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Abstract. Firefly algorithm (FA) was proposed as one of the most powerful population-
based metaheuristic optimization techniques for solving continuous and combinatorial
optimization problems. The FA has been proved and applied to various real-world engi-
neering problems in mostly single objective optimization manner. However, many real-
world engineering problems are typically formulated as the multiobjective optimization
problems with complex constraints. In this paper, the multiobjective Lévy-flight firefly
algorithm (mLFFA) is developed. The proposed mLFFA is validated against four stan-
dard multiobjective test functions. Then, the mLFFA is applied to optimally design the
proportional-integral-derivative-accelerated (PIDA) controllers for the automatic voltage
regulator (AVR) system in order to simultaneously minimize two particular objective
functions, i.e., rise time and maximum overshoot. As simulation results, it was found
that the mLFFA can provide very satisfactory solutions for all benchmark test functions.
Moreover, the optimal PIDA controllers can be successfully obtained by the mLFFA ac-
cording to the predefined objective and constraint functions to perform the optimal Pareto
front containing the set of optimal PIDA controllers for the AVR system in the proposed
control application.
Keywords: Multiobjective Lévy-flight firefly algorithm, PIDA controller, Automatic
voltage regulator, Modern optimization

1. Introduction. Intelligent control system design has been changed from the conven-
tional paradigm to multiobjective design optimization framework over two decades [1].
Such the multiobjective optimization problems can be effectively solved by efficient meta-
heuristic optimization searching techniques. Following the literature, many metaheuris-
tics are consecutively developed and launched to perform their effectiveness [2-4]. Among
them, the firefly algorithm (FA) was firstly proposed in 2008 by Yang [5,6] based on the
flashing behavior of fireflies and uniform distribution for randomly generating the feasible
solutions. As one of the most efficient population-based metaheuristic algorithms, the FA
was applied to almost every area of sciences and engineering, including power systems,
image processing, antenna design, civil engineering, robotics and control engineering [7,8].

In 2010, two years after the former version of the FA was initiated, the later version
of FA named the Lévy-flight firefly algorithm (LFFA) was proposed by Yang [9]. The
algorithm of LFFA was still based on the flashing behavior of fireflies, but Lévy-flight
distribution is employed to randomly generate new solutions. The LFFA was tested
against several nonlinear and multimodal standard test functions. Results obtained by
the LFFA outperformed those by traditional algorithms including genetic algorithms (GA)
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and particle swarm optimization (PSO). The state-of-the-art and its applications of the
LFFA have been reviewed and reported [7-9].
Many real-world engineering design problems often consist of many objectives which

conflict each other [1-4]. This leads the multiobjective problems much more difficult
and complex than single-objective ones. The multiobjective problem possesses multiple
optimal solutions forming the so-called Pareto front [1-4]. The challenge is how to perform
the smooth Pareto front containing a set of optimal solutions for all objective functions.
From literature reviews, the multiobjective problems can be efficiently solved by the
modern optimization techniques or metaheuristics, for example, GA [10], PSO [10-12],
cuckoo search (CS) [13], flower pollination algorithm (FPA) [14], game algorithm (GaA)
[15], whale optimization algorithm (WOA) [16] and hybrid metaheuristics [17].
According to control system design, the proportional-integral-derivative-accelerated (P-

IDA) controller was firstly proposed by Jung and Dorf in 1996 [18]. It possesses three
arbitrary zeros and one pole at origin. This can provide faster and smoother responses
for the higher-order plants than the PID controller. Designing the PIDA controller can
be optimized by metaheuristics such as GA [19], PSO [20], current search (CuR) [21], FA
[22], bat algorithm (BA) [23,24] and FPA [25,26]. In control system design, the system
response needs to meet the design specification that is priori preset. For the time-domain
response, rise time (tr) and maximum percent overshoot (Mp) are usually set as the design
specification. However, they often conflict to each other. Therefore, the PIDA controller
design scheme can be considered as one of the multiobjective optimization problems.
The multiobjective Lévy-flight firefly algorithm (mLFFA) is proposed in this paper to

