
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2020 ISSN 1349-4198
Volume 16, Number 1, February 2020 pp. 283–299

A TRANSFORMED SALP SWARM ALGORITHM ON CONTAINER
DEPLOYMENT PROBLEM

Botao Ma1,2, Hong Ni1,2, Xiaoyong Zhu1,∗ and Zhao Wang1,2

1National Network New Media Engineering Research Center
Institute of Acoustics, Chinese Academy of Sciences

No. 21, North 4th Ring Road, Haidian District, Beijing 100190, P. R. China
{mabt; nih }@dsp.ac.cn; ∗Corresponding author: zhuxy@dsp.ac.cn

2School of Electronic, Electrical and Communication Engineering
University of Chinese Academy of Sciences

No. 19(A), Yuquan Road, Shijingshan District, Beijing 100049, P. R. China

Received April 2019; revised August 2019

Abstract. Salp Swarm Algorithm (SSA) is a meta-heuristic algorithm for solving sin-
gle-objective optimization problems with satisfying performance in the exploration phase.
However, the accuracy in the exploitation phase still remains a problem to be solved. The
paper presented a Transformed SSA (TSSA). Firstly, the tent chaotic sequence was used
to guarantee the uniformity of solution distribution. Secondly, the exploration mode was
changed to improve the accuracy of solutions. Lastly, an improved exploitation mode was
introduced to supplant the original way. The TSSA was compared with PSO algorithm
and multiple newly-proposed heuristic algorithms in 29 widely-accepted test functions.
We also applied the proposed TSSA to container deployment problem in a microservice
architecture; in this scenario, each microservice ran in an isolated docker container.
The results of these experiments demonstrated that TSSA performed better than other
algorithms in most test functions and the container deployment problem.
Keywords: Transformed salp swarm algorithm, Tent chaotic distribution, Nonlinear
convergence factor, Microservice architecture, Container deployment

1. Introduction. In microservice architecture, an overall service is split into multiple
microservices, which are deployed separately in virtual machines or devices [1]. These
microservices have independent processes, and communicate with each other through
lightweight mechanisms. To better utilize idle resources of terminal devices in edge com-
puting, terminal devices with idle resources in the neighborhood are capable of integrating
into a cluster to handle such microservices.

As a representative of lightweight virtualization, docker container can virtualize multi-
ple isolated environments on a single device and costs less system resources [2]. Therefore,
the usual practice in industry is to run each microservice in a separated docker container.
When some of these microservices are upgraded or down, the other services will not be
affected.

Recently, many studies on the container deployment problem have been developed on
the basis of different evaluation indictors [3,14,15]. According to the above background,
this article proposed a scheme to deploy multiple microservices in several terminal de-
vices, which was based on the number of calls between different microservices and the
communication overhead between different devices. On the premise that total resources
of containers deployed in one device should be less than the total resources of this device,

DOI: 10.24507/ijicic.16.01.283

283

284 B. MA, H. NI, X. ZHU AND Z. WANG

the quality of microservice deployment scheme was evaluated by total communication
overhead between all microservices.
Salp Swarm Algorithm (SSA) is a population-based heuristic optimization algorithm

proposed by Mirjalili et al. in 2017 [4], which is inspired by the nature behavior of salp
swarm. It is easy to implement because of the only main controlling parameter. The
excellent exploration ability makes the SSA be capable of solving optimization problems
in complex situations.
With its good performance, SSA has been widely used in several areas [16,18]. However,

the algorithm still has some limitations. The excellent exploration ability may lead to
inaccuracy of solutions. To overcome the disadvantage and improve the accuracy of SSA,
a Transformed Salp Swarm Algorithm (TSSA) was proposed in this article; at the same
time, the proposed algorithm would be used to solve container deployment problem in a
microservice architecture. The main contributions of this work are described as follows:

• Initializing the population of search agents by tent chaotic map and using revised
main controlling parameter c1 to reconstruct two-stage exploration mechanism;

• A position updating method based on spiral line was applied to replace the original
weighting scheme;

• A container deployment model was proposed, which was evaluated by the overall
service communication overhead.

The rest of this paper is organized as follows. The original SSA is briefly introduced in
Section 2. Section 3 presents the Transformed Salp Swarm Algorithm (TSSA). Section 4
displays experimental results and performance of all test algorithms. Section 5 applies the
proposed TSSA to solving container deployment problem; the corresponding experimental
parameters and results are also shown in this section. In the end, conclusions and future
expectations are shown in Section 6.

2. Salp Swarm Algorithm (SSA). The mathematical model simulates the predatory
behavior of salps, which belong to the family of Salpidae and have transparent barrel-
shaped body. SSA divides the population of salps chain into two groups: leader and
followers. The leader is the salp at the front of the chain which guides swarm and the
other salps [4].
The motion trail of salp swarm is shown in Figure 1. Positions of these salps are defined

in an n-dimensional search space and n is the number of dimensions of a given problem,
so the positions are stored in a two-dimensional matrix called x. There is a food source
called F in the search space as the target of swarm.

