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Abstract. The existing water evaporation optimization algorithm hassome shortcom-
ings, such as slow convergence speed, and low convergence accuracy. Therefore, this
paper proposes an improved water evaporation optimization(IWEO) algorithm. In I-
WEO, �rstly, in monolayer evaporation phase, the construction method of monolayer
evaporation probability matrix (MEP) is improved to make up for the defect of slow up-
dating of individuals, and thus speed up the convergence; atthe same time, several elite
individuals are introduced into the calculation of step size S to enhance the population
learning of excellent evolutionary information, which contributes to balancing the glob-
al search and local search ability. Secondly, in droplet evaporation phase, the optimal
individual and a new step size factor are used to guide and disturb the population respec-
tively, which improves the convergence accuracy of the algorithm while maintaining the
diversity of the population. To verify the performance of IWEO, a series of experiments
is carried out on 15 benchmark functions. The experimental results show that compared
with water evaporation optimization algorithm and the other state-of-the-art algorithms,
the proposed algorithm has signi�cant advantages in convergence accuracy and speed.
Keywords: Water evaporation optimization, Evaporation probability matrix, St ep size
S, Elite individuals, Optimal individual

1. Introduction. In the recent decades, many metaheuristics with di�erent philosophy
and characteristics have been developed and play an important rolein productive practice.
In terms of how they have been inspired, the metaheuristic algorithms can be divided into
swarm algorithms [1,2], evolutionary algorithms [3,4] and physical algorithms. Among
them, physical algorithms are inspired by a certain physical law or phenomenon. For
instance, gravitational search algorithm (GSA) [5] is a physical algorithm that mimics
gravitational phenomena; intelligent water drops (IWD) algorithm [6] is imitating the
natural 
ow of water drops; water cycle algorithm (WCA) [7] is inspired from nature and
based on the observation of water cycle process and how rivers and streams 
ow to the
sea in the real world; golden ball (GB) algorithm [8] is based on soccerconcepts; collision
body optimization (CBO) [9] is inspired by the laws of one-dimensional collision. These
physical heuristic algorithms have been accepted as most prevalent algorithms.

For developing a new physically based metaheuristic to solve global optimization prob-
lems, Kaveh and Bakhshpoori proposed a water evaporation optimization (WEO) algo-
rithm [10] that mimics the evaporation of a tiny amount of water molecules adhered on a
solid surface with di�erent wettability. Owing to its simple concept, the WEO algorithm
is relatively simple to implement. The experimental results on a series of benchmark
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functions show that WEO is able to maintain good diversity of population in the opti-
mization process and is highly competitive with other e�cient metaheuristics, such as
particle swarm optimization with an aging leader and challengers (ALC-PSO) [11], and
particle swarm inspired multi-elitist arti�cial bee colony algorithm (PS-MEABC) [12].
Moreover, Kaveh and Bakhshpoori employed WEO to resolve threeengineering problems:
the design of tension-compression spring, the design of welded beam and the design of
pressure vessel [10], and the results indicate that the WEO obtainsthe best design and is
competitive with others in the aspect of robustness. In [13], WEO is used to solve a set
of six truss design problems from the small to normal scale, and theoptimization results
demonstrate the e�ciency and robustness of the WEO and its competitive performance
to other algorithms for continuous structural optimization problems. Saha et al. adopt-
ed WEO to handle the optimal power 
ow (OPF) problem [14], and comparative study
with other heuristic algorithms demonstrates competitiveness of WEO in treating varied
objectives.

Similar to other new metaheuristic algorithms, the water evaporation optimization
algorithm also has some shortcomings. For example, in the monolayerevaporation phase,
the constructed monolayer evaporation probability matrix makes the updating rate of
individuals too low, which leads to slow convergence in the early stage of evolution;
whether in the monolayer evaporation phase or in the droplet evaporation phase, the step
size S consisting of two random individuals makes the algorithm attach importance to
exploration but ignore exploitation, which reduces the overall convergence accuracy and
speed.

In this paper, we present an improved water evaporation optimization (IWEO) algo-
rithm to improve the performance of WEO. Firstly, in the monolayer evaporation phase,
this algorithm designs a new construction method of theMEP to improve the conver-
gence speed; meanwhile, it introduces the evolutionary informationof multiple excellent
individual into step sizeS to guide population evolution, so as to balance the exploration
and exploitation ability. Secondly, in view of the need to focus on localsearch in late
evolution, in the droplet evaporation phase, it makes optimal individual guide population
evolution to improve the convergence accuracy of the algorithm.

The rest of this paper is organized as follows. Section 2 presents a brief description of
WEO. In Section 3, we illustrate the proposed algorithm. Section 4 gives experimental
results and analysis. Finally, Section 5 makes a conclusion.

