

as in Equation (18)
û(xi) = Σxj∈Ωi

w(xi, xj)u(xj), (18)

where Ωi represents the large search window centred at pixel xi and the weight w(xi, xj)
is assigned from xj to pixel xi. This assignment is referring to the similarity between two
patches Ni and Nj centred at xi and xj respectively:

w(xi, xj) =
1

z
exp

(
−d(xi, xj)

h2

)
, (19)
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d(xi, xj) =
1

N
∥u(Ni)− u(Nj)∥22, (20)

where z denotes a normalizing constant, so that Σxj
w(xi, xj) = 1, and u(Ni) defines

N × 1 vector with values u(xi) around the pixels xj ∈ Ni. The parameter h needs
to be proportional to the estimated distance value between patches {d(xi, xj)}. Thus,
it is relevant to the noise variance of the image, σ2. Basically, it is suggested to set
the parameter to h2 = β2σ2 for β ∈ [0.8, 1.2] [22,23]. The distance between batches is
required to estimate correctly. NLM might over smooth the image’s structures of interest
if E{d(xi, xj)} is over estimated. NLM may not properly filter the noise in the image if
the E{d(xi, xj)} is underestimated.
There are enormous computation loads involved in the Equations (19) and (20). This

remains as the disadvantage of NLM. Numerous efforts had been carried out to improve
the computational load of NLM. The suggested approach had been applied to this filter.
The computation of patch distances d(xi, xj) is reduced to a small subset feature for
all pixels xj ∈ Ωi. This can decrease the computational load for NLM. The quadratic
differences between every pair of respective pixels are relying on its physical distance to
the centre of the patch Ni:

d(xi, xj) = (ui − uj)
TR(ui − uj), (21)

where R is a diagonal matrix that is corresponding to the n-dimensional kernel applied
to regulate the distances. By considering the weighting kernel, the quadratic differences
are calculated as shown in Equation (22):

ū = Σxj∈Ni
ρju(xj) = ITN×1Ru; Σxj∈Ni

ρj = 1, (22)

where 1 represents an N × 1 vector comprising of all ones and ρj denotes the value of
the multivariate kernel at every pixel location xj ∈ Ni. In case if the kernel is separable,
then all local averages can be calculated as separable convolutions. By particularizing
the kernel to the condition ρj = 1/N , the unweighted patch distance is expressed as in
Equation (23):

E
{
d̃(xi, xj)

}
= u

(
RX

(
XTX

)−1
XT

)
• E{d(xi, xj)}. (23)

Hence, the effective value of h that is used as the range for small patch distance is as
shown in Equation (24):

h2
eff = u

(
RX

(
XTX

)−1
XT

)
• h2. (24)

This value can determine the barrier of patch distance fallout from this value range
would not be considered as in the NLM search window. This will decrease the compu-
tational cost of the searching procedures for NLM thus improve the time taken for NLM
filtering process. The ATFNLM filters the noisy medical images to enhance the image
quality to aid medical experts in diagnosis process.

3. Main Results. To illustrate the performance of the proposed ATNE method on med-
ical images, different datasets of medical images were applied. 1000 mammograms were
used in the experiment to compare the noise estimation performance between Weak Tex-
ture Patch based Noise Estimation (WTPNE) [5], Fast Noise Variance Estimation through
Convolution of Laplacian operator (FNVECL) [9] and Adaptive Tuning Noise Estimation
(ATNE). The performance evaluation between mentioned methods of noise estimation
was done on 1000. We processed 1000 medical images to be Rician distributed with var-
ious noise variances, which vary from 0.01 to 0.20 according to standard range of noise
variance. Later on, ATNE was used to estimate the noise level of those medical images.
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(a) (b) (c)

(d) (e) (f)

Figure 5. The Rician distributed mammogram with different noise vari-
ance added. (a) Original mammogram; (b) added noise variance is 0.01;
(c) added noise variance is 0.05; (d) added noise variance is 0.10; (e) added
noise variance is 0.15; (f) added noise variance is 0.20.

To illustrate the performance of the proposed ATNE technique, Figure 5 shows the Ri-
cian distributed images with noise variance, σ = 0.01, 0.05, 0.10, 0.15, 0.20, as well as the
original image.

The percentage error is used as the performance metric for FNVECL [9], WTPNE [5]
and ATNE, as follows.

