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Abstract.  The existing water evaporation optimization algorithm hassome shortcom-
ings, such as slow convergence speed, and low convergenceusacy. Therefore, this
paper proposes an improved water evaporation optimizatiolWEO) algorithm. In I-
WEO, rstly, in monolayer evaporation phase, the construction method of monolayer
evaporation probability matrix (MEP) is improved to make up for the defect of slow up-
dating of individuals, and thus speed up the convergence; #te same time, several elite
individuals are introduced into the calculation of step siz S to enhance the population
learning of excellent evolutionary information, which cortributes to balancing the glob-
al search and local search ability. Secondly, in droplet eymration phase, the optimal
individual and a new step size factor are used to guide and disb the population respec-
tively, which improves the convergence accuracy of the aldgthm while maintaining the
diversity of the population. To verify the performance of IWEO, a series of experiments
is carried out on 15 benchmark functions. The experimental @sults show that compared
with water evaporation optimization algorithm and the othe state-of-the-art algorithms,
the proposed algorithm has signi cant advantages in convgence accuracy and speed.
Keywords: Water evaporation optimization, Evaporation probability matrix, St ep size
S, Elite individuals, Optimal individual

1. Introduction. In the recent decades, many metaheuristics with di erent philosdyy

and characteristics have been developed and play an important raheproductive practice.
In terms of how they have been inspired, the metaheuristic algoritiis can be divided into
swarm algorithms [1,2], evolutionary algorithms [3,4] and physical algdrms. Among
them, physical algorithms are inspired by a certain physical law or gmomenon. For
instance, gravitational search algorithm (GSA) [5] is a physical algithm that mimics

gravitational phenomena; intelligent water drops (IWD) algorithm [§ is imitating the

natural ow of water drops; water cycle algorithm (WCA) [7] is inspired from nature and
based on the observation of water cycle process and how riversiatreams ow to the
sea in the real world; golden ball (GB) algorithm [8] is based on soca@ncepts; collision
body optimization (CBO) [9] is inspired by the laws of one-dimensionalbdision. These
physical heuristic algorithms have been accepted as most prevalatgorithms.

For developing a new physically based metaheuristic to solve globaliomization prob-
lems, Kaveh and Bakhshpoori proposed a water evaporation opimation (WEO) algo-
rithm [10] that mimics the evaporation of a tiny amount of water moleuales adhered on a
solid surface with di erent wettability. Owing to its simple concept, the WEO algorithm
is relatively simple to implement. The experimental results on a series benchmark
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functions show that WEO is able to maintain good diversity of populatin in the opti-
mization process and is highly competitive with other e cient metaheustics, such as
particle swarm optimization with an aging leader and challengers (ALESO) [11], and
particle swarm inspired multi-elitist arti cial bee colony algorithm (PS-MEABC) [12].
Moreover, Kaveh and Bakhshpoori employed WEO to resolve thremgineering problems:
the design of tension-compression spring, the design of welded rheand the design of
pressure vessel [10], and the results indicate that the WEO obtaitiee best design and is
competitive with others in the aspect of robustness. In [13], WEO issed to solve a set
of six truss design problems from the small to normal scale, and tbhgtimization results
demonstrate the e ciency and robustness of the WEO and its conwgtitive performance
to other algorithms for continuous structural optimization problens. Saha et al. adopt-
ed WEO to handle the optimal power ow (OPF) problem [14], and compaative study
with other heuristic algorithms demonstrates competitiveness of BO in treating varied
objectives.

Similar to other new metaheuristic algorithms, the water evaporatio optimization
algorithm also has some shortcomings. For example, in the monolagsaporation phase,
the constructed monolayer evaporation probability matrix makeshe updating rate of
individuals too low, which leads to slow convergence in the early stagé evolution;
whether in the monolayer evaporation phase or in the droplet evagadion phase, the step
size S consisting of two random individuals makes the algorithm attach impéance to
exploration but ignore exploitation, which reduces the overall coevgence accuracy and
speed.

In this paper, we present an improved water evaporation optimizatn (IWEQ) algo-
rithm to improve the performance of WEO. Firstly, in the monolayer gaporation phase,
this algorithm designs a new construction method of th#EP to improve the conver-
gence speed; meanwhile, it introduces the evolutionary informatiarf multiple excellent
individual into step size S to guide population evolution, so as to balance the exploration
and exploitation ability. Secondly, in view of the need to focus on locaearch in late
evolution, in the droplet evaporation phase, it makes optimal individal guide population
evolution to improve the convergence accuracy of the algorithm.

The rest of this paper is organized as follows. Section 2 presentsraebdescription of
WEO. In Section 3, we illustrate the proposed algorithm. Section 4 g#¢ experimental
results and analysis. Finally, Section 5 makes a conclusion.