2. Water Evaporation Optimization Algorithm Description. As we all know, with
the decrease of surface wettability, the water aggregation on the surface of solid materials
will change from a 
at single-layer molecule sheet to a sessile spherical cap, and the
corresponding evaporation speed varies greatly under di�erent water aggregation forms.
In order to �nd out how the surface wettability a�ects the evaporation of the tiny water
aggregation, Wang et al. [20] carried out molecular dynamics (MD) simulations on the
evaporation of nanoscale water aggregation on a solid substrate with di�erent surface
wettability at room temperature. It was found that the evaporation speed of water layer
is a�ected by the interaction energy from the substrate (Esub) and the contact angle (� )
respectively under two di�erent water aggregation forms (high surface wettability and low
surface wettability), and the corresponding mathematical modelsof the evaporation 
ux
which describes the evaporation speed were given.

Inspired by the phenomenon of water evaporation re
ected in thesimulation carried
out by Wang et al. [20], the factors a�ecting evaporation 
ux are simulated as individual
�tness, the evaporation 
ux is abstracted as the updating probability of individuals (called
evaporation probability matrix) involved in individual evolution process, and in result
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the water evaporation optimization (WEO) algorithm was proposed.In view of the fact
that di�erent aggregation forms of water molecule correspond totwo di�erent models
of evaporation 
ux, WEO accordingly establishes \monolayer evaporation phase" in the
early evolution and \droplet evaporation phase" in the late evolution. Next, we take a
minimization problem as an example to describe the updating mechanismof individuals.

2.1. Monolayer evaporation phase. Firstly, the evaporation 
ux J (i ) of the i th indi-
vidual can be calculated according to Formula (1).

J (i ) = exp ( Esub(i )) (1)

whereEsub(i ) is the corresponding substrate interaction energy of thei th individual. In
each iteration, Esub(i ) is calculated as follows.

Esub(i ) =
(Emax � Emin ) � (Fit i � Min( Fit ))

(Max(Fit ) � Min( Fit ))
+ Emin (2)

whereFit i is the �tness value ofi th individual; Max( Fit ) and Min(Fit ) are the maximum
and minimum �tness value in the current population;Emax and Emin are � 0:5 and � 3:5,
respectively. The values of the two parameters and the values of� max and � min described
below are based on the MD simulation results obtained by Wang et al. [20], and a more
detailed introduction to these values can be found in [10] and [13].

Then, on the basis of the individual's evaporation 
ux, the monolayerevaporation
probability matrix ( MEP) of the current population is constructed using Formula (3).

MEP ij =
�

1 if rand ij < J (i )
0 if rand ij � J (i ) (3)

whererand ij is a random number with uniform distribution in [0; 1]; MEPij is the updating
probability of the j th variable of the i th individual.

Finally, the new population newWM is generated according to Formula (4).

newWM = WM + S � MEP (4)

whereS is a random permutation based step size, and it is calculated as follows.

S = rand(0; 1) � (WM [permute1(i )( j )] � WM [permute2(i )( j )]) (5)

wherepermute1 andpermute2 represent two di�erent random vectors with population size
N as the dimensions.

Obviously, the better the original individual is, the smaller theEsub value is, the smaller
the evaporation 
ux J (i ) is, thus the more likely the corresponding updating probability
of its genes is to be 0, therefore, the more genes it will retain to its o�spring.

2.2. Droplet evaporation phase. In the droplet evaporation phase, the evaporation

ux of an individual is calculated by Formula (6). Then, the evaporation probability
matrix and the o�spring population are constructed in the same wayas the monolayer
evaporation phase.

J (� (i )) = J0 �
�

2
3

+
cos3(� (i ))

3
� cos(� (i ))

� � 2=3

(1 � cos(� (i ))) (6)

whereJ0 is 1=2:6; � (i ) is the corresponding contact angle of thei th individual, as shown
in Formula (7).

� (i ) =
(� max � � min ) � (Fit i � Min( Fit ))

(Max(Fit ) � Min( Fit ))
+ � min (7)
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whereFit i is the �tness value ofi th individual, Max( Fit ) and Min(Fit ) are the maximum
and minimum �tness value in the current population, and corresponding to the MD
simulation results, � max and � min are � 20� and � 50� , respectively.

It can be seen from Formulas (6) and (7) that the better thei th individual is, the
smaller the corresponding contact angle is, the smaller its evaporation 
ux is, thereby,
the easier the updating probability of its genes is to be 0 in the evaporation probability
matrix constructed by Formula (3), so the more genes it retains in its o�spring.