Figure 1. Individual salp and motion trail of salp swarm

A TRANSFORMED SALP SWARM ALGORITHM 285

The location update formula is proposed as Equation (1):

X1
j =

{
Fj + c1 ((ubj − lbj) c2 + lbj) 0.5 ≤ c3 ≤ 1

Fj − c1 ((ubj − lbj) c2 + lbj) 0 ≤ c3 < 0.5
(1)

where X1
j is the position of the first salp in the j-th dimension, Fj is the position of food

source in the j-th dimension, ubj shows the upper bound of j-th dimension, lbj indicates
the lower bound of j-th dimension, c1 is nonlinear convergence parameter and c2, c3 are
random numbers between 0 and 1.

Equation (1) shows that the leader only updates its position based on food source, the
most important coefficient c1 is used to balance exploration and exploitation which is
defined as follows:

c1 = 2e−(
4l
L)

2

(2)

where l is the current iteration and L is the maximum number of iterations.
The aim of generating random parameters c2, c3 is to make a disturbance which dictates

if the next position in j-th dimension should be towards positive or negative infinity as
well as the step size.

To simulate the trajectory of the swarm, basic SSA updates the position of the swarm
as Equation (3):

X i
j =

1

2
at2 + v0t i ≥ 2 (3)

where X i
j shows the position of i-th follower salp in j-th dimension, t is time, v0 is the

initial speed, and a is the acceleration. In the model, time is replaced by iterations, the
step between iterations is equal to l, and v0 = 0, the equation can be expressed as follows:

X i
j =

1

2

(
X i

j +X i−1
j

)
i ≥ 2 (4)

where X i
j shows the position of i-th follower salp in j-th dimension.

3. Transformed Salp Swarm Algorithm. SSA has excellent exploratory ability in
search space, and it is easy to implement. However, excessive pursuit on exploratory
ability could cause some disadvantages which prevent the algorithm from getting solu-
tions with high accuracy. In some unimodal test functions, SSA is uncapable to find the
optimal solutions. Meanwhile, the positions of follower salps are based on accelerated
movement around food sources, considering in some respects, the accelerated movement
in mathematical model is not suitable for the actual wandering way of salp swarm. To
handle these deficiencies, four improvements are proposed to optimize the original model.
The details of these improvements are explicitly in this part. At the end of this chapter,
Algorithm 1 shows the pseudo-code of TSSA.

3.1. Initial distribution of tent chaotic map. The meta-heuristic algorithm is sensi-
tive to the initial distribution of search agents, and traditional meta-heuristic algorithms
usually initialize population by random distribution. Different random maps would lead
the population to different spatial distribution, which could directly affect the perfor-
mance of the algorithm. Due to the homogeneity and pseudo-randomness of chaotic
motion, initialization of population by chaotic map may achieve better ergodicity [5].

Comparing with several chaotic mapping initial distribution, such as Chebyshev map,
logistic map, and tent map, we chose tent chaotic map to initialize the population because
of its well-performed uniformity and randomness [5]. The normalized formula for tent map
equation is given in Equation (5):

286 B. MA, H. NI, X. ZHU AND Z. WANG

Xk+1 =

{
uXk Xk < 0.5

u (1−Xk) Xk ≥ 0.5
(5)

where u is set to 2 to make sure the range is (0, 1), Xk is the value of i-th search agent.
In order to satisfy the initial distribution of each test function with different domain of

definition, the normalized equation should be revised in Equation (6):

X i
j =

2
(
X i−1

j − lbj
)
+ lbj 0 ≤

X i−1
j − lbj

ubj − lbj
< 0.5

2
(
ubj −X i−1

j

)
+ lbj 0.5 ≤

X i−1
j − lbj

ubj − lbj
≤ 1

(6)

where i ≥ 2, X i
j shows the position of i-th follower salp in j-th dimension, ubj shows the

upper bound of j-th dimension, lbj indicates the lower bound of j-th dimension.

3.2. Revised exploration mechanism. The original SSA sets threshold to 0.5N , which
means the former 0.5N search agents will work for global search, and the other 0.5N
search agents will follow the former position to optimize the solution, where N is number
of search agents. According to a large number of experiments, we found threshold value
0.5N was not the best choice for most benchmark functions.
In the paper, we used two-stage exploration mechanism. In the first stage, the explo-

ration mechanism of the original algorithm was maintained in order to ensure the powerful
exploring ability of the original algorithm, based on a large number of test comparisons
on different benchmark functions, we set the first threshold to ⌊0.2N⌋. The improved
algorithm could keep the exploration ability of the original SSA during this phase. In the
second stage, we set the second threshold to ⌊2N/3⌋, and the original exploration step
length could be set to a more refined value in Equation (7).

X i+1
j =

{
X1

j + c1
(
c2X

1
j −X i

j/2
)

0 ≤ c3 < 0.5

X1
j − c1

(
c2X

1
j −X i

j/2
)

0.5 ≤ c3 ≤ 1
(7)

where i ≥ 2, X i
j shows the position of i-th follower salp in j-th dimension, X1

j is the
position of the first salp in the j-th dimension, c2, c3 are random numbers. Compared with
the original location update formula, the shorter variable exploration steps of Equation
(7) are able to find optimum solutions with higher accuracy.