2. Water Evaporation Optimization Algorithm Description. As we all know, with
the decrease of surface wettability, the water aggregation ondtsurface of solid materials
will change from a at single-layer molecule sheet to a sessile spheficap, and the
corresponding evaporation speed varies greatly under di erentater aggregation forms.
In order to nd out how the surface wettability a ects the evaporation of the tiny water
aggregation, Wang et al. [20] carried out molecular dynamics (MD) sirtations on the
evaporation of nanoscale water aggregation on a solid substratéhwvdi erent surface
wettability at room temperature. It was found that the evaporaion speed of water layer
is a ected by the interaction energy from the substrate E,,) and the contact angle ()
respectively under two di erent water aggregation forms (high sfiace wettability and low
surface wettability), and the corresponding mathematical modelsf the evaporation ux
which describes the evaporation speed were given.

Inspired by the phenomenon of water evaporation re ected in theimulation carried
out by Wang et al. [20], the factors a ecting evaporation ux are similated as individual
tness, the evaporation ux is abstracted as the updating probhility of individuals (called
evaporation probability matrix) involved in individual evolution process, and in result
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the water evaporation optimization (WEQ) algorithm was proposedlIn view of the fact
that di erent aggregation forms of water molecule correspond téwo di erent models
of evaporation ux, WEO accordingly establishes \monolayer evapation phase" in the
early evolution and \droplet evaporation phase" in the late evolution Next, we take a
minimization problem as an example to describe the updating mechanisshindividuals.

2.1. Monolayer evaporation phase. Firstly, the evaporation ux J(i) of the ith indi-
vidual can be calculated according to Formula (1).

J (') = exp ( Esub(i)) (l)

where E¢ (i) is the corresponding substrate interaction energy of thigh individual. In
each iteration, Egy(i) is calculated as follows.

(Emax  Emin) (Fit; Min(Fit))
(Max(Fit) Min(Fit))

whereFit; is the tness value ofith individual; Max( Fit ) and Min(Fit) are the maximum
and minimum tness value in the current population;Enax and Eni, are 0:5 and 3.5,
respectively. The values of the two parameters and the values @fsx and i, described
below are based on the MD simulation results obtained by Wang et al. [2@nd a more
detailed introduction to these values can be found in [10] and [13].

Then, on the basis of the individual's evaporation ux, the monolayerevaporation
probability matrix ( MEP) of the current population is constructed using Formula (3).

1 ifrand; <J (i)
0 ifrand; J(i) (3)
whererandj is a random number with uniform distribution in [0; 1]; MEPj; is the updating

probability of the jth variable of the ith individual.
Finally, the new population newWM is generated according to Formula (4).

newWM = WM + S MEP 4)

Esub(i) =

+ Emin (2)

MEPij =

where S is a random permutation based step size, and it is calculated as follows
S=rand(0;1) (WM [permutel(i)(j)] WM [permute2(i)(j)]) (5)

wherepermutel and permute2 represent two di erent random vectors with population size
N as the dimensions.

Obviously, the better the original individual is, the smaller theEg,, value is, the smaller
the evaporation ux J(i) is, thus the more likely the corresponding updating probability
of its genes is to be 0, therefore, the more genes it will retain to itsspring.

2.2. Droplet evaporation phase. In the droplet evaporation phase, the evaporation
ux of an individual is calculated by Formula (6). Then, the evaporaton probability
matrix and the o spring population are constructed in the same wayas the monolayer
evaporation phase.

. 2=3
% +°°§’(% cos( (i)) (L cos( (i) (6)

where Jg is 1=2:6; (i) is the corresponding contact angle of théh individual, as shown
in Formula (7).

(@)= Jo

N (' max mn) (Fiti  Min(Fit)) .
0= ——Nax(Ft) Min(Fty) ™ 0
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whereFit; is the tness value ofith individual, Max( Fit) and Min(Fit) are the maximum
and minimum tness value in the current population, and correspondg to the MD
simulation results, .x and i, are 20 and 50, respectively.

It can be seen from Formulas (6) and (7) that the better thath individual is, the
smaller the corresponding contact angle is, the smaller its evapa@t ux is, thereby,
the easier the updating probability of its genes is to be 0 in the evapiron probability
matrix constructed by Formula (3), so the more genes it retains insto spring.