Percentage Error =
|σestimated − σadded|

σadded

× 100. (25)

Table 1 shows the performance comparison among FNVECL [9], WTPNE [5], and
ATNE on one selected CT image in Figure 5. The bolded results indicate ATNE is able
to achieve mostly the smallest percentage error rates, i.e., better estimation of the noise
ratio. Our method maintains a good performance for various noise levels. However,
FNVECL [9], WTPNE [5], perform poorly in cases with high noise variance. Table 1
shows the overall performance comparison on 1000 mammograms. ATNE outperforms
other methods by producing consistent results on the estimated noise variance, since its
results are close to reference noise variances. FNVECL [9], WTPNE [5] produce results
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Table 1. The comparison of noise estimation methods for 1000 mammograms

σadded
FNVECL [9] WTPNE [5] ATNE

PE, % PE, % PE, %
0.01 16.3685 32.8642 16.0801
0.02 20.3669 29.3230 20.1113
0.03 21.6280 27.2141 21.3818
0.04 21.9799 25.7375 21.7389
0.05 22.2941 25.2151 22.0560
0.06 22.5362 24.9717 22.2998
0.07 22.7352 24.8967 22.5000
0.08 22.9013 24.8905 22.6672
0.09 23.0510 24.9117 22.8177
0.10 23.2166 24.9621 22.9842
0.11 23.3651 25.0421 23.1331
0.12 23.5182 25.1047 23.2869
0.13 23.6718 25.2037 23.4407
0.14 23.8232 25.3053 23.5927
0.15 23.9799 25.4198 23.7498
0.16 24.1571 25.5385 23.9276
0.17 24.3251 25.6739 24.0959
0.18 24.5030 25.7944 24.2744
0.19 24.6813 25.9469 24.4527
0.20 24.8608 26.0960 24.6326

that stray from the reference noise variances. Both methods perform poorly on images
with high noise variances.
Table 1 shows the comparison of percentage error for 1000 mammograms. The tabulated

data showed that ATNE outperforms WTPNE and FNVECL in terms of having the
smallest percentage error in noise estimation and consistent good performance for various
noise variances. Moreover, ATNE has the most consistent performance on noise estimation
in various noise levels.

3.1. Discussion on Adaptive Tuning Fast Nonlocal Mean Denoise Filter (ATF-
NLM). The estimated noise variance obtained from ATNE is used in Adaptive Tuning
Fast Nonlocal Mean Denoise Filter (ATFNLM) to denoise the medical images. Nonlocal
Means (NLM) are defined as the nonlinear filter which relies on a Weighted Average (WA)
of pixels inside a relatively large search window.
The Mean Squared Error (MSE), Root-Mean-Squared Deviation (RMSD) and the

Structural Similarity (SSIM) index are applied as the image quality measurement met-
rics. These image quality measurement metrics are used to evaluate the performance of
Adaptive Tuning Fast Nonlocal Mean Denoise Filter (ATFNLM) against other existing
methods such as Adaptive Nonlocal Mean Filter (ANMF), and Improved Nonlocal Mean
Filter (INLM).
The Mean Squared Error (MSE) is computed using Equation (26).

MeanSquaredError (MSE) =
Σi,j (Ifiltered(i, j)− Ireference(i, j))

2

N
, (26)

where Ifiltered(i, j) represents the filtered image and Ireference(i, j) represents the reference
input image. In our case, the MSE denoted the mean value of the squared difference
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between filtered image and reference image. The lower the MSE value the closer it is to
the reference image, which indicates a good performed image filter.

The Root-Mean-Squared Deviation (RMSD) is commonly used as the measurement of
the differences between predicted values and actual value. In our circumstances, RMSD
is used to compute the difference between the filtered image and reference image. RMSD
is calculated through Equation (27).

Root-Mean-Squared Deviation (RMSD)

=
√
MSE =

√
Σi,j (Ifiltered(i, j)− Ireference(i, j))

2

N
, (27)

where smaller RMSD value indicates closer distance between Ifiltered(i, j) and Ireference(i, j).
The Structural Similarity (SSIM) index is often used to measure the similarity between

two images. The SSIM measures image quality based on an initial distortion-free image
as reference image. The computation of SSIM index is based upon three terms, such as
luminance term, the contrast term, and the structural term. The multiplicative combina-
tion of these three terms represents the overall SSIM index. The SSIM index is computed
as shown in Equation (28).

Structural Similarity Index, SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ, (28)

where the luminance term l(x, y), contrast term c(x, y), and the structural term s(x, y)
are shown in Equations (29), (30), and (31).

Luminance term, l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
, (29)

Contrast term, c(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2
, (30)

Structural term, s(x, y) =
σxy + c3
σxσy + c3

, (31)

where µx, µy, σx, σy, and σxy are the local means, standard deviations, and cross covari-
ance for images x, y. Given if α = β = γ = 1 and c3 = c2/2, the SSIM index is simplified
as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
. (32)

The input image or reference image, noisy image and filtered images are shown in Figure
6.