3.3. Revised nonlinear convergence coefficient c1. As mentioned above, the two-
stage exploratory mechanism set the threshold value of exploration phase to ⌊2N/3⌋,
the enlarged threshold created a demand for slower decreasing nonlinear convergence
coefficient c1, in order to make the parameter reduce nonlinearly from 2 to 0 in the new
domain of definition, c1 is revised in Equation (8):

c1 = 2(0.7 + 0.3 sin (2l))e−(
8l
3L)

2

(8)

where l is the current iteration and L is the maximum number of iterations.
Compared with original coefficient c1, we altered the index of c1 to slow down the

convergence process. In the meantime, the lack of perturbation could lead to the lack of
creativity during the search iterations. To remedy this defect, damping motion is added
in the convergence coefficient c1 to increase perturbation [19]. After multiple tests on
different test functions, the weight ratio of damping motion was set to 0.3.

3.4. Spiral updating position. Original algorithm updates the positions of follower
salps by uniformly acceleration relation. However, we can see that the shape of the salp
chain in Figure 1 is more similar to spiral line. To make the model more physical, Equation

A TRANSFORMED SALP SWARM ALGORITHM 287

(9) would be used to replace Equation (4) in our mathematical model when serial numbers
of follower salps are between ⌊2N/3⌋+1 to N . These follower salps spin around the leader
by using a shrinking circle or a spiral shaped path [7], and Equation (8) is calculated as
follows:

X i
j =

∣∣X1
j −X i

j

∣∣ el cos (2πl) + Fj (9)

where
∣∣X1

j −X i
j

∣∣ indicates the distance of i-th follower salp to the the position of the first
salp in the j-th dimension.

The new approach was physically closer to the trajectory of salp swarm. In each di-
mension, every follower salps moved in a kind of spiral motion around the food source,
the magnitude of the spiral line was determined by the distance between the follower salp
and the leader salp.

Algorithm 1. Pseudo-code of Transformed Salp Swarm Algorithm
(1) Initialize the N salp swarm population Xi (i = 1, 2, . . . , N) with tent chaotic map

by Equation (6)
(2) Calculate the fitness of each search agent and mark the target position
(3) while (current iteration < maximum iteration number)
(4) for each search agent
(5) Update the random number c2, c3
(6) Set the nonlinear convergence coefficient c1 by Equation (8)
(7) for1 0 < i < 0.2N
(8) Update the position with longer step length in exploration

phase by Equation (1)
(9) Calculate the fitness of current search agent
(10) end for1
(11) for2 0.2N < i < 2N/3
(12) Update the position with refined step length in exploration phase

by Equation (7)
(13) Calculate the fitness of current search agent
(14) end for2
(15) for3 2N/3 < i < N
(16) Update the position with spiral motion formulain exploitation

phase by Equation (9)
(17) Calculate the fitness of current search agent
(18) end for3
(19) Choose the best fitness of all search agents, replace target fitness if it is a better

solution
(20) Record position of target
(21) end for
(22) end while
(23) Check if any search agent goes beyond the search space and amend it
(24) current iteration + 1
(25) Return target fitness and target position

4. Results on Benchmark Experiment. In this work, a series of experiments was
conducted to evaluate the performance of the proposed TSSA. The algorithm was bench-
marked on 29 test functions with 7 meta-heuristic algorithms, including the original Salp
Swarm Algorithm (SSA) [4], the Grasshopper Optimization Algorithm (GOA) [8], Whale

288 B. MA, H. NI, X. ZHU AND Z. WANG

Optimization Algorithm (WOA) [7], Dragonfly Algorithm (DA) [9], Multi-Verse Opti-
mization (MVO) [10], Ant Lion Optimizer (ALO) [11] and a classical heuristic algorithm,
Particle Swarm Optimization (PSO) [12]. Each comparison algorithm performed well on
several test functions; the parameters of these algorithms are set as the papers [7-12]
describe.
These 29 well-known benchmark functions are divided into 4 types, which are used to

test search ability of the proposed algorithm. These functions are listed in Table 1, Table
3, Table 4 and Table 7, where dim indicates dimension of each function. Search space
of each function is limited by range parameters, and fmin is the optimum value of each
test function. In F1-F23, 30 search agents were employed by each algorithm to conduct
optimization over 500 iterations, these algorithms were tested for 50 times. In F24-F29,
because of the complexity of benchmark functions, each algorithm ran 100 iterations with
30 search agents, and these algorithms would be tested for 30 times.

4.1. Evaluation of exploitation capability. The first type of benchmark functions
has only one global optimum. In Table 1, the unimodal functions F1-F7 can test the
exploitation capability of the algorithms. When an algorithm finds a more precise solution
close to the global optimum, it indicates that the algorithm has a stronger exploitation
ability.