To understand its operation process, the owchart of WEO algorhim is illustrated in
Figure 1 and the steps involved are as follows:

Step 1. Initialization. Set the population size toN, the dimension of the problem to
d, the maximum number of algorithm iterations toT. Generate the initial population
randomly and evaluate individuals;

Step 2. Fort T, the monolayer evaporation phase is performed. Calculate the e-
vaporation ux of individuals based on Formula (1), construct the nonolayer evaporation
probability matrix ( MEP) using Formula (3), and generate o spring population via For-
mula (4). If the newly generated individual is better than the currat one, the latter
should be replaced;

Step 3. Judge whether the number of iterations is greater thai =2. If so, proceed to
Step 4 if not go to Step 2

Step 4. For t > T , the droplet evaporation phase is performed. Calculate the evapo
ration ux based on Formula (6), and also construct the evaporabn probability matrix
and the o spring population by Formula (3) and Formula (4), respetvely. If the newly
generated individual is better than the current one, the latter sbuld be replaced,;

Step 5. Judge whether the number of iterations becomes larger than. If so, return
the best individual as the output and terminate the algorithm, othewise go toStep 4

Initialize algorithm parameters,
randomly initialize population, =1

v

=t+1
r ‘l r
Yes No
t==T/2
E i) =]
E“ Calculate the evaporation flux Calculate the evaporation flux | 1 &
£1 |/ of individual using Eq.(1) J(i) of individual using Eq.(6) :5
E‘ Generate offspring population Generate offspring population 5
§ using Eq.(4) using Eq.(4)
| |
Comparing and updating the Comparing and updating the
individuals individuals
I I
L T
No
=T

Yes
Output optimal individual ‘

and fitness values

End

Figure 1. WEO algorithm optimization process



AN IMPROVED WATER EVAPORATION OPTIMIZATION ALGORITHM 111

3. Improved Water Evaporation Optimization Algorithm. In order to improve
the WEO algorithm's convergence speed and accuracy, in this papéne monolayer e-
vaporation phase and the droplet evaporation phase are improvedspectively, and an
improved water evaporation optimization algorithm is proposed.

3.1. The improved monolayer evaporation phase. As shown in Formula (4), the
evaporation probability matrix MEP determines the retention ratio of the original indi-
viduals in the new individuals, that is, the updating rate of individuals. B calculating,
the evaporation ux J in Formula (1) is about 0.030 to 0.607, and on the basis of these
J values, the MEP constructed using Formula (3) results in 39.3-97.0% of the genes of
the new individual being directly from the original individual. To study the number of
individual's updated genes in each generation, the 30-dimensionalh®pe function was
tested, and the results are shown in Figure 2 and Figure 3. Amongeim, Figure 2 shows
the average number of updated genes per individual in each iteratiovhen the popula-
tion size is 50 and the total number of iterations is 1600, and Figur&fa)-3(c) show the
distribution between the number of updated genes and the numbef the corresponding
individuals when the iterations are 1, 400 and 800, respectively.

It can be seen from Figure 2 that in the early iterations (the rst 8@ iterations),
i.e., the monolayer evaporation phase, about 4 genes per individuaeaipdated in each
iteration, accounting for 13.3% of an individual's total genes. As is ee from Figure 3,
individuals with less than 10 updated genes take up a large proportiar the population.
These results clearly indicate that the updating rate of individuals athis stage, is too
low and makes the algorithm ine cient to a large extent. In the secod half of the whole
iteration shown in Figure 2, by contrast, each individual updates atut 20 genes in each
iteration, which shows that on the basis of thel value of about 0.6-1 in Formula (6), the
evaporation probability matrix constructed by Formula (3) can mak the overall updating
rate of individuals in the droplet evaporation phase reach a satisfiacy level. To sum up,
in the monolayer evaporation phase, théMEP constructed by Formula (3) causes slow
individual change and insu cient convergence speed.

To promote the individual updates and eventually speed up the coekgence, a new
MEP construction method that can lift the overall updating rate of indivduals is needed.
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Figure 2. The average number of updated genes in each iteration
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Figure 3. (a), (b) and (c) show the distribution between the number of
updated genes and the number of the corresponding individuals whthe
iterations are 1, 400 and 800, respectively.

To this end, and based on the characteristics of early evolution ohé algorithm, this
paper improves the construction oMEP in the monolayer evaporation phase, as shown
in Formula (8). To compare the convergence speed of the algorithoefore and after the
improvement, Figure 4 shows a comparison of the convergenceves:

1 cos(@5 rand) if rand; <J (i) (8)
cos(Q5 rand) if rand;  J(i)

Compared with Formula (3), the MEP constructed by Formula (8) converts approxi-
mately the ratio of the S in every new individual, so that the better an individual is, the
higher its updating rate is. Therefore, in the early stage of evolutip better individuals
strengthen the communication with other individuals, while poor individials try to retain
their own information. At the same time, the newMEP adjusts the gene updating prob-
ability from O or 1 to a random number in the interval 0-0.1224 or 0.8&¢1, so that every
gene of an individual can participate in the updating process of the dividual. From
Figure 4, it can be seen that the convergence speed has been siamtly improved after
the improvement.

In addition, as is seen from Formula (5), the step siz& consists of two random individ-
uals, from which the original individuals learn to generate new individuga. Evidently, the

MEPij =
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Figure 4. The convergence curves of WEO and IWEO

step sizeS can make population keep good diversity, but the search for new intuals is
bound to be blind and this is at the cost of reducing the overall conkgence speed and ac-
curacy. To further improve the performance of the monolayer aporation phase, in view
of the fact that excellent individuals often carry representative wlutionary information,
by this, a new calculation method of step siz8 is proposed as follows.