optimize the PIDA controller based on the multiobjective optimization problems. Due
to the Lévy-flight drawn from the Lévy distribution having an infinite mean and infinite
variance, the proposed mLFFA is thus very suitable for the PIDA controller design. In this
paper, the performance of the mLFFA is evaluated against four standard multiobjective
test functions. Then, the proposed mLFFA is applied to optimally design the PIDA
controllers for the automatic voltage regulator (AVR) system. This paper is arranged
as follows. After an introduction is given in Section 1, the multiobjective optimization
problems are described in Section 2. Algorithms of FA, LFFA and the proposed mLFFA
are illustrated in Section 3. The performance evaluation of the mLFFA against four
standard multiobjective test functions is performed in Section 4. Application of the
mLFFA to design optimal PIDA controllers for AVR system based on multiobjective
optimization is discussed in Section 5, while conclusions are given in Section 6.

2. Multiobjective Optimization. Based on the optimization context [1-4], the multi-
objective continuous optimization problems can be expressed in (1), where F (x) is the
multiobjective function consisting of f1(x), . . ., fn(x), n ≥ 2, gj(x), j = 1, 2, . . .,m, is the
inequality constraints and hk(x), k = 1, 2, . . ., p, is the equality constraints. The optimal
solutions, x∗, are the solutions that can make F (x) minimum and make both gj(x) and
hk(x) satisfied.

Min F (x) = {f1(x), f2(x), . . . , fn(x)}
subject to gj(x) ≤ 0, j = 1, . . . ,m

hk(x) = 0, k = 1, . . . , p

 (1)

Referring to the Pareto optimality [1-4,27-29], a solution x∗ is called a non-dominated
solution if no solution can be found that dominates it. In other words, a solution x∗

is Pareto optimal if F (x∗) ≺ F (x). For a given multiobjective optimization problem,
the Pareto optimal set is defined as P ∗ stated in (2). The Pareto front PF ∗ of a given
multiobjective optimization problem can be defined as the image of the Pareto optimal
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set P ∗ expressed in (3). In case of bi-objective optimization problem, its Pareto front can
be performed as shown in Figure 1 to demonstrate the trade-off characteristics between
two objective functions.

P ∗ = {x ∈ F |∃x∗ ∈ F : F (x∗) ≺ F (x)} (2)

PF ∗ = {s ∈ S|∃s∗ ∈ S : s∗ ≺ s} (3)

Figure 1. Pareto front of bi-objective problem

3. The mLFFA Algorithm. To understand the proposed mLFFA, the original FA and
LFFA are briefly reviewed. Then, the algorithm of the proposed mLFFA is elaborately
described.

3.1. FA algorithm. The original firefly algorithm (or FA) was firstly developed by Yang
in 2008 by [5,6] based on the flashing behavior of fireflies. The flashing light of fireflies
is produced by a process of bioluminescence to attract mating partners (communication)
and to attract potential prey. The FA’s algorithm is developed from three idealized rules
[5,6]:

Rule (1): fireflies are unisex so that one firefly will be attracted to other fireflies regard-
less of their sex;

Rule (2): the attractiveness is proportional to the brightness, and they both decrease
as their distance increases. Thus for any two flashing fireflies, the less brighter one will
move towards the brighter one. If there is no brighter one than a particular firefly, it will
move randomly; and

Rule (3): the brightness of a firefly is determined by the landscape of the objective
function.

In FA, there are two important issues: the variation of light intensity and formulation
of the attractiveness. The attractiveness of a firefly is determined by its brightness which
in turn is associated with the encoded objective function. Along the distance r, the
light intensity I varies according to the inverse square law I(r) = Is/r

2, where Is is the
intensity at the source. For a given medium with a fixed light absorption coefficient, the
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light intensity I varies with the distance r as stated in (4), where I0 is the original light
intensity.