Table 1. Unimodal benchmark functions

Function Dim Range fmin

F1(x) =
∑n

i=1 x
2
i 30 [−100, 100] 0

F2(x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| 30 [−10, 10] 0

F3(x) =
∑n

i=1

(∑i
j=1 xj

)2
30 [−100, 100] 0

F4(x) = maxi {|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

F5(x) =
∑n−1

i=1

[
100(xi+1 − x2

i)
2
+ (xi − 1)2

]
30 [−30, 30] 0

F6 (x) =
∑n

i=1([xi + 0.5])2 30 [−100, 100] 0

F7(x) =
∑n

i=1 ix
4
i + random[0, 1) 30 [−1.28, 1.28] 0

Comparison data are shown in Table 2. In the table, TSSA works best in 4 of the 7
unimodal benchmark tests, and reaches second place twice. As for standard deviation and
worst value, TSSA also performs better than the other algorithms in most cases, which
means the proposed algorithm is able to produce an optimal solution with stability.

4.2. Evaluation of exploration capability. The second and third types of benchmark
functions own several local optimums. In Table 3 and Table 4, these multimodal func-
tions F8-F23 are designed for evaluating the exploration capability of the algorithms.
The search may fall into local optimums when dealing with multimodal functions if the
algorithm performs poorly in exploration phase. Even if the algorithm owns strong ex-
ploitation ability, lacking of the exploration ability would make all efforts in vain.
According to the results in Table 5 and Table 6, TSSA outperforms all the other

comparison algorithms in terms of average values in 10 of 16 benchmark tests and achieves
11 best values. At the same time, TSSA behaves better than the original algorithm in

A TRANSFORMED SALP SWARM ALGORITHM 289

Table 2. Results of unimodal benchmark functions

Func Type TSSA SSA PSO GOA ALO DA MVO WOA

F1

Ave 6.199e-15 3.7766e-07 6.1248e-06 34.2098 1.2848e-03 1915.2408 1.2487 1.4466e-69

Std 1.1871e-14 9.1872e-07 6.8643e-06 22.2996 1.4178e-03 889.5906 0.42782 7.9236e-69
Best 3.1031e-17 2.3299e-08 1.2524e-07 5.166 2.5476e-04 578.7575 0.64391 1.0679e-86
Worst 5.7986e-14 4.9376e-06 1.7687e-04 99.4415 3.5214e-03 3766.9521 2.4783 4.3399e-68

F2

Ave 6.6289e-10 2.4871 0.045204 19.7742 41.0818 14.7403 7.9824 5.6001e-51

Std 5.4101e-10 1.5315 0.16441 21.7689 45.2608 4.8384 27.3407 1.636e-50
Best 1.3969e-10 0.20054 4.1337e-04 3.043 2.4559 3.4118 0.54848 6.8292e-58
Worst 2.3361e-09 6.6585 0.90182 90.9762 131.566 21.1672 114.4957 6.8296e-50

F3

Ave 0.42514 1516.9863 211.3245 3275.2429 4815.8221 13334.8431 232.8326 45034.4731

Std 0.54515 908.092 111.0891 2022.8163 1671.1507 8585.9586 83.488 16289.2284
Best 3.9417e-08 274.3046 50.9278 883.9015 1777.2923 2254.7522 91.5906 19915.204
Worst 2.9679 3926.7125 490.471 10083.0382 7418.3747 15298.9712 437.4359 84881.83

F4

Ave 1.325 12.45 3.9256 14.444 16.9612 31.7089 2.1666 53.3474
Std 1.0542 3.0442 1.2755 4.1961 5.1606 8.5852 0.6177 27.789
Best 6.2319e-04 6.1313 1.3752 7.394 8.4173 12.6756 1.172231758 9.0348e-03
Worst 4.4785 17.981 5.949 28.2597 30.283 49.0818 3.9959 88.9081

F5

Ave 27.9971 213.0121 56.4356 3143.3388 326.6604 412824.1884 493.895 28.0338
Std 0.49358 447.4194 82.3257 7634.4715 415.049 772217.7579 749.3712 0.81284
Best 26.2224 27.3993 10.7441 233.8927 28.2927 3678.1152 34.7908 27.0564
Worst 28.8422 1906.033 464.9722 32122.3686 1481.0289 3118631.5425 3033.4649 28.7801

F6

Ave 0.17165 1.5955e-07 3.1769e-03 36.6188 1.3783e-03 1997.718 1.2366 0.38121
Std 0.050128 1.9136e-07 0.016625 20.3804 1.1352e-03 1183.0783 0.31474 0.24548
Best 0.075675 2.2864e-08 5.6006e-07 10.85 9.9949e-05 702.5253 0.64421 0.082401
Worst 0.26343 1.0345e-06 0.091134 98.0702 4.9721e-03 6157.6156 1.7719 1.1348

F7

Ave 2.7643e-03 0.18311 0.034269 0.040015 0.28724 0.60676 0.03441 6.1448e-03
Std 2.6899e-03 0.067974 0.017026 0.018028 0.099622 0.56741 0.01108 5.253e-03
Best 2.7557e-05 0.04359 0.015513 8.1886e-03 0.13218 0.17388 0.010949 8.4567e-04
Worst 0.011791 0.3812 0.092794 0.082053 0.58462 3.3547 0.050907 0.011791