Sy =1y (WMe; WMi)+ i (WM WMyyy) 9)
where, WMg is a randomly selected elite individual from the rstdp N e individuals in
the population sorted in ascending order of tness valuegq 2 (0;1), ri; is the random
variable in the range of [01], i; is the random variable in the range of [1;1], k1 2
f1,2;:::;Ng,ande6 k16 i.

In Formula (9), the new method enhances the population to learn editindividuals
that carry ne evolutionary information, which will inevitably promot e the population to
approach the optimal solution rapidly. It is worth noting that the elite individual is not
just locally optimal individual, but selected randomly from several esellent individuals,
which can still maintain the diversity of the population and reduce theisk of falling into
the local optimum.

To sum up, through the combination of Equation (8) and Equation (B the updating
rate of individuals can be lifted, and the updating rate of excellent indiduals is higher
than that of poor individuals. The excellent individuals gradually evolveoward the global
optimal solution under the guidance of several elite individuals, theby improving the
convergence speed. Meanwhile, the poor individuals retain more béir own information
to explore potential excellent areas, which helps the algorithm to nrdain population
diversity and avoid falling into local optimum. That is to say, the metha proposed in
this paper can balance the contradiction between exploration ana@oitation to a certain
extent.

3.2. The improved droplet evaporation phase. As can be seen from Section 2.2, the
individual updating method adopted in this phase is the same as that ithe monolayer
evaporation phase, so the random individuals in the step si&will also inevitably a ect
the convergence speed and accuracy of this phase.



114 Y. WANG AND X. CHE

Given that droplet evaporation phase is at the later stage of the evall evolution,
individuals within the population have tended to be excellent. Therefe, on the premise
of avoiding falling into local optimum, ne search should be carried ouin the region
where the optimal solution is located, so as to improve the converge accuracy. Based
on the above considerations, this paper designs a new calculationtioel of step sizeS
as follows.

Sij =Tij (WMpestj WMi5)+ 5 (WMyzj WMysy) (10)
where, WMy is the optimal individual in the current population, ri; and i; are the
random variables in the range of [A] and [ 1;1] respectively,k2, k32 f1;2;:::;Ng,
and k26 k36 i.

Compared with Formula (5), the proposed calculation method of gpesizeS as shown
in Formula (10) has the following advantages. Firstly, the introdudbn of the optimal
solution can strengthen the ne search around it and avoid missinché global optimal
solution due to too random search, which helps the algorithm to impve convergence
accuracy. Secondly, the step size factor in front of the di ereecvector consisting of two
random individuals changes fromand to a random variable in the range of [ 1; 1], which
increases the search direction to avoid the di culty of convergere caused by one-way
search, and also increases the random disturbance to a certairtegix to maintain the
population diversity.

3.3. IWEO algorithm ow. The speci ¢ implementation steps of the improved water
evaporation optimization algorithm are as follows:

Step 1. Set the population size toN, the dimension tod, the proportion of elite
individuals to p, the maximum number of iterations toT;

Step 2. Generate initial population using random method and evaluate thesedividuals
based on the objective function of the problem at hand;

Step 3. Perform the improved monolayer evaporation phase in Section 3.1 generate
new population. Compare the newly generated individual and the awnt one, and retain
the better of the two;

Step 4. Judge whether the number of iterations is greater thail /2, if so, proceed to
Step 5 if not go to Step 3

Step 5. Perform the improved droplet evaporation phase in Section 3.2 to mggerate new
population. Compare the new individual and the current one, and tain the better of
the two;

Step 6. Judge whether the number of iterations is larger thait, if so, the best individual
is output and the algorithm terminates, if not go toStep 5

3.4. Discussions. In this section, the di erences of the IWEO algorithm from the class
WEO algorithm are discussed as follows.

As can be found in [10], the WEO uses the method shown as Formula (8)construct
the evaporation probability matrix MEP in both the monolayer evaporation phase and the
droplet evaporation phase. However, by analyzing the in uence tfie evaporation prob-
ability matrix on the updating rate of individuals, this paper improves te construction
method of the MEP in the monolayer evaporation phase, so the IWEO employs Formulas
(8) and (3) to construct the MEP in these two phases, respectively.

Moreover, in [10], the WEO uses Formula (5) to calculate the step si&in the two
evaporation phases. However, by analyzing the defects of Forda5) and based on the
characteristics of the early and late evolution of the algorithm, in tis paper, the IWEO
employs Formulas (9) and (10) to calculate step siZ8 so as to improve the convergence
speed and accuracy in both phases.
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4. Experiment. In order to verify the performance of the proposed algorithm, 5 \o
dimensional benchmark functions and 10 high-dimensional functisrare used. Among
them, f,-f1; are unimodal functions, and Functionsf-f3 and f »,-f 15 are multimodal
functions where the number of their local minimum increases expanilly with the
problem dimension.