I = I0e
−γr (4)

β = β0e
−γr2 (5)

rij = ∥xi − xj∥ =

√√√√ d∑
k=1

(xi,k − xj,k)
2 (6)

The attractiveness of a firefly observed by adjacent fireflies is proportional to the light
intensity. This can define the variation of attractiveness β with the distance r as expressed
in (5), where β0 is the attractiveness at r = 0. From parametric studies, β0 = 1 is
suggested for most applications [5,6]. The scaling factor γ in (4) and (5) is defined as the
light absorption coefficient. In addition in (4) and (5), the distance rij between any two
fireflies i and j at their locations xi and xj can be calculated by the Cartesian distance
as expressed in (6), where xi,k is the kth component of the spatial coordinate xi of ith
firefly.
For FA, the new solution xt+1 can be obtained by the old solution xt as formulated in

(7). Referring to (7), the movement of a firefly i is attracted to another more attractive
(brighter) firefly j, where αt is the randomization parameter, and εi is a vector of random
numbers drawn from a Gaussian distribution or uniform distribution at time t [5,6]. In
addition, αt can be controlled during iterations as stated in (8), where α0 is the initial
randomness scaling factor, and δ is a cooling factor.

xt+1
i = xt

i + β0e
−γr2ij

(
xt
j − xt

i

)
+ αtε

t
i (7)

αt = α0δ
t, (0 < δ < 1) (8)

3.2. LFFA algorithm. The Lévy-flight firefly algorithm (or LFFA), the modified version
of the FA, was proposed by Yang in 2010 [9]. Movement of a firefly i is attracted to
another more attractive (brighter) firefly j as determined by (9), where the second term
is due to the attraction while the third term is randomization via Lévy flights with α
being the randomization parameter. Referring to (9), the product ⊕ means entrywise
multiplications. The sign [rand − 1/2] where rand ∈ [0, 1] essentially provides a random
sign or direction while the random step length is drawn from a Lévy distribution having
an infinite variance with an infinite mean. From (9), a symbol Lévy (λ) represents the
Lévy distribution as expressed in (10). The step length s can be calculated by (11), where
u and v stand for normal distribution as stated in (12). Standard deviations of u and v
are also expressed in (13).

xt+1
i = xt

i + β0e
−γr2ij

(
xt
j − xt

i

)
+ αsign

[
rand− 1

2

]
⊕ Lévy(λ) (9)

Lévy ≈ u = t−λ, (1 < λ ≤ 3) (10)

s =
u

|v|1/β
(11)

u ≈ N
(
0, σ2

u

)
, v ≈ N

(
0, σ2

v

)
(12)

σu =

{
Γ(1 + β) sin(πβ/2)

Γ[(1 + β)/2]β2(β−1)/2

}1/β

, σv = 1 (13)



MULTIOBJECTIVE LÉVY-FLIGHT FIREFLY ALGORITHM 177

3.3. Proposed mLFFA algorithm. The multiobjective Lévy-flight firefly algorithm (or
mLFFA) is thus proposed. The LFFA can be modified to minimize the F (x) in (1). The
algorithm of the proposed mLFFA can be represented by the pseudo code as shown in
Figure 2. Multiobjective function F (x) as stated in (1) will be simultaneously minimized
according to the equality and inequality constraints. The best solution will be checked
in each iteration. If it is a non-dominated solution, it will be sorted and stored into the
Pareto optimal set P ∗. After the search terminated, the solutions stored in P ∗ will be used
to perform the Pareto front PF ∗. Solutions that appeared on the PF ∗ are the optimal
solutions of the problem of interest.