Table 3. Multimodal benchmark functions

Function Dim Range fmin

F8(x) =
∑n

i=1−xi sin
(√

|xi|
)

30 [−500, 500] 418.9829*Dim

F9(x) =
∑n

i=1

[
x2i − 10 cos(2πxi) + 10

]
30 [−5.12, 5.12] 0

F10(x) = − 20 exp

(
−0.2

√
1

n

∑n
i=1 x

2
i

)
30 [−32, 32] 0

− exp

(
1

n

∑n
i=1 cos(2πxi)

)
+ 20 + e

F11(x) =
1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos

(
xi√
i

)
+ 1 30 [−600, 600] 0

F12(x) =
π

n

{
10sin2(πy1) +

∑n−1
i=1 (yi − 1)2[1 + 10sin2(πyi+1)]

30 [−50, 50] 0

+(yn − 1)2
}
+
∑n

i=1 u(xi, 10, 100, 4)

yi = 1 +
xi + 1

4
u(xi, a, k,m) =

k(xi − a)m xi > a

0 −a < xi < a

k(−xi − a)m xi < −a

F13(x) = 0.1
{
sin2(3πx1) +

∑n
i=1 (xi − 1)2

[
1 + sin2(3πxi + 1)

]
30 [−50, 50] 0

+(xn − 1)2
[
1 + sin2(2πxn)

] }
+
∑n

i=1 u(xi, 5, 100, 4)

290 B. MA, H. NI, X. ZHU AND Z. WANG

Table 4. Fixed-dimension multimodal benchmark functions

Function Dim Range fmin

F14(x) =

(
1

500
+
∑25

j=1

1

j +
∑2

i=1 (xi − aij)
6

)−1

2 [−65, 65] 0

F15(x) =
∑11

i=1

[
ai −

x1(b
2
i + bix2)

b2i + bix3 + x4

]2
4 [−5, 5] 0.00030

F16(x) = 4x2
1 − 2.1x4

1 +
1

3
x6
1 + x1x2 − 4x2

2 + 4x4
2 2 [−5, 5] −1.0316

F17(x) =

(
x2 −

5.1

4π2
x2
1 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos x1 + 10 2 [−5, 5] 0.398

F18(x) =
[
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2

+3x2
2

)]
×
[
30 + (2x1 − 3x2)

2 ×
(
18− 32x1 + 12x2

1 2 [−2, 2] 3

+48x2 − 36x1x2 + 27x2
2

)]
F19(x) = −

∑4
i=1 ci exp

(
−
∑3

j=1 aij(xj − pij)
2
)

3 [1, 3] −3.86

F20(x) = −
∑4

i=1 ci exp
(
−
∑6

j=1 aij(xj − pij)
2
)

6 [0, 1] −3.32

F21(x) = −
∑5

i=1

[
(X − ai)(X − ai)

T + ci

]−1

4 [0, 10] −10.1532

F22(x) = −
∑7

i=1

[
(X − ai)(X − ai)

T + ci

]−1

4 [0, 10] −10.4028

F23(x) = −
∑10

i=1

[
(X − ai)(X − ai)

T + ci

]−1

4 [0, 10] −10.5363

Table 5. Results of multimodal benchmark functions

Func Type TSSA SSA PSO GOA ALO DA MVO WOA

F8

Ave −7561.5331 −7076.6538 −6438.2845 −7673.025 −5456.8822 −5488.7838 −7768.2216 −10527.8401
Std 695.6631 756.7834 755.4979 759.0983 64.9291 573.8238 745.6872 1860.2069
Best −9310.6934 −8719.8079 −7646.6541 −8721.8403 −5644.4458 −6734.7262 −9817.0442 −12569.0502
Worst −6211.9193 −5263.4383 −5079.3903 −6024.9831 −5417.6748 −4465.005 −5921.351 −7560.1486

F9

Ave 6.0112 55.7508 46.2655 96.3403 79.498 172.9918 120.224 3.7896e-15
Std 8.6965 17.435 14.2677 30.2648 26.8635 33.9423 24.9474 2.0756e-14
Best 0 15.9193 26.8639 32.6543 43.7803 96.6606 72.3776 0
Worst 39.8458 97.5057 76.6116 145.3632 134.32 234.227 160.9621 1.4211e-14

F10

Ave 2.552e-14 2.6177 1.4885 5.2136 4.5583 10.459 2.4771 4.4409e-14
Std 1.0757e-14 1.2605 1.0406 1.2706 3.0144 1.8064 3.3268 2.4685e-14
Best 7.9936e-15 0.1206 6.5335e-04 2.9315 1.5018 6.5435 0.64865 8.8818e-16
Worst 6.839e-14 2.3168 3.367e-11 2.8144 3.0271 6.8494 2.0227 8.5365e-14

F11

Ave 0.010631 0.016693 0.026539 1.1268 0.06859 21.0259 0.84863 0.012065
Std 0.016976 0.13643 0.026612 0.082979 0.041115 8.8756 0.084787 0.1913
Best 0 6.8799e-04 1.7634e-06 0.97705 0.011877 8.0817 0.5968 0
Worst 0.064986 0.66938 0.091082 1.3311 0.18437 40.6642 1.0121 0.6155