To make experiments more reasonable and convincing, we compahElo with WEO
and other three representative state-of-the-art algorithms tiuding all-dimension neigh-
borhood based particle swarm optimization with randomly selected igbors (ADN-RSN-
PSO) [16], modi ed di erential evolution with self-adaptive parametes method (MDE)
[17] and an enhanced arti cial bee colony algorithm with adaptive di eential operators
(ABCADE) [18] in terms of convergence accuracy and convergenspeed. For the sake of
fairness, the population size of each algorithm is 50. The detailed paneter settings of
all algorithms are shown in Table 1. Among them, the setting of the pameter p, added
in IWEO relative to WEO, is based on the results of a large number of prriments, and
the parameters of other algorithms are set according to the cesponding original works.

Table 1. Parameter setting of various algorithms

Algorithm Parameter setting
ADN-RSN-PSO w =0:7298,¢c; = ¢, = 2:05
MDE CR =0:4, F is a random number in the range of []
ABCADE limit =200, m=5, n=10, ¢ =0:9, ¢c, =0:999
WEO Emax = 05,Emn = 35,J0=1=26, min= 50, max = 20
IWEO p = 0:3, the other parameters are same as those in WEO

4.1. Comparison of convergence accuracy. The convergence accuracy of IWEO is
examined in this section. The compared algorithms are tested on thew-dimensional
functions f ;-f 5 and the high-dimensional functiond ¢-f 15, and the max numbers of func-
tion evaluation on low-dimensional and high-dimensional functions @r8000 and 80000
respectively. To avoid the adverse e ect of randomness in a singlent in this paper, each
algorithm runs 30 times independently, and the minimum, mean value, aximum and
standard deviation denoted as "‘Best', "Mean', "Worst' and "SD' of thebjective function
values gained are used to evaluate the convergence accuracyhaf algorithm. In the
experiment, the dimension of ;-f5 is d = 2, and the dimensions off ¢-f 15 is d = 30. The
speci ¢ results are shown in Table 2 and Table 3 respectively. For tleake of clarity, the
best mean values are highlighted in boldface.

As shown in Table 2, for the low-dimensional benchmark functions vhitd = 2, IWEO
obtains the best results on all functions excefts, on which ABCADE performs the best.
IWEO is able to nd the global optimal solutions in all 30 runs onf,, f3, and on the
remainder functions (i.e.,f1, f4, f5), the solutions gained by IWEO are very close to their
global optima. ABCADE has the same performance as IWEO dip and is slightly better
on fs, but it is inferior to IWEO on other functions. The other three algoithms fail
to converge to their global optimum solutions on these low-dimensiahfunctions, and
among them, WEO and ADN-RSN-PSO have the same and worst pemfieance.

As shown in Table 3, the results of IWEO on all high-dimensional funicins at d = 30
are obviously better than those of other algorithms. IWEO can gethe corresponding
global optimal solutions in all 30 runs onfg, f1; and f1,, and obtain the results very
close to the theoretical optimal solutions on remaining functions. BCADE has the same
performance as IWEO onf 1,; however, it is distinctly second best on other functions.
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Table 2. The results on low-dimensional functions atl = 2
Fun Algorithm Best Mean Worst SD
ADN-RSN-PSO 1.1924e-11 5.7754e-07 7.2548e-06 1.7350e-06
£ MDE 3.6544e-16 1.6210e-12 1.6322e-11 3.1536e-12
Booth ABCADE 1.2469e-18 2.8147e-13 4.3089e-12 1.0415e-12
WEO 1.1148e-08 5.8862e-07 2.7863e-06 7.3003e-07
IWEO 0 1.6224e-29 8.5986e-29 2.1446e-29
ADN-RSN-PSO 3.8969e-13 0.0017 0.0257 0.0060
£ MDE 5.5511e-16 1.3887e-13 1.3506e-12 2.6519e-13
Boachevskyl ABCADE 0 0 0 0
WEO 1.5387e-06 1.0250e-04 6.3772e-04 1.4400e-04
IWEO 0 0 0 0
ADN-RSN-PSO 5.5511e-17 1.4117e-04 0.0012  3.7794e-04
£y MDE 4.1419e-12 3.5038e-10 1.3639e-09 4.4528e-10
Boachevsky3 ABCADE 0 5.3522e-14 1.5505e-12 2.8281e-13
WEO 1.8522e-06 1.6298e-04 6.3267e-04 1.8372e-04
IWEO 0 0 0 0
ADN-RSN-PSO 8.4527e-11 8.3507e-06 1.1634e-04 2.3599e-05
f MDE 8.3692e-15 2.7931e-12 4.7937e-11 9.1621e-12
Mat;l/as ABCADE 7.2256e-17 1.0487e-13 1.1123e-12 2.8395e-13
WEO 1.1831e-09 5.2270e-08 3.1339e-07 6.4877e-08
IWEO 5.0688e-25 2.3577e-22 2.6311e-20 4.7873e-21
ADN-RSN-PSO 0:7323 0:0919 0:0100 0.2229
f MDE 1:0000 1:0000 1:0000 4.9241e-06
Eas50m ABCADE 1 1 1 0
WEO 1:0000 0:9332 0 0.2537
IWEO 1 1:0000 1:0000 1.8968e-15