Figure 2. Pseudo code of mLFFA algorithm

Referring to the pseudo code in Figure 2 representing the mLFFA algorithm, the mul-
tiobjective function F (x) as stated in (1) is firstly initialized. LFFA1, . . ., LFFAk, and
Pareto optimal set P ∗ are also initially performed. The initial population of fireflies
xi = (i = 1, 2, . . ., n) is randomly generated. The light intensity Ii at xi is determined
by F (xi). The light absorption coefficient γ, the initial attractiveness β0 and the initial
randomness scaling factor α0 are also defined. Gen = 1 as a counter and Max Gen as
the termination criteria (TC) are set for terminating the search process. In the iteration
process, the mLFFA algorithm will check the TC. If Gen ≤ Max Gen, the search process
will continue. Otherwise the search process will be stopped and the best solution will be
reported. In each iteration, n fireflies will check the light intensity I to each other. If
Ij > Ii, a firefly i will move firefly toward a firefly j in d-dimension via Lévy-flight ran-
dom distribution. Otherwise, a firefly i will move randomly. After that, the attractiveness
β, the light intensity I and the randomness scaling factor α will be updated. The new
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positions of all fireflies (new solutions) are ranked. The current best solution x∗ is then
updated. The mLFFA algorithm will be iteratively processed until the TC is met. For
post process of iteration, all best solution x∗ found by all LFFA will be sorted to generate
the Pareto optimal solutions into the Pareto optimal set P ∗. Finally, the Pareto front
PF ∗ containing all Pareto optimal solutions will be performed.

4. Performance Evaluation. In order to perform its effectiveness, the mLFFA is then
evaluated against several multiobjective test functions. In this work, four widely used
standard multiobjective functions, ZDT1-ZDT4, providing a wide range of diverse prop-
erties in terms of Pareto front and Pareto optimal set are conducted [30,31]. ZDT1 is with
convex front as stated in (14) where d is the number of dimensions. ZDT2 as stated in
(15) is with non-convex front, while ZDT3 with discontinuous front is expressed in (16),
where g and xi in functions ZDT2 and ZDT3 are the same as in function ZDT1. For
ZDT4, it is stated in (17) with convex front but more specific.

f1(x) = x1, f2(x) = g
(
1−

√
f1/g

)
,

g = 1 +

(
9

d∑
i=2

xi

)/
(d− 1), xi ∈ [0, 1], i = 1, . . . , 30.

 (14)

f1(x) = x1, f2(x) = g

(
1− f1

g

)2

(15)

f1(x) = x1, f2(x) = g

(
1−

√
f1
g

− f1
g
sin(10πf1)

)
(16)

f1(x) = x1, f2(x) = g
(
1−

√
f1/g

)
,

g = 1 + 10(d− 1) +
d∑

i=2

[
x2
i − 10 cos(4πf1)

]
, xi ∈ [0, 1], i = 1, . . . , 30.

 (17)

Ef = ∥PFe − PFt∥ =
N∑
j=1

(
PF j

e − PFt

)2
(18)

In evaluation process, the error Ef between the estimated Pareto front PF e and its
corresponding true front PF t is defined in (18), where N is the number of solution
points. The proposed mLFFA algorithms were coded by MATLAB version 2018b (Li-
cense No.#40637337) run on Intel(R) Core(TM) i5-3470 CPU@3.60 GHz, 4.0 GB-RAM.
Search parameters of each LFFA in the mLFFA are set according to Yang’s recommen-
dations [6,9], i.e., the numbers of fireflies n = 30, α0 = 0.25, β0 = 1, λ = 1.50 and γ = 1.
These searching parameters of LFFA are sufficient for most optimization problems because
the LFFA algorithm is very robust (not very sensitive to the parameter adjustment) [6,9].
In this work, the TC either uses a given tolerance or a fixed number of generations. As
implementation results, it was found that a fixed number of generations is not only easy
to implement, but also suitable to compare the closeness of Pareto front of test functions.
Therefore, for all test functions, Max Gen = 2,000 is set as the TC.
For comparison, the results obtained by the proposed mLFFA over all test functions

are compared with those obtained by the well-known algorithms, i.e., vector evaluated
genetic algorithm (VEGA) [32], non-dominated sorting genetic algorithm II (NSGA-II)
[33], differential evolution for multiobjective optimization (DEMO) [34] and multiobjec-
tive multipath adaptive tabu search (mMATS) [35]. The performance of all algorithms
is measured via the error Ef stated in (18) and for all algorithms, a fixed number of
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generations/iterations of 2,000 (Max Gen) is set as the TC. The results obtained from
all test functions are summarized in Tables 1-2, and the estimated Pareto fronts and the
true front of functions ZDT1-ZDT4 are depicted in Figures 3-6, respectively. It was found
from all figures that the mLFFA can satisfactorily provide the Pareto front containing all
Pareto optimal solutions of each function very close to the true front of each test function.
Referring to Tables 1-2, the mLFFA shows superior results in term of error Ef to other
algorithms with lesser search time consumed.