To understand its operation process, the 
owchart of WEO algorithm is illustrated in
Figure 1 and the steps involved are as follows:

Step 1. Initialization. Set the population size to N , the dimension of the problem to
d, the maximum number of algorithm iterations toT. Generate the initial population
randomly and evaluate individuals;

Step 2. For t � T, the monolayer evaporation phase is performed. Calculate the e-
vaporation 
ux of individuals based on Formula (1), construct the monolayer evaporation
probability matrix ( MEP) using Formula (3), and generate o�spring population via For-
mula (4). If the newly generated individual is better than the current one, the latter
should be replaced;

Step 3. Judge whether the number of iterations is greater thanT=2. If so, proceed to
Step 4, if not go to Step 2;

Step 4. For t > T , the droplet evaporation phase is performed. Calculate the evapo-
ration 
ux based on Formula (6), and also construct the evaporation probability matrix
and the o�spring population by Formula (3) and Formula (4), respectively. If the newly
generated individual is better than the current one, the latter should be replaced;

Step 5. Judge whether the number of iterations becomes larger thanT. If so, return
the best individual as the output and terminate the algorithm, otherwise go toStep 4.

Figure 1. WEO algorithm optimization process
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3. Improved Water Evaporation Optimization Algorithm. In order to improve
the WEO algorithm's convergence speed and accuracy, in this paper, the monolayer e-
vaporation phase and the droplet evaporation phase are improvedrespectively, and an
improved water evaporation optimization algorithm is proposed.

3.1. The improved monolayer evaporation phase. As shown in Formula (4), the
evaporation probability matrix MEP determines the retention ratio of the original indi-
viduals in the new individuals, that is, the updating rate of individuals. By calculating,
the evaporation 
ux J in Formula (1) is about 0.030 to 0.607, and on the basis of these
J values, theMEP constructed using Formula (3) results in 39.3-97.0% of the genes of
the new individual being directly from the original individual. To study the number of
individual's updated genes in each generation, the 30-dimensional Sphere function was
tested, and the results are shown in Figure 2 and Figure 3. Among them, Figure 2 shows
the average number of updated genes per individual in each iteration when the popula-
tion size is 50 and the total number of iterations is 1600, and Figures3(a)-3(c) show the
distribution between the number of updated genes and the numberof the corresponding
individuals when the iterations are 1, 400 and 800, respectively.

It can be seen from Figure 2 that in the early iterations (the �rst 800 iterations),
i.e., the monolayer evaporation phase, about 4 genes per individual are updated in each
iteration, accounting for 13.3% of an individual's total genes. As is seen from Figure 3,
individuals with less than 10 updated genes take up a large proportionof the population.
These results clearly indicate that the updating rate of individuals atthis stage, is too
low and makes the algorithm ine�cient to a large extent. In the second half of the whole
iteration shown in Figure 2, by contrast, each individual updates about 20 genes in each
iteration, which shows that on the basis of theJ value of about 0.6-1 in Formula (6), the
evaporation probability matrix constructed by Formula (3) can make the overall updating
rate of individuals in the droplet evaporation phase reach a satisfactory level. To sum up,
in the monolayer evaporation phase, theMEP constructed by Formula (3) causes slow
individual change and insu�cient convergence speed.

To promote the individual updates and eventually speed up the convergence, a new
MEP construction method that can lift the overall updating rate of individuals is needed.

Figure 2. The average number of updated genes in each iteration
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(a) (b)

(c)

Figure 3. (a), (b) and (c) show the distribution between the number of
updated genes and the number of the corresponding individuals when the
iterations are 1, 400 and 800, respectively.

To this end, and based on the characteristics of early evolution of the algorithm, this
paper improves the construction ofMEP in the monolayer evaporation phase, as shown
in Formula (8). To compare the convergence speed of the algorithmbefore and after the
improvement, Figure 4 shows a comparison of the convergence curves.

MEP ij =
�

1 � cos(0:5 � rand) if rand ij < J (i )
cos(0:5 � rand) if rand ij � J (i ) (8)

Compared with Formula (3), the MEP constructed by Formula (8) converts approxi-
mately the ratio of the S in every new individual, so that the better an individual is, the
higher its updating rate is. Therefore, in the early stage of evolution, better individuals
strengthen the communication with other individuals, while poor individuals try to retain
their own information. At the same time, the newMEP adjusts the gene updating prob-
ability from 0 or 1 to a random number in the interval 0-0.1224 or 0.8876-1, so that every
gene of an individual can participate in the updating process of the individual. From
Figure 4, it can be seen that the convergence speed has been signi�cantly improved after
the improvement.

In addition, as is seen from Formula (5), the step sizeS consists of two random individ-
uals, from which the original individuals learn to generate new individuals. Evidently, the



AN IMPROVED WATER EVAPORATION OPTIMIZATION ALGORITHM 113

Figure 4. The convergence curves of WEO and IWEO

step sizeS can make population keep good diversity, but the search for new individuals is
bound to be blind and this is at the cost of reducing the overall convergence speed and ac-
curacy. To further improve the performance of the monolayer evaporation phase, in view
of the fact that excellent individuals often carry representative evolutionary information,
by this, a new calculation method of step sizeS is proposed as follows.