In addition, from Table 4, MDE ranks third, while ADN-RSN-PSO and WEO have poor

results.

In summary, when the dimension is same, IWEO can obtain better obgtive function
values than other algorithms, and at the same time, it can be seenahthe standard
deviation of IWEO is the smallest on all functions excepts. So, the IWEO proposed in
this paper is superior to the other four algorithms in terms of accacy and stability.

To rank and compare AND-RSN-PSO, MDE, ABCADE, WEO and IWEO rdionally,
the nonparametric tests of Friedman and Wilcoxon are performednoSPSS19.0. The
average rankings of all algorithms over all problems based on Friedmtest and the P
value of the other four algorithm versus IWEO based Wilcoxon testra provided in Table

4

As shown in Table 4, the average rankings demonstrate that thesats of IWEO are
better than those of other algorithms whether on low-dimensiondlnctions atd = 2 or
on high-dimensional functions ad = 30. The P value of AND-RSN-PSO and WEO vs.
IWEO based Wilcoxon test is less than 0.05 on functions at= 2 and that of AND-RSN-
PSO, MDE and WEO vs. IWEO is less than 0.05 on functions a = 30, which indicate
there are signi cant di erences in the performance between thesalgorithms and IWEO,
and the advantage of IWEO on functions ad = 30 is more obvious.

In order to comprehensively examine the e ects of 30 experimenthe box plots of the
experimental results on 3 representative functions at = 30 (unimodal functions f¢ and
multimodal functions f ;3 and f 15) are shown in Figure 5. As shown in Figure 5, IWEO can
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Table 3. The results on high-dimensional functions atl = 30

Fun Algorithm Best Mean Worst SD
AND-RSN-PSO 4.6793e-25 3.3823 101.1303 18.4617
fo MDE 7.2891e-14 3.7216e-12  7.1280e-11 1.2840e-11
Sphere ABCADE 5.8382e-24 1.9269e-24  5.7204e-23  1.2758e-23
WEO 0.0021 0.0058 0.0160 0.0030
IWEO 3.7490e-58 3.3990e-57 1.7277e-56 3.9317e-57
AND-RSN-PSO 8.7478e-06 0.4108 3.1626 0.9135
fs MDE 2.8967e-08 1.3162e-07 3.2238e-07 7.0975e-08
Schwefel ABCADE 3.0547e-14 4.9706e-14 1.0875e-13 1.8525e-14
2.22 WEO 0.1226 0.1885 0.2988 0.0411
IWEO 6.5136e-31 2.5766e-30 8.3971e-30 1.74333e-30
AND-RSN-PSO 4.1468e-22 0.0208 0.4985 0.00907
fo MDE 5.2102e-15 2.3058e-13  9.0565e-13  2.3339e-13
SumSquares ABCADE 3.5349e-25 3.0806e-24 1.0385e-23 2.6982e-24
WEO 3.4881e-04 8.0976e-04 0.0022 3.6903e-04
IWEO 2.4546e-59 3.8908e-58 1.6867e-57 4.1048e-58
AND-RSN-PSO 0.9721 9.9948 1.0973 0.0213
fo MDE 0.6667 0.6667 0.6679 2.2355e-04
Dixon-Price ABCADE 1.8206e-21 1.0812e-16 1.6100e-15 4.1549e-16
WEO 6.4153 10.8001 13.8718 2.0209
IWEO 0 0 0 0
AND-RSN-PSO 1.3462e-20 1.1200e+03 2.3478e+04 4.4054e+03
f10 MDE 3.3143e-10 9.7263e-09 5.9207e-08 1.1422e-08
Elliptic ABCADE 3.8165e-20 2.4725e-19 1.0076e-18 2.7333e-19
WEO 2.8246 4.5078 7.5078 1.4468
IWEO 2.2644e-55 6.7861e-54 4.2111e-53 1.0009e-53
AND-RSN-PSO  4.6739 6.0181 7.4985 0.7745
fuy MDE 3.4733e-16  6.4200e-15 6.7099e-14  1.5459e-14
Step ABCADE 2.2676e-27 1.0702e-25 5.2982e-25 1.4926e-25
WEO 8.1592e-06 1.3718e-05 2.3441e-05 4.7091e-06
IWEO 0 0 0 0
AND-RSN-PSO  37.7860 59.2189 72.1914 9.4495
f1 MDE 1.5099e-13 1.1451e-12 3.1450e-12 8.5340e-13
Griwank ABCADE 0 0 0 0
WEO 0.0137 0.0637 0.1616 0.0344
IWEO 0 0 0 0
AND-RSN-PSO 3.7345e-05 0.8576 4.4305 1.3895
f1s MDE 4.1776e-08 2.8015e-07 9.0653e-07 2.2637e-07
Ackley ABCADE 5.6044e-13 2.0362e-12 3.8716e-12 9.2668e-13
WEO 0.0907 0.1595 0.3272 0.0492
IWEO 2.6645e-15 6.0988e-15 6.2172e-15 6.4863e-16
AND-RSN-PSO 2.6390 3.2565 5.7843 0.7224
f14 MDE 1.4003e-13 8.4250e-13  4.0953e-12 1.1335e-12
Generalized ABCADE 7.8323e-22 4.9456e-20 2.8290e-19 9.1765e-20
Penalizedl WEO 704.2388 2.5554e+05 2.9694e+06 5.8978e+05
IWEO 1.3498e-32 1.6203e-24 2.4305e-23 6.2756e-24
AND-RSN-PSO 0.3568 0.9965 1.6534 0.3092
fis MDE 8.2995e-15 1.4551e-13  1.1940e-12 2.2185e-13
Generalized ABCADE 1.9987e-26 2.2192e-25 8.5732e-25 2.3177e-25
Penalized2 WEO 0.0248 0.1464 0.3281 0.0843
IWEO 1.5705e-32 1.5705e-32 1.5705e-32 5.5674e-48
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Table 4. The results of nonparametric test for all functions