Table 1. Error Ef between PF e and PF t

Methods
Error Ef

ZDT1 ZDT2 ZDT3 ZDT4
VEGA 2.79e-02 2.37e-03 3.29e-01 4.87e-01
NSGA-II 3.33e-02 7.24e-02 1.14e-01 3.38e-01
DEMO 2.08e-03 7.55e-04 2.18e-03 2.96e-01
mMATS 1.24e-03 2.52e-04 1.07e-03 1.02e-01
mLFFA 1.20e-03 2.48e-04 1.01e-03 1.01e-01

Table 2. Search time consumed

Methods
Search time (sec.)

ZDT1 ZDT2 ZDT3 ZDT4
VEGA 125.45 132.18 121.40 122.24
NSGA-II 126.82 145.63 158.27 165.51
DEMO 89.31 98.44 102.32 120.86
mMATS 65.54 72.33 82.47 78.52
mLFFA 52.42 65.18 71.53 64.78

Figure 3. Pareto front of ZDT1

5. The mLFFA-Based PIDA Controller Design. The application of the mLFFA to
design optimal PIDA controllers for AVR system based on multiobjective optimization is
discussed in this section. The mLFFA-based PIDA controller design framework for the
AVR system is represented in Figure 7. The AVR is commonly used in the generator
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Figure 4. Pareto front of ZDT2

Figure 5. Pareto front of ZDT3

Figure 6. Pareto front of ZDT4
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excitation system of hydro and thermal power plants. The main role of the AVR is to
regulate generator voltage and control the reactive power flow at a specified level. In this
work, a simple AVR consists of four main components, i.e., amplifier, exciter, generator,
and sensor, respectively as shown in Figure 7, where E is the error voltage between
the referent input voltage Vref (s) and sensor voltage VB, while U , VR and VF are the
controlled, amplified, and excited voltage signals, and Vo(s) is the output voltage. Four
main components of the AVR are linearized and modeled by transfer functions [36,37] as
visualized in Figure 7. From [36,37], the amplifier gain model KA is in the range of 10
to 400, while the amplifier time constant τA is very small ranging from 0.02 to 0.1 sec.
For an exciter, a gain KE is in the range of 1 to 400 and a time constant τE is from 0.25
to 1.0 sec. For a generator, a gain KG may vary from 0.7 to 1.0, while a time constant
τG is varied from 1.0 to 2.0 sec. Finally, a sensor gain KR is very small ranging from 0.1
to 1.0, and its time constant τR is varied from 0.001 to 0.06 sec. Models of four main
components will be used as a system plant in the control loop.

Figure 7. The mLFFA-based PIDA controller design for AVR system

Referring to the control loop in Figure 7, the PIDA controller receives the error signal,
E(s), and produces the control signal, U(s), to control the voltage output response, Vo(s),
referring to the voltage referent input, Vref (s), and regulate the voltage output response,
Vo(s), from the external disturbance signal, D(s). The s-domain transfer function of the
PIDA controller Gc(s) is stated in (19) [18], where Kp, Ki, Kd and Ka are proportional,
integral, derivative and accelerated gains, respectively.

Gc(s)|PIDA = Kp +
Ki

s
+Kds+Kas

2 (19)

In the time-domain response of a controlled system, tr and Mp usually conflict to each
other. Therefore, two particular objective functions, i.e., f1(x) = tr and f2(x) = Mp

are then set as stated in (20) to be minimized by the mLFFA in order to obtain the
optimal PIDA parameters, i.e., Kp, Ki, Kd and Ka, for the AVR system, corresponding
to their constraints and search spaces as given in (21), where ts is settling time and Ess

is steady-state error.