Si;j = r i;j � (WM e;j � WM i;j ) + � i;j � (WM i;j � WM k1;j ) (9)

where,WMe is a randomly selected elite individual from the �rstdp � N e individuals in
the population sorted in ascending order of �tness values,p 2 (0; 1), r i;j is the random
variable in the range of [0; 1], � i;j is the random variable in the range of [� 1; 1], k1 2
f 1; 2; : : : ; Ng, and e 6= k1 6= i .

In Formula (9), the new method enhances the population to learn elite individuals
that carry �ne evolutionary information, which will inevitably promot e the population to
approach the optimal solution rapidly. It is worth noting that the elite individual is not
just locally optimal individual, but selected randomly from several excellent individuals,
which can still maintain the diversity of the population and reduce therisk of falling into
the local optimum.

To sum up, through the combination of Equation (8) and Equation (9), the updating
rate of individuals can be lifted, and the updating rate of excellent individuals is higher
than that of poor individuals. The excellent individuals gradually evolvetoward the global
optimal solution under the guidance of several elite individuals, thereby improving the
convergence speed. Meanwhile, the poor individuals retain more of their own information
to explore potential excellent areas, which helps the algorithm to maintain population
diversity and avoid falling into local optimum. That is to say, the method proposed in
this paper can balance the contradiction between exploration and exploitation to a certain
extent.

3.2. The improved droplet evaporation phase. As can be seen from Section 2.2, the
individual updating method adopted in this phase is the same as that inthe monolayer
evaporation phase, so the random individuals in the step sizeS will also inevitably a�ect
the convergence speed and accuracy of this phase.
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Given that droplet evaporation phase is at the later stage of the overall evolution,
individuals within the population have tended to be excellent. Therefore, on the premise
of avoiding falling into local optimum, �ne search should be carried outin the region
where the optimal solution is located, so as to improve the convergence accuracy. Based
on the above considerations, this paper designs a new calculation method of step sizeS
as follows.

Si;j = r i;j � (WM best;j � WM i;j ) + � i;j � (WM k2;j � WM k3;j ) (10)

where, WMbest is the optimal individual in the current population, r i;j and � i;j are the
random variables in the range of [0; 1] and [� 1; 1] respectively,k2, k3 2 f 1; 2; : : : ; Ng,
and k2 6= k3 6= i .

Compared with Formula (5), the proposed calculation method of step sizeS as shown
in Formula (10) has the following advantages. Firstly, the introduction of the optimal
solution can strengthen the �ne search around it and avoid missing the global optimal
solution due to too random search, which helps the algorithm to improve convergence
accuracy. Secondly, the step size factor in front of the di�erence vector consisting of two
random individuals changes fromrand to a random variable in the range of [� 1; 1], which
increases the search direction to avoid the di�culty of convergence caused by one-way
search, and also increases the random disturbance to a certain extent to maintain the
population diversity.

3.3. IWEO algorithm 
ow. The speci�c implementation steps of the improved water
evaporation optimization algorithm are as follows:

Step 1. Set the population size toN , the dimension to d, the proportion of elite
individuals to p, the maximum number of iterations toT;

Step 2.Generate initial population using random method and evaluate theseindividuals
based on the objective function of the problem at hand;

Step 3. Perform the improved monolayer evaporation phase in Section 3.1 togenerate
new population. Compare the newly generated individual and the current one, and retain
the better of the two;

Step 4. Judge whether the number of iterations is greater thanT/2, if so, proceed to
Step 5, if not go to Step 3;

Step 5. Perform the improved droplet evaporation phase in Section 3.2 to generate new
population. Compare the new individual and the current one, and retain the better of
the two;

Step 6. Judge whether the number of iterations is larger thanT, if so, the best individual
is output and the algorithm terminates, if not go toStep 5.

3.4. Discussions. In this section, the di�erences of the IWEO algorithm from the classic
WEO algorithm are discussed as follows.

As can be found in [10], the WEO uses the method shown as Formula (3)to construct
the evaporation probability matrix MEP in both the monolayer evaporation phase and the
droplet evaporation phase. However, by analyzing the in
uence ofthe evaporation prob-
ability matrix on the updating rate of individuals, this paper improves the construction
method of theMEP in the monolayer evaporation phase, so the IWEO employs Formulas
(8) and (3) to construct the MEP in these two phases, respectively.

Moreover, in [10], the WEO uses Formula (5) to calculate the step sizeS in the two
evaporation phases. However, by analyzing the defects of Formula (5) and based on the
characteristics of the early and late evolution of the algorithm, in this paper, the IWEO
employs Formulas (9) and (10) to calculate step sizeS so as to improve the convergence
speed and accuracy in both phases.
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4. Experiment. In order to verify the performance of the proposed algorithm, 5 low-
dimensional benchmark functions and 10 high-dimensional functions are used. Among
them, f 4-f 11 are unimodal functions, and Functionsf 1-f 3 and f 12-f 15 are multimodal
functions where the number of their local minimum increases exponentially with the
problem dimension.