Algorithms d - 2 d - 30
Ave-Ranking P value| Ave-Ranking P value
AND-RSN-PSO 4.60 0.043 4.70 0.005
MDE 2.80 0.068 3.00 0.005
ABCADE 1.90 0.109 1.60 0.180
WEO 4.40 0.043 4.30 0.005
IWEO 1.30 1.40
| E -
=
-15A—ND-RéN-PSO MIIDE ABCIADE WIIEO IWIEO
fe fi13
of = %
5F
10
= =
5'15
© 20
2] =
30+ o
AND-RéN-PSO MEl)E ABCIADE WI‘EO IW;EO
fis
Figure 5. The box plot of results of all algorithms

obtain better and more stable solutions than other compared algtrms, which further
illustrates the conclusions re ected in Table 3 and Table 4.

4.2. Comparison of convergence speed. This section examines and compares the
convergence speed of IWEO. In all experiments, each algorithm igl@pendently run on
f,-fsg at d =2 and fg-f15 at d = 30 for 30 times, and the mean values obtained under
the same evaluation times are used to evaluate the convergenceesp of algorithm. The
max numbers of function evaluation on low-dimensional functions drhigh-dimensional
functions are 4000, 5000, 6000 and 40000, 50000, 60000 ré&spbc The specic test
results are shown in Table 5.