F12

Ave 0.019718 6.3063 0.44613 8.6445 13.3065 7114.8527 2.0444 0.025995
Std 0.011643 3.368 0.26435 4.9626 4.5415 133642.169 1.1651 0.033859
Best 2.0753e-03 0.71861 3.6431e-07 3.3265 4.6545 14.7392 0.032992 5.56629e-03

Worst 0.069062 16.7087 0.93606 28.5395 22.4794 624140.540 4.2569 0.15246

F13

Ave 1.814 18.7259 0.10213 37.5607 28.7336 388686.5496 0.16458 0.55203
Std 0.52572 14.2972 0.40083 21.173 18.6913 848008.8765 0.1165 0.35429
Best 0.11599 1.8269e-03 2.063e-07 4.1725 0.49933 28.5256 0.061736 0.041001

Worst 2.5557 41.7829 2.1804 80.1317 66.3801 3633323.450 0.63024 1.6382

A TRANSFORMED SALP SWARM ALGORITHM 291

Table 6. Results of fixed-dimension multimodal benchmark functions

Func Type TSSA SSA PSO GOA ALO DA MVO WOA

F14

Ave 1.5264 1.0974 3.1028 0.998 3.2579 1.1303 0.998 3.3519

Std 1.0617 0.30331 2.3768 4.1233e-16 3.2256 0.50338 4.4741e-11 3.578
Best 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998
Worst 5.9288 1.992 10.7632 0.998 11.7187 2.9821 0.998 10.7632

F15

Ave 2.44762e-03 2.802e-03 5.4427e-04 8.5259e-03 3.6075e-03 6.6138e-03 5.3579e-03 8.8915e-04

Std 4.4421e-04 8.8915e-04 5.4201e-03 8.0946e-04 9.0811e-03 6.7373e-03 0.012812 8.4231e-03
Best 3.0749e-04 3.7476e-04 3.075e-04 3.0823e-04 5.5747e-04 5.57563e-04 4.0755e-04 3.4297e-04
Worst 0.02046 0.047048 0.020363 0.020375 0.020721 0.063374.07 0.020364 2.2519e-03

F16

Ave −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

Std 2.6981e-10 3.1652e-14 6.7752e-16 2.7496e-13 4.293e-14 3.8812e-07 3.2115e-07 1.7242e-09
Best −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Worst −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

F17

Ave 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
Std 9.318e-08 9.2461e-14 0 9.7362e-13 1.1094e-13 9.4572e-07 5.0891e-07 2.1327e-05
Best 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
Worst 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789

F18

Ave 3 3 3.9 8.4 3 3 3 3.0001
Std 1.1271e-06 2.2739e-13 4.9295 20.5504 3.4727e-13 3.4039e-06 3.4032e-06 1.3957e-04
Best 3 3 3 3 3 3 3 3
Worst 3 3 3 84 3 3 3 3.0006

F19

Ave −3.8628 −3.8628 −3.8628 −3.7148 −3.8628 −3.8627 −3.8628 −3.855
Std 7.13e-06 7.4765e-12 2.6823e-15 0.29919 1.2004e-12 2.4251e-04 1.3044e-06 9.6245e-03
Best −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628
Worst −3.8628 −3.8628 −3.8628 −2.7125 −3.8628 −3.8615 −3.8628 −3.8611

F20

Ave −3.2647 −3.24 −3.2721 −3.2805 −3.2702 −3.2588 −3.253 −3.2589
Std 0.067881 0.064265 0.06318 0.059748 0.060259 0.079759 0.079759 0.095563
Best −3.322 −3.322 −3.322 −3.322 −3.322 −3.322 −3.322 −3.3216
Worst −3.1376 −3.1519 −3.1376 −3.1859 −3.2003 −3.0769 −3.1901 −3.0401

F21

Ave −8.4699 −7.8876 −5.3951 −5.1395 −6.8718 −6.8648 −7.2882 −7.8627
Std 2.6748 3.5369 3.1741 3.0711 3.2345 2.8218 3.0155 2.9149
Best −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.153 −10.1528

Worst −2.6305 −2.6305 −2.6305 −2.6305 −2.6305 −2.6304 −2.6304 −2.6292

F22

Ave −9.1711 −7.3413 −6.0843 −5.9811 −6.6017 −7.0961 −8.6784 −7.7381
Std 2.4644 3.1716 3.4042 3.505 3.5337 2.918 3.526 2.9626
Best −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4024

Worst −2.7609 −1.8376 −2.7519 −2.7519 −1.8376 −2.7519 −1.8376 −1.8371

F23

Ave −8.8276 −7.7676 −6.0114 −4.437 −6.6708 −7.1719 −8.7747 −7.1365
Std 2.9413 3.5269 3.8243 3.4299 3.4562 3.0701 3.0392 3.5446
Best −10.5364 −10.5364 −10.5364 −10.5364 −10.5364 −10.5364 −10.5363 −10.5359

Worst −2.8711 −1.6766 −2.4217 −1.8595 −1.6766 −2.8066 −2.4273 −1.6741

14 sets of data, which means the proposed TSSA behaves better in exploration phase
compared with the original SSA.