To make experiments more reasonable and convincing, we compare IWEO with WEO
and other three representative state-of-the-art algorithms including all-dimension neigh-
borhood based particle swarm optimization with randomly selected neighbors (ADN-RSN-
PSO) [16], modi�ed di�erential evolution with self-adaptive parameters method (MDE)
[17] and an enhanced arti�cial bee colony algorithm with adaptive di�erential operators
(ABCADE) [18] in terms of convergence accuracy and convergence speed. For the sake of
fairness, the population size of each algorithm is 50. The detailed parameter settings of
all algorithms are shown in Table 1. Among them, the setting of the parameter p, added
in IWEO relative to WEO, is based on the results of a large number of experiments, and
the parameters of other algorithms are set according to the corresponding original works.

Table 1. Parameter setting of various algorithms

Algorithm Parameter setting
ADN-RSN-PSO w = 0:7298,c1 = c2 = 2:05

MDE CR = 0:4, F is a random number in the range of [0; 1]
ABCADE limit = 200, m = 5, n = 10, c1 = 0:9, c2 = 0:999

WEO Emax = � 0:5, Emin = � 3:5, J0 = 1=2:6, � min = � 50� , � max = � 20�

IWEO p = 0:3, the other parameters are same as those in WEO

4.1. Comparison of convergence accuracy. The convergence accuracy of IWEO is
examined in this section. The compared algorithms are tested on thelow-dimensional
functions f 1-f 5 and the high-dimensional functionsf 6-f 15, and the max numbers of func-
tion evaluation on low-dimensional and high-dimensional functions are 8000 and 80000
respectively. To avoid the adverse e�ect of randomness in a single run, in this paper, each
algorithm runs 30 times independently, and the minimum, mean value, maximum and
standard deviation denoted as `Best', `Mean', `Worst' and `SD' of theobjective function
values gained are used to evaluate the convergence accuracy of the algorithm. In the
experiment, the dimension off 1-f 5 is d = 2, and the dimensions off 6-f 15 is d = 30. The
speci�c results are shown in Table 2 and Table 3 respectively. For thesake of clarity, the
best mean values are highlighted in boldface.

As shown in Table 2, for the low-dimensional benchmark functions with d = 2, IWEO
obtains the best results on all functions exceptf 5, on which ABCADE performs the best.
IWEO is able to �nd the global optimal solutions in all 30 runs onf 2, f 3, and on the
remainder functions (i.e.,f 1, f 4, f 5), the solutions gained by IWEO are very close to their
global optima. ABCADE has the same performance as IWEO onf 2 and is slightly better
on f 5, but it is inferior to IWEO on other functions. The other three algorithms fail
to converge to their global optimum solutions on these low-dimensional functions, and
among them, WEO and ADN-RSN-PSO have the same and worst performance.

As shown in Table 3, the results of IWEO on all high-dimensional functions at d = 30
are obviously better than those of other algorithms. IWEO can getthe corresponding
global optimal solutions in all 30 runs onf 9, f 11 and f 12, and obtain the results very
close to the theoretical optimal solutions on remaining functions. ABCADE has the same
performance as IWEO onf 12; however, it is distinctly second best on other functions.
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Table 2. The results on low-dimensional functions atd = 2

Fun Algorithm Best Mean Worst SD

f 1

Booth

ADN-RSN-PSO 1.1924e-11 5.7754e-07 7.2548e-06 1.7350e-06
MDE 3.6544e-16 1.6210e-12 1.6322e-11 3.1536e-12

ABCADE 1.2469e-18 2.8147e-13 4.3089e-12 1.0415e-12
WEO 1.1148e-08 5.8862e-07 2.7863e-06 7.3003e-07
IWEO 0 1.6224e-29 8.5986e-29 2.1446e-29

f 2

Boachevsky1

ADN-RSN-PSO 3.8969e-13 0.0017 0.0257 0.0060
MDE 5.5511e-16 1.3887e-13 1.3506e-12 2.6519e-13

ABCADE 0 0 0 0
WEO 1.5387e-06 1.0250e-04 6.3772e-04 1.4400e-04
IWEO 0 0 0 0

f 3

Boachevsky3

ADN-RSN-PSO 5.5511e-17 1.4117e-04 0.0012 3.7794e-04
MDE 4.1419e-12 3.5038e-10 1.3639e-09 4.4528e-10

ABCADE 0 5.3522e-14 1.5505e-12 2.8281e-13
WEO 1.8522e-06 1.6298e-04 6.3267e-04 1.8372e-04
IWEO 0 0 0 0

f 4

Matyas

ADN-RSN-PSO 8.4527e-11 8.3507e-06 1.1634e-04 2.3599e-05
MDE 8.3692e-15 2.7931e-12 4.7937e-11 9.1621e-12

ABCADE 7.2256e-17 1.0487e-13 1.1123e-12 2.8395e-13
WEO 1.1831e-09 5.2270e-08 3.1339e-07 6.4877e-08
IWEO 5.0688e-25 2.3577e-22 2.6311e-20 4.7873e-21

f 5

Easom

ADN-RSN-PSO � 0:7323 � 0:0919 � 0:0100 0.2229
MDE � 1:0000 � 1:0000 � 1:0000 4.9241e-06

ABCADE � 1 � 1 � 1 0
WEO � 1:0000 � 0:9332 0 0.2537
IWEO � 1 � 1:0000 � 1:0000 1.8968e-15

In addition, from Table 4, MDE ranks third, while ADN-RSN-PSO and WEO have poor
results.