As shown in Table 5, under the same number of function evaluationhé convergence
accuracy of IWEO is signi cantly better than the other four algorithms on all functions
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Table 5. The results of convergence speed
Algorithm
Fun T');”Qggf AND-RSN-PSO MDE ABCADE WEO  IWEO
| 4000  3.6516e-04 4.1615¢-08 6.3143e-00 4.8915ad8P4e-15
Bouth 5000  2.0739e-05 1.2651e-09 1.1780e-09 1.003(R8¥2le-19
6000  3.0229e-06 1.8179e-11 1.3450e-12 1.40762:1Bi8e-22
f2  gion 57008005 51%84608 0 00123 0
. e- . e- .
Boachevskyl 5h00  5.1984e-05 2.2602e-11 0 0.0039 0
' 4000 0.0052  1.9593e-06 3.1245¢-08 0.02%64870e-10
Boachevskyg 5000  17245e:04  2.5842e-08 3.2638e-10  0.0088946e-12
6000  3.6464e-06 1.0075e-09 9.9269e-12  0.00870248e-15
' 4000  4.7634e-04 6.5393e-07 3.3328e-08 3.3470ed850e-12
Vayas 5000  26537e:04 1991808 13069e-09 14294pi¥V3e-14
6000  7.9422e-05 2.2803e-09 2.1318e-10 3.4473F:TWie-17
y 24000 0:7201 0:8075  1:0000 07447 _ 1:0000
Eacom 5000 0:9789 0:9862  1:0000  0:7888  1:0000
6000 0:9953 0:9985  1:0000  0:8300  1:0000
' 20000  8.7910e-15 6.3039e-05 2.7411e-06 _ 6.7014741e-26
Sphere 50000 22162e20  1.1934e-07 7.0838e-13  0.92788528e-34
60000  1.2687e-20 9.5258e-10 2.341le-16  0.1388301e-42
y 20000  7.4694e-06  0.0011 3.7236e-05 2.56435191e-14
Schwerel 2,90 50000 4.0388¢-06  7.3906e-05 2.7235¢-08  1.139386e-18
60000  1.8820e-08 7.4927e-06 3.2807e-10  0.4739435e-22
. 20000  2.8169e-22 4.5110e-06 2.2493e-10  0.76501658e-27
SumSquares 50000 7.3131e-25  3.8994e-08 1.0281e-13  0.113%824e-35
60000  2.8179e-32 2.8285e-10 3.448le-17  0.0156829e-42
' 40000 33.9773 0.73633.3049¢-04 709354  0.5781
Dixorprice 50000 1.3764 0.67575.3402e-07 46.2834 1.2915e-04
60000 1.0354 0.6686 9.5710e-10 27.58268549e-12
o 20000  3.7334e+05  0.2954 7.9326e-06 9.6789e+A509e-23
Elipic 50000  5.7240e+05 8.9740e-04 2.6456e-09 1.45836D88e-31
60000  2.8372e+04 6.5050e-06 1.3904e-12 240.936W31e-39
fe 40000 47607  4.0734e-08 55505e-12  0.01658094e-29
St 50000 4.1544  3.9701e-10 1.8890e-15 0.0024 O
60000 45447  5.7431e-12 5.8795e-19 3.2177e-04 0
o 40000 472934  3.4796e-04 4.1072e-04 1.0704 O
erinZ . 50000 40.1082  1.6072e-07 5.2821e-11  0.8149 0
60000 324511  5.6295e-10 9.0377e-04 0.3479 0
o 20000  2.4609e-05  0.0014 1.6134e-05 2.40®I0376e-14
Ackley 50000 6.0409e-06  16258e-04 31370e-07  139G®278e-15
60000  3.0808e-08 1.4933e-05 7.1968e-09  0.5563725e-15
fia 40000 3.0214  1.03596-04 0.0015 8.3234e35896e-08
Generalized 50000 3.2638  1.8084e-06 1.5091e-09 1.0149¢:+6864e-12
Penalizedl 60000 3.0027  7.9157e-09 1.4353e-13 5.17616+0826e-15
f1s 40000 05030  1.1632e-06 1.0660e-11  1.69624081e-27
Generalized 50000 0.4902 9.2401e-09 4.9678e-15 0.94115705e-32
Penalized2 60000 0.3199  1.415le-11 1.5121e-18 0.56315705e-32
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exceptf,, fs and fq. Although the convergence speed of ABCADE of,, fg is similar
to that of IWEO, and is not much dierent on fg, the convergence speed of ABCADE
on other functions is obviously slower than that of IWEO. As a resultcompared with
other algorithms, the algorithm proposed in this paper has obviousdgantages in terms
of convergence speed.

To compare the convergence process of ve algorithms intuitivelfthe convergence
curves of their single run on unimodal function$ ¢-f g and multimodal functions f 1,-f 14
at d = 30 are given in Figure 6. As can be seen from Figure 6, IWEO has thasfest

fe f7

fg fio

f13 f14

Figure 6. The convergence curve on functions at = 30
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convergence speed on all functions, especially on unimodal funeo And compared
with the algorithms which reach the stagnation state on multimodal dnctions, IWEO
can continue to search until it gains the global optimal solutions.

5. Conclusions. In this paper, we proposed an improved water evaporation optimiza
tion (IWEO) algorithm. It has the following characteristics. 1) In manolayer evaporation
phase, through the theoretical analysis of the relationship betea the monolayer evapo-
ration probability matrix ( MEP) and the updating rate of individuals, the construction
method of the MEP is improved, which promotes more individual genes to be involved in
evolution and speeds up the convergence; meanwhile, multiple exc#llevolutionary in-
formation is introduced into step sizeS to balance the exploration and exploitation ability
of the algorithm. 2) In droplet evaporation phase, the optimal sokion and a new step
size factor are used to guide the evolution of individuals and carry bonulti-direction dis-
turbance, respectively, which can improve the convergence acaty as much as possible
while maintaining the diversity of the population. In Section 4, a seriesf experiments on
15 benchmark functions is executed to verify the e ectiveness WWEO. The results show
that IWEO has higher convergence accuracy and faster converge speed than WEO
algorithm and other three state-of-the-art metaheuristic algathms.

In our work, although the IWEO algorithm greatly improves the resit quality, it
still cannot converge to global optimum stably on some benchmarkirictions (such as
multimodal function f ,4), and has not been used to solve practical engineering problems.
So in the future, we will study the stability problem of IWEO on these dinctions. At
the same time, we will also apply the improved algorithm to solving phagdearray radar
resources management problem.
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