4.3. Evaluation of avoiding local optimums. Composite functions are the combina-
tion of several some basic benchmark functions with same domain of definition. These
benchmark functions own quite a number of local optimums and they can test the exploita-
tion abilities and exploration abilities at the same time. Only when the test algorithms
strike the balance between these two abilities can they find solutions closer to the global
optimal solutions.

The results in Table 8 show that compared with other 7 meta-heuristic algorithms,
TSSA still outperforms other algorithms on F24, F27, F28, which means the proposed
algorithm provides very competitive performance in the composite functions.

4.4. Evaluation of averaged convergence curves. The averaged convergence curves
in this chapter indicate the tendency and rate of convergences, and these curves display the
optimum of each algorithm at the same time. Some of the averaged convergence curves
of algorithms on unimodal functions are shown in Figure 2. As these curves indicate,
TSSA is capable of finding the optimal solution with competitive convergence rate as
well. Figure 3 show the curves of multimodal benchmark functions. In these cases, it is

292 B. MA, H. NI, X. ZHU AND Z. WANG

Table 7. Composite benchmark functions

Function Dim Range fmin

F24 (CF1) 30 [−5, 5] 0
f1, f2, f3, . . . , f10 = Sphere Function
[σ1, σ2, σ3, . . . , σ10] = [1, 1, 1, . . . , 1]
[λ1, λ2, λ3, . . . , λ10] = [5/100, 5/100, 5/100, . . . , 5/100]
F25 (CF2) 30 [−5, 5] 0
f1, f2, f3, . . . , f10 = Griewank’s Function
[σ1, σ2, σ3, . . . , σ10] = [1, 1, 1, . . . , 1]
[λ1, λ2, λ3, . . . , λ10] = [5/100, 5/100, 5/100, . . . , 5/100]
F26 (CF3) 30 [−5, 5] 0
f1, f2, f3, . . . , f10 = Griewank’s Function
[σ1, σ2, σ3, . . . , σ10] = [1, 1, 1, . . . , 1]
[λ1, λ2, λ3, . . . , λ10] = [1, 1, 1, . . . , 1]
F27 (CF4) 30 [−5, 5] 0
f1, f2 = Ackley’s Function, f3, f4 = Rastrigin’s Function
f5, f6 = Weierstrass Function, f7, f8 = Griewank’s Function
f9, f10 = Sphere Function, [σ1, σ2, σ3, . . . , σ10] = [1, 1, 1, . . . , 1]
[λ1, λ2, λ3, . . . , λ10] = [5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100, 5/100,

5/100, 5/100]
F28 (CF5) 30 [−5, 5] 0
f1, f2 = Rastrigin’s Function, f3, f4 = Weierstrass Function
f5, f6 = Griewank’s Function, f7, f8 = Ackley’s Function
f9, f10 = Sphere Function, [σ1, σ2, σ3, . . . , σ10] = [1, 1, 1, . . . , 1]
[λ1, λ2, λ3, . . . , λ10] = [1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32,

5/32, 5/100, 5/100]
F29 (CF6) 30 [−5, 5] 0
f1, f2 = Rastrigin’s Function, f3, f4 = Weierstrass Function
f5, f6 = Griewank’s Function, f7, f8 = Ackley’s Function
f9, f10 = Sphere Function
[σ1, σ2, σ3, . . . , σ10] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
[λ1, λ2, λ3, . . . , λ10] = [0.1 ∗ 1/5, 0.2 ∗ 1/5, 0.3 ∗ 5/0.5, 0.4 ∗ 5/0.5,

0.5 ∗ 5/100, 0.6 ∗ 5/100, 0.7 ∗ 5/32, 0.8 ∗ 5/32,
0.9 ∗ 5/100, 1 ∗ 5/100]

clear that the compared algorithms with faster convergence speed usually cannot reach the
optimal solutions; on the contrary, TSSA sacrifices partial convergence rate in exchange
for better searching ability.
As for the curves of composite benchmark functions, Figure 4 shows that the conver-

gence rate of TSSA is satisfactory; moreover, these curves also reveal the well-behaved
overall optimization capacity of the proposed algorithm.

4.5. Significance of the results. The comparison based on average value could not
express difference between results. In order to judge whether the results of TSSA are
significantly different from results of other algorithms, the Wilcoxon rank-sum test is
carried out, which is a nonparametric test of null hypothesis [18]. The result calculated
in this way is marked as p-value. In this work, p-values were calculated based on statistic
data between TSSA and each of the other algorithms. By definition, when p-value is less
than 0.05, it could be considered that difference between two samples is significant. The

A TRANSFORMED SALP SWARM ALGORITHM 293

Table 8. Results of composite benchmark functions

Func Type TSSA SSA PSO GOA ALO DA MVO WOA

F24

Ave 50.0041 80.0073 136.0351 91.0334 123.5287 206.7901 70.1104 160.8798
Std 70.7092 113.5245 95.76 137.7856 111.6866 93.8733 82.3061 106.7659
Best 1.2814e-03 5.1258e-05 1.6245e-03 3.7812e-04 3.9533e-04 21.7657 2.3956e-03 50.2348