In summary, when the dimension is same, IWEO can obtain better objective function
values than other algorithms, and at the same time, it can be seen that the standard
deviation of IWEO is the smallest on all functions exceptf 5. So, the IWEO proposed in
this paper is superior to the other four algorithms in terms of accuracy and stability.

To rank and compare AND-RSN-PSO, MDE, ABCADE, WEO and IWEO rationally,
the nonparametric tests of Friedman and Wilcoxon are performed on SPSS19.0. The
average rankings of all algorithms over all problems based on Friedman test and the P
value of the other four algorithm versus IWEO based Wilcoxon test are provided in Table
4.

As shown in Table 4, the average rankings demonstrate that the results of IWEO are
better than those of other algorithms whether on low-dimensionalfunctions at d = 2 or
on high-dimensional functions atd = 30. The P value of AND-RSN-PSO and WEO vs.
IWEO based Wilcoxon test is less than 0.05 on functions atd = 2 and that of AND-RSN-
PSO, MDE and WEO vs. IWEO is less than 0.05 on functions atd = 30, which indicate
there are signi�cant di�erences in the performance between these algorithms and IWEO,
and the advantage of IWEO on functions atd = 30 is more obvious.

In order to comprehensively examine the e�ects of 30 experiments, the box plots of the
experimental results on 3 representative functions atd = 30 (unimodal functions f 6 and
multimodal functions f 13 and f 15) are shown in Figure 5. As shown in Figure 5, IWEO can
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Table 3. The results on high-dimensional functions atd = 30

Fun Algorithm Best Mean Worst SD

f 6
Sphere

AND-RSN-PSO 4.6793e-25 3.3823 101.1303 18.4617
MDE 7.2891e-14 3.7216e-12 7.1280e-11 1.2840e-11

ABCADE 5.8382e-24 1.9269e-24 5.7204e-23 1.2758e-23
WEO 0.0021 0.0058 0.0160 0.0030
IWEO 3.7490e-58 3.3990e-57 1.7277e-56 3.9317e-57

f 7
Schwefel

2.22

AND-RSN-PSO 8.7478e-06 0.4108 3.1626 0.9135
MDE 2.8967e-08 1.3162e-07 3.2238e-07 7.0975e-08

ABCADE 3.0547e-14 4.9706e-14 1.0875e-13 1.8525e-14
WEO 0.1226 0.1885 0.2988 0.0411
IWEO 6.5136e-31 2.5766e-30 8.3971e-30 1.74333e-30

f 8
SumSquares

AND-RSN-PSO 4.1468e-22 0.0208 0.4985 0.00907
MDE 5.2102e-15 2.3058e-13 9.0565e-13 2.3339e-13

ABCADE 3.5349e-25 3.0806e-24 1.0385e-23 2.6982e-24
WEO 3.4881e-04 8.0976e-04 0.0022 3.6903e-04
IWEO 2.4546e-59 3.8908e-58 1.6867e-57 4.1048e-58

f 9
Dixon-Price

AND-RSN-PSO 0.9721 9.9948 1.0973 0.0213
MDE 0.6667 0.6667 0.6679 2.2355e-04

ABCADE 1.8206e-21 1.0812e-16 1.6100e-15 4.1549e-16
WEO 6.4153 10.8001 13.8718 2.0209
IWEO 0 0 0 0

f 10
Elliptic

AND-RSN-PSO 1.3462e-20 1.1200e+03 2.3478e+04 4.4054e+03
MDE 3.3143e-10 9.7263e-09 5.9207e-08 1.1422e-08

ABCADE 3.8165e-20 2.4725e-19 1.0076e-18 2.7333e-19
WEO 2.8246 4.5078 7.5078 1.4468
IWEO 2.2644e-55 6.7861e-54 4.2111e-53 1.0009e-53

f 11
Step

AND-RSN-PSO 4.6739 6.0181 7.4985 0.7745
MDE 3.4733e-16 6.4200e-15 6.7099e-14 1.5459e-14

ABCADE 2.2676e-27 1.0702e-25 5.2982e-25 1.4926e-25
WEO 8.1592e-06 1.3718e-05 2.3441e-05 4.7091e-06
IWEO 0 0 0 0

f 12
Griwank

AND-RSN-PSO 37.7860 59.2189 72.1914 9.4495
MDE 1.5099e-13 1.1451e-12 3.1450e-12 8.5340e-13