Min F (x) = {f1(x), f2(x)},
f1(x) = tr, f2(x) = Mp,

x = (Kp, Ki, Kd, Ka)
T

 (20)
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subject to tr ≤ 0.3 sec., Mp ≤ 10%,

ts ≤ 1.5 sec., Ess ≤ 0.01%,

0 ≤ Kp ≤ 1, 0 ≤ Ki ≤ 1,

0 ≤ Kd ≤ 0.3, 0 ≤ Ka ≤ 0.01

 (21)

Referring to Figure 2, the application of the mLFFA to PIDA controller design is
described as follows. Firstly, the multiobjective function F (x) in (20) and the inequality
constraint functions in (21) are initialized, where the solutions x = {Kp, Ki, Kd and Ka}
of the PIDA controller. LFFA1, . . ., LFFAk, and Pareto optimal set P ∗ are also initially
performed. The initial population of fireflies xi = (i = 1, 2, . . ., n) is randomly generated.
The light intensity Ii at xi is determined by F (xi). The light absorption coefficient γ,
the initial attractiveness β0 and the initial randomness scaling factor α0 are also defined.
Gen = 1 as a counter and Max Gen as the TC are set for terminating the search process.
In the iteration process, the mLFFA algorithm will check the TC. If Gen ≤ Max Gen,
the search process will continue. Otherwise the search process will be stopped and the
best solution x∗ = {Kp, Ki, Kd and Ka} will be reported. In each iteration, n fireflies
will check the light intensity I to each other. If Ij > Ii, a firefly i moves firefly toward a
firefly j in d-dimension via Lévy-flight random distribution. Otherwise, a firefly i moves
randomly. After that, the attractiveness β, the light intensity I and the randomness
scaling factor α will be updated. The new positions of all fireflies (new solutions x =
{Kp, Ki, Kd and Ka}) are ranked. The current best solution x∗ = {Kp, Ki, Kd and Ka}
is then updated. The mLFFA algorithm will be iteratively processed until the TC is
met. For post process of iteration, all best solution x∗ = {Kp, Ki, Kd and Ka} found
by all LFFA will be sorted to generate the Pareto optimal solutions into the Pareto
optimal set P ∗. Finally, the Pareto front PF ∗ containing all Pareto optimal solutions
x∗ = {Kp, Ki, Kd and Ka} will be performed.
To design optimal PIDA controllers for the AVR system based on multiobjective op-

timization context, the proposed mLFFA algorithms were coded by MATLAB version
2018b (License No.#40637337) run on Intel(R) Core(TM) i5-3470 CPU@3.60 GHz, 4.0
GB-RAM. Search parameters of the mLFFA are set according to Yang’s recommendations
[6,9], i.e., the numbers of fireflies n = 30, α0 = 0.25, β0 = 1, λ = 1.50 and γ = 1. These
searching parameters of LFFA are sufficient for most optimization problems because the
LFFA algorithm is very robust to parameter variation-dependent [6,9]. The maximum
generation Max Gen = 100 is then set as the TC in each trial. 50 trials are conducted
to find a set of the optimal PIDA controllers for the AVR system. In this work, the
parameters of the AVR system are set according to [36,37] as follows: KA = 10, τA = 0.1
sec., KE = 1.0, τE = 0.4 sec., KG = 1.0, τG = 1.0 sec., KR = 1.0 and τR = 0.01 sec.
After the searching process of the mLFFA over 50 trials stopped, 50 optimal PIDA

controllers are successfully obtained and summarized in Table 3 with their corresponding
responses. As non-dominated solutions, 50 sets of obtained PIDA controllers are plotted
in Figure 8 to formulate the Pareto front and perform trade-off characteristics between
f1(x) and f2(x).
Tracking (or command following) responses of the AVR system with PIDA controllers

are depicted in Figure 9, while regulating (or disturbance rejection) responses of the AVR
system with PIDA controllers are plotted in Figure 10. From obtained results, it was
found that the optimal PIDA controller’s parameters obtained by the proposed mLFFA
for the AVR system and their corresponding responses are very satisfactory according to
the design constraints defined in (21). For entire results, the mLFFA can successfully
provide the optimal PIDA controllers for the AVR system based on the multiobjective
optimization. It was found that the proposed mLFFA performs very high performance to
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Table 3. 50 PIDA controllers designed by mLFFA for AVR system and responses