The Adaptive Tuning Fast Nonlocal Mean Denoise Filter (ATFNLM) was designed by
using the Adaptive Tuning Noise Estimation (ATNE) to estimate the noise in medical
images as input. Then, the image noise was filtered. We are able to obtain satisfying
results in comparison to other existing filter methods such as by Median Filter [24], Joint
Bilateral Filter [25] and Improved Gaussian Filter [26]. We suggest reducing the size of
the search window and adjusting the similarity window to decrease the computation cost
of the filter operation.

According to Figure 6, IMF, JBF, IGF and ATFNLM filter the noisy image. By visual
inspection, the image filtered by our ATFNLM is closer to original mammogram. The
performance comparison between these filters is as shown in Table 2.

Table 2 showed that our Adaptive Tuning Fast Nonlocal Mean Denoise Filter (ATFN-
LM) outperforms other nonlocal mean filters techniques by having closer index values to
the reference images. The average RMSE, PSNR and SSIM index for Improved Median
Filter (IMF) [24] are 0.0564, 26.5036, and 0.2982 respectively. Moreover, the average



12 F. F. TING AND K. S. SIM

(a) (b) (c)

(d) (e) (f)

Figure 6. The input image, noisy image and filtered images. (a) Origi-
nal CT image; (b) noisy image with noise variance = 5%, σadded = 0.05;
(c) filtered image by Adaptive Tuning Fast Nonlocal Mean Denoise Filter
(ATFNLM); (d) filtered image by Improved Median Filter (IMF) [24]; (e)
filtered image by Joint Bilateral Filter (JBF) [25] with SSIM = 0.7397; (f)
filtered image by Improved Gaussian Filter (IGF) [26].

Table 2. The comparison between IMF, JBF, IGF and ATFNLM on mammograms

σadded

Improved Median Joint Bilateral Improved Gaussian
ATFNLM

Filter (IMF) [24] Filter [25] Filter [26]
RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM

0.01 0.00 38.666 0.596 0.013 37.991 0.575 0.015 36.260 0.574 0.009 57.670 0.792
0.02 0.019 33.448 0.409 0.022 33.134 0.405 0.024 32.425 0.401 0.019 53.250 0.503
0.03 0.029 30.109 0.342 0.032 29.882 0.353 0.034 29.483 0.343 0.029 48.955 0.401
0.04 0.031 27.680 0.304 0.042 27.487 0.327 0.044 27.212 0.312 0.031 46.288 0.370
0.05 0.039 25.776 0.275 0.053 25.549 0.308 0.054 25.383 0.289 0.039 44.530 0.357
0.06 0.047 24.211 0.251 0.063 24.040 0.291 0.064 23.861 0.270 0.047 43.238 0.322
0.07 0.068 22.883 0.229 0.073 22.714 0.274 0.075 22.559 0.251 0.068 42.159 0.294
0.08 0.096 21.731 0.209 0.084 21.560 0.254 0.085 21.422 0.234 0.096 41.132 0.275
0.09 0.111 20.712 0.191 0.094 20.536 0.233 0.096 20.414 0.219 0.111 40.083 0.263
0.10 0.124 19.820 0.176 0.104 19.636 0.212 0.106 19.531 0.205 0.124 38.990 0.251

*σadded = Added noise
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RMSE, PSNR, and SSIM index for Joint Bilateral Filter [25] are 0.058, 26.2529, and
0.3232 accordingly. The average RMSE, PSNR, and SSIM index for our previous Im-
proved Gaussian Filter [26] are 0.0597, 25.855, and 0.3098 accordingly. Whereby, the
average RMSE, PSNR, and SSIM index for our Adaptive Tuning Fast Nonlocal Mean De-
noise Filter (ATFNLM) are 0.0573, 45.6295, and 0.3828 respectively. This indicates our
ATFNLM has the best performance among these filters. Furthermore, ATFNLM filtered
the medical imaging through Adaptive Tuning Noise Estimation (ATNE) to reduce the
chance of over smoothing the medical images. This is to decrease the chances of affecting
the image quality through filtering.

4. Conclusion. In conclusion, we present our proposed method which is an improved
noise estimation algorithm based on the FNVECL [6]. We have adapted the noise vari-
ance estimation method and implemented by adding the maximum relation element and
including Gabor wavelet for edge subtraction. Thus, it is able to exclude the detected
edges of medical images in order to perform more precise noise variance estimation and
adjustable through different data sets. Our method shows improved performance upon
FNVECL [9] and WTPNE [5]. The presented work is only experimented on mammo-
grams. Various types of medical images can be served as input images for this presented
method. This method can be further implemented by adjusting the parameter setting
of the Gabor wavelet edge detector and implement the learning capability of neural net-
works to increase the reliability of the noise estimator. Based on the good performs noise
estimator, we can design an adaptive denoise filter to further enhance the medical image
quality to aid radiologist and medical experts in their practical works.
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