ABCADE 0 0 0 0
WEO 0.0137 0.0637 0.1616 0.0344
IWEO 0 0 0 0

f 13
Ackley

AND-RSN-PSO 3.7345e-05 0.8576 4.4305 1.3895
MDE 4.1776e-08 2.8015e-07 9.0653e-07 2.2637e-07

ABCADE 5.6044e-13 2.0362e-12 3.8716e-12 9.2668e-13
WEO 0.0907 0.1595 0.3272 0.0492
IWEO 2.6645e-15 6.0988e-15 6.2172e-15 6.4863e-16

f 14
Generalized
Penalized1

AND-RSN-PSO 2.6390 3.2565 5.7843 0.7224
MDE 1.4003e-13 8.4250e-13 4.0953e-12 1.1335e-12

ABCADE 7.8323e-22 4.9456e-20 2.8290e-19 9.1765e-20
WEO 704.2388 2.5554e+05 2.9694e+06 5.8978e+05
IWEO 1.3498e-32 1.6203e-24 2.4305e-23 6.2756e-24

f 15
Generalized
Penalized2

AND-RSN-PSO 0.3568 0.9965 1.6534 0.3092
MDE 8.2995e-15 1.4551e-13 1.1940e-12 2.2185e-13

ABCADE 1.9987e-26 2.2192e-25 8.5732e-25 2.3177e-25
WEO 0.0248 0.1464 0.3281 0.0843
IWEO 1.5705e-32 1.5705e-32 1.5705e-32 5.5674e-48
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Table 4. The results of nonparametric test for all functions

Algorithms
d = 2 d = 30

Ave-Ranking P value Ave-Ranking P value
AND-RSN-PSO 4.60 0.043 4.70 0.005

MDE 2.80 0.068 3.00 0.005
ABCADE 1.90 0.109 1.60 0.180

WEO 4.40 0.043 4.30 0.005
IWEO 1.30 1.40

f 6 f 13

f 15

Figure 5. The box plot of results of all algorithms

obtain better and more stable solutions than other compared algorithms, which further
illustrates the conclusions re
ected in Table 3 and Table 4.

4.2. Comparison of convergence speed. This section examines and compares the
convergence speed of IWEO. In all experiments, each algorithm is independently run on
f 1-f 5 at d = 2 and f 6-f 15 at d = 30 for 30 times, and the mean values obtained under
the same evaluation times are used to evaluate the convergence speed of algorithm. The
max numbers of function evaluation on low-dimensional functions and high-dimensional
functions are 4000, 5000, 6000 and 40000, 50000, 60000 respectively. The speci�c test
results are shown in Table 5.

As shown in Table 5, under the same number of function evaluation, the convergence
accuracy of IWEO is signi�cantly better than the other four algorithms on all functions
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Table 5. The results of convergence speed

Algorithm

Fun
Number
of FES AND-RSN-PSO MDE ABCADE WEO IWEO

f 1

Booth

4000 3.6516e-04 4.1615e-08 6.3143e-09 4.8915e-043.2624e-15
5000 2.0739e-05 1.2651e-09 1.1780e-09 1.0030e-048.6721e-19
6000 3.0229e-06 1.8179e-11 1.3450e-12 1.4076e-053.1448e-22

f 2

Boachevsky1

4000 1.7910e-04 2.5375e-07 0 0.0690 2.3315e-16
5000 5.7926e-05 5.1894e-09 0 0.0153 0
6000 5.1984e-05 2.2602e-11 0 0.0039 0

f 3

Boachevsky3

4000 0.0052 1.9593e-06 3.1245e-08 0.02965.4870e-10
5000 1.7245e-04 2.5842e-08 3.2638e-10 0.00882.2946e-12
6000 3.6464e-06 1.0075e-09 9.9269e-12 0.00276.0248e-15

f 4

Matyas

4000 4.7634e-04 6.5393e-07 3.3328e-08 3.3470e-045.0550e-12
5000 2.6537e-04 1.9918e-08 1.3969e-09 1.4294e-051.1273e-14
6000 7.9422e-05 2.2803e-09 2.1318e-10 3.4473e-065.7044e-17

f 5

Easom

4000 � 0:7201 � 0:8075 � 1:0000 � 0:7447 � 1:0000
5000 � 0:9789 � 0:9862 � 1:0000 � 0:7888 � 1:0000
6000 � 0:9953 � 0:9985 � 1:0000 � 0:8300 � 1:0000

f 6

Sphere

40000 8.7910e-15 6.3039e-05 2.7411e-06 6.70141.1741e-26
50000 2.2162e-20 1.1934e-07 7.0838e-13 0.92782.3528e-34
60000 1.2687e-20 9.5258e-10 2.3411e-16 0.13486.4301e-42