PIDA No#
PIDA controller’s parameters Responses

Kp Ki Kd Ka
f1(x)

tr (sec.)
f2(x)

Mp (%)
ts (sec.) Ess (%)

1. → (min f 2)
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

15. → (min f 1 & f 2)
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.

50. → (min f 1)

0.846024
0.838297
0.806808
0.844065
0.779164
0.877813
0.719457
0.964169
0.940636
0.897606
0.891220
0.989782
0.953455
0.966625
0.943977
0.926938
0.999988
0.969642
0.813201
0.948408
0.969620
0.999965
0.938238
0.999975
0.999997
0.999999
0.999964
0.958590
0.935873
0.998341
1.000000
0.999979
0.999949
0.957756
0.929096
0.941326
0.999983
0.999990
0.981187
0.999988
0.999997
0.996214
0.999457
0.992112
0.999966
0.999902
0.999957
0.999971
0.999989
0.999474

0.539313
0.602389
0.613666
0.533188
0.658077
0.660406
0.700331
0.528245
0.653474
0.780465
0.820574
0.541024
0.664484
0.510907
0.723377
0.648208
0.562378
0.648106
0.907979
0.638904
0.671554
0.602366
0.815793
0.640605
0.641186
0.641186
0.642427
0.783677
0.861061
0.687555
0.683109
0.696564
0.704418
0.829153
0.904153
0.877485
0.715371
0.739741
0.819827
0.789630
0.801844
0.815113
0.806589
0.844931
0.823675
0.842957
0.844477
0.832714
0.908276
0.947491

0.299987
0.299990
0.299988
0.300000
0.299988
0.299984
0.299986
0.299995
0.299996
0.299991
0.299986
0.299983
0.300000
0.299981
0.299990
0.299990
0.299988
0.299997
0.299997
0.299986
0.299984
0.299991
0.299991
0.299991
0.299990
0.299990
0.299989
0.299994
0.299987
0.299985
0.299986
0.299994
0.299994
0.300000
0.299986
0.299987
0.299987
0.299987
0.299998
0.299985
0.299987
0.299985
0.299991
0.299989
0.299990
0.299983
0.299997
0.299992
0.299994
0.299989

0.009998
0.009999
0.008085
0.006392
0.009934
0.010000
0.008362
0.009999
0.010000
0.009999
0.009999
0.010000
0.009999
0.008149
0.009999
0.007540
0.010000
0.009776
0.009997
0.008184
0.009725
0.009999
0.009999
0.010000
0.010000
0.010000
0.010000
0.010000
0.010000
0.010000
0.010000
0.010000
0.009999
0.009999
0.010000
0.010000
0.010000
0.010000
0.009978
0.010000
0.010000
0.010000
0.009999
0.009998
0.009999
0.010000
0.009998
0.008906
0.009999
0.010000

0.290021
0.289876
0.288747
0.286984
0.274957
0.271248
0.269240
0.268210
0.266028
0.263014
0.261005
0.259917
0.258840
0.257701
0.256693
0.255581
0.254496
0.253932
0.252140
0.251093
0.250024
0.249011
0.249005
0.248896
0.248546
0.248310
0.248294
0.248015
0.247887
0.247624
0.247420
0.247228
0.247085
0.246602
0.246469
0.246203
0.245872
0.245536
0.245201
0.244854
0.244544
0.244020
0.243696
0.243207
0.243034
0.242669
0.242207
0.241943
0.241079
0.240112

0.000000
0.300204
0.636751
1.307865
1.409115
1.668555
2.020076
2.194901
3.204826
3.253317
3.475652
3.555930
3.618364
3.644928
3.880744
3.939943
3.981911
3.988423
4.017212
4.114728
4.202277
4.293520
4.544896
4.593256
4.598262
4.598427
4.607199
4.752795
4.893529
4.928583
4.933428
5.041405
5.104554
5.126159
5.130600
5.167980
5.194031
5.391459
5.609652
5.798575
5.900466
5.921130
5.927196
6.072431
6.081243
6.240252
6.254190
6.629873
6.790362
7.113321

0.410000
0.400000
0.390000
1.020000
0.450000
0.380000
2.190000
0.580000
0.650000
0.770000
1.440000
0.620000
0.670000
1.200000
0.720000
0.630000
0.640000
0.670000
2.030000
0.640000
0.690000
0.670000
0.920000
0.690000
0.690000
0.690000
0.690000
0.820000
1.340000
0.730000
0.720000
0.730000
0.740000
0.950000
1.540000
1.380000
0.750000
0.780000
0.890000
0.830000
0.850000
0.880000
0.860000
0.950000
0.890000
0.930000
0.930000
0.870000
1.160000
1.310000

0.000001
0.000000
0.000000
0.000002
0.000001
0.000000
0.000002
0.000052
0.000000
0.000000
0.000000
0.000054
0.000000
0.000078
0.000000
0.000000
0.000039
0.000001
0.000001
0.000001
0.000000
0.000015
0.000000
0.000005
0.000005
0.000005
0.000005
0.000000
0.000000
0.000001
0.000001
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

optimize the PIDA controllers for the AVR system. 50 optimal PIDA controllers obtained
by the mLFFA are smoothly distributed though the Pareto front. Referring to Figure
9, three specific results, i.e., min f1(x), min f1(x) & f2(x), and min f2(x), are selected
to plot the tracking and regulating responses as visualized in Figure 11 and Figure 12,
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Figure 8. Pareto front of 50 PIDA controllers designed by mLFFA for
AVR system

Figure 9. Tracking responses of AVR system with PIDA controllers de-
signed by mLFFA

respectively. Results obtained assure the perfectly tread-off characteristics between tr and
Mp that were set as the particular objective functions.

6. Conclusions. The multiobjective Lévy-flight firefly algorithm (mLFFA) has been de-
veloped and proposed in this paper for solving multiobjective optimization problems. The
proposed mLFFA is the one of the modified versions of the Lévy-flight firefly algorithm
(LFFA) extended from the original firefly algorithm (FA). To perform its effectiveness,
the proposed mLFFA has been validated against four standard multiobjective test func-
tions. As results, the mLFFA could provide very satisfactory solutions for all benchmark
test functions. The proposed mLFFA has been applied to design the optimal PIDA con-
troller for the AVR system based on the modern optimization. As simulation results, it
was found that optimal PIDA controllers could be successfully obtained by the mLFFA
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Figure 10. Regulating responses of AVR system with PIDA controllers
designed by mLFFA

Figure 11. Tracking responses of selected min f1(x), min f1(x) & f2(x)
and min f2(x) of AVR system with PIDA controllers designed by mLFFA

according to the predefined objective functions associated with predefined constraint func-
tions. As non-dominated solutions of multiobjective optimization problems, 50 optimal
PIDA controllers obtained could completely perform the optimal Pareto front assuring
the tread-off characteristics between two particular objective functions. Tracking and
regulating responses of the AVR controlled system have been successfully produced by
the PIDA controllers designed by the proposed mLFFA. For the future research of inter-
ests, other real-world multiobjective optimization problems will be investigated based on
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Figure 12. Regulating responses of selected min f1(x), min f1(x) & f2(x)
and min f2(x) of AVR system with PIDA controllers designed by mLFFA

the mLFFA-based approach. Multiobjective fractional-order PID/PIDA controller design
optimization by the mLFFA or other novel and hybrid metaheuristics will be carried on.
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