f 7

Schwefel 2.22

40000 7.4694e-06 0.0011 3.7236e-05 2.56431.5191e-14
50000 4.0388e-06 7.3906e-05 2.7235e-08 1.13492.0386e-18
60000 1.8820e-08 7.4927e-06 3.2807e-10 0.47352.0435e-22

f 8

SumSquares

40000 2.8169e-22 4.5110e-06 2.2493e-10 0.76501.1658e-27
50000 7.3131e-25 3.8994e-08 1.0281e-13 0.11753.3824e-35
60000 2.8179e-32 2.8285e-10 3.4481e-17 0.01561.0829e-42

f 9

Dixon-Price

40000 33.9773 0.73633.3049e-04 70.9354 0.5781
50000 1.3764 0.67575.3402e-07 46.2834 1.2915e-04
60000 1.0354 0.6686 9.5710e-10 27.58261.8549e-12

f 10

Elliptic

40000 3.7334e+05 0.2954 7.9326e-06 9.6789e+031.2509e-23
50000 5.7240e+05 8.9740e-04 2.6456e-09 1.4583e+033.7458e-31
60000 2.8372e+04 6.5050e-06 1.3904e-12 240.93657.0831e-39

f 11

Step

40000 4.7607 4.0734e-08 5.5505e-12 0.01653.8094e-29
50000 4.1544 3.9701e-10 1.8890e-15 0.0024 0
60000 4.5447 5.7431e-12 5.8795e-19 3.2177e-04 0

f 12

Griwank

40000 47.2934 3.4796e-04 4.1072e-04 1.0704 0
50000 40.1082 1.6072e-07 5.2821e-11 0.8149 0
60000 32.4511 5.6295e-10 9.0377e-04 0.3479 0

f 13

Ackley

40000 2.4609e-05 0.0014 1.6134e-05 2.49913.0376e-14
50000 6.9409e-06 1.6258e-04 3.1370e-07 1.39786.9278e-15
60000 3.0808e-08 1.4933e-05 7.1968e-09 0.55936.5725e-15

f 14

Generalized
Penalized1

40000 3.0214 1.0359e-04 0.0015 8.3234e+068.5896e-08
50000 3.2638 1.8084e-06 1.5091e-09 1.0149e+062.6364e-12
60000 3.0027 7.9157e-09 1.4353e-13 5.1761e+051.0826e-15

f 15

Generalized
Penalized2

40000 0.5030 1.1632e-06 1.0660e-11 1.69622.4081e-27
50000 0.4902 9.2401e-09 4.9678e-15 0.94111.5705e-32
60000 0.3199 1.4151e-11 1.5121e-18 0.56311.5705e-32
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except f 2, f 5 and f 9. Although the convergence speed of ABCADE onf 2, f 5 is similar
to that of IWEO, and is not much di�erent on f 9, the convergence speed of ABCADE
on other functions is obviously slower than that of IWEO. As a result, compared with
other algorithms, the algorithm proposed in this paper has obvious advantages in terms
of convergence speed.

To compare the convergence process of �ve algorithms intuitively,the convergence
curves of their single run on unimodal functionsf 6-f 8 and multimodal functions f 12-f 14

at d = 30 are given in Figure 6. As can be seen from Figure 6, IWEO has the fastest

f 6 f 7

f 8 f 12

f 13 f 14

Figure 6. The convergence curve on functions atd = 30
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convergence speed on all functions, especially on unimodal functions. And compared
with the algorithms which reach the stagnation state on multimodal functions, IWEO
can continue to search until it gains the global optimal solutions.

5. Conclusions. In this paper, we proposed an improved water evaporation optimiza-
tion (IWEO) algorithm. It has the following characteristics. 1) In monolayer evaporation
phase, through the theoretical analysis of the relationship between the monolayer evapo-
ration probability matrix ( MEP) and the updating rate of individuals, the construction
method of theMEP is improved, which promotes more individual genes to be involved in
evolution and speeds up the convergence; meanwhile, multiple excellent evolutionary in-
formation is introduced into step sizeS to balance the exploration and exploitation ability
of the algorithm. 2) In droplet evaporation phase, the optimal solution and a new step
size factor are used to guide the evolution of individuals and carry out multi-direction dis-
turbance, respectively, which can improve the convergence accuracy as much as possible
while maintaining the diversity of the population. In Section 4, a seriesof experiments on
15 benchmark functions is executed to verify the e�ectiveness ofIWEO. The results show
that IWEO has higher convergence accuracy and faster convergence speed than WEO
algorithm and other three state-of-the-art metaheuristic algorithms.

In our work, although the IWEO algorithm greatly improves the result quality, it
still cannot converge to global optimum stably on some benchmark functions (such as
multimodal function f 14), and has not been used to solve practical engineering problems.
So in the future, we will study the stability problem of IWEO on these functions. At
the same time, we will also apply the improved algorithm to solving phased array radar
resources management problem.
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