Worst 300.0003 400.0048 300.0046 500.0027 380.8259 403.1323 500.0027 430.115

F25

Ave 136.7543 113.7946 197.4287 224.6313 161.0097 237.4597 182.9257 237.0832
Std 84.2916 96.2217 162.4752 115.5219 112.0313 141.1126 160.2984 66.3385
Best 15.148 15.4722 32.0426 130.7801 19.0267 84.7149 15.042 119.3591

Worst 214.5828 209.8059 400.3332 425.931 293.2121 403.0255 417.1762 287.0019

F26

Ave 328.8339 353.7246 388.244 390.591 298.4989 475.4832 238.5968 527.5308
Std 109.4225 117.0363 109.6057 163.9833 148.3748 142.5933 61.7703 129.4443
Best 166.8463 206.8256 205.6139 182.9626 188.8034 285.1006 161.2621 313.6263

Worst 532.3176 535.8106 646.4158 774.1267 553.5444 700.3358 371.6087 721.8944

F27

Ave 397.8475 469.8181 535.279 496.8436 496.365 537.1297 446.8109 705.9838
Std 90.6146 130.7774 151.9004 139.1317 130.1846 124.7955 136.2914 98.598

Best 285.3821 304.9143 306.5712 314.3576 329.3154 336.554 289.9556 389.9549
Worst 720.2044 900.0023 819.3079 816.8678 771.6583 831.8431 730.0914 836.8155

F28

Ave 94.497 136.8129 176.0039 188.8622 198.7807 168.6928 112.1789 256.2377
Std 137.6279 201.3604 193.5497 175.543 123.3339 223.2135 150.6825 168.1784

Best 2.7818 9.0706 5.5174 11.2834 73.9141 40.6371 4.4713 89.7476
Worst 506.2416 524.7751 538.5924 508.4277 535.852 821.3798 504.9618 548.6243

F29

Ave 816.4387 818.0079 824.4995 799.1566 881.7421 850.825 836.1283 860.3455
Std 219.9683 220.9136 174.9161 158.1368 105.3799 131.5775 139.7219 149.0895

Best 501.5774 501.5196 511.6002 501.5294 500.9302 532.7938 502.0492 526.3388
Worst 906.1241 907.4463 903.7813 909.3123 914.5163 915.7554 904.202 939.9401

Figure 2. Convergence curves for algorithms over some unimodal bench-
mark functions

Figure 3. Convergence curves for algorithms over some multimodal bench-
mark functions

294 B. MA, H. NI, X. ZHU AND Z. WANG

Figure 4. Convergence curves for algorithms over some composite bench-
mark functions

Table 9. p-values of the Wilcoxon rank-sum test over unimodal bench-
mark functions

Func TSSA SSA PSO GOA ALO DA MVO WOA
F1 N/A 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11
F2 N/A 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11
F3 N/A 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11
F4 N/A 3.0199e-11 1.8567e-09 3.0199e-11 3.0199e-11 3.0199e-11 1.0666e-07 4.1997e-10
F5 N/A 2.3715e-10 0.20095 3.0199e-11 1.0937e-10 3.0199e-11 3.0199e-11 0.028378
F6 N/A 3.0199e-11 3.3384e-11 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11 1.2493e-05
F7 N/A 3.0199e-11 8.1527e-11 9.9186e-11 3.0199e-11 3.0199e-11 8.9934e-11 4.4592e-04
F8 N/A 0.018368 1.9527e-03 2.7548e-03 2.31e-10 2.4386e-09 4.9818e-04 1.3289e-10
F9 N/A 6.0584e-11 9.9068e-11 3.3342e-11 3.0161e-11 3.0161e-11 3.0161e-11 1.7175e-12
F10 N/A 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11 6.387e-12
F11 N/A 0.016953 3.6704e-03 3.018e-11 3.3505e-08 3.018e-11 3.018e-11 1.2108e-12
F12 N/A 3.0199e-11 0.30418 3.0199e-11 3.0199e-11 3.0199e-11 4.9752e-11 6.2828e-06
F13 N/A 2.7726e-05 4.1997e-10 3.0199e-11 1.698e-08 3.0199e-11 2.1544e-10 1.411e-09
F14 N/A 5.6865e-09 0.30351 1.9814e-11 0.6723 1.066e-05 0.036439 3.1753e-05
F15 N/A 0.29047 3.0059e-04 8.6844e-03 0.046756 5.5699e-03 0.36322 0.4804
F16 N/A 3.018e-11 1.2118e-12 3.0199e-11 3.0142e-11 2.6586e-06 3.0199e-11 0.070617
F17 N/A 2.9916e-11 1.2118e-12 5.0769e-10 3.0142e-11 7.8759e-07 7.0881e-08 9.5207e-04
F18 N/A 3.0199e-11 4.2911e-10 8.4848e-09 3.018e-11 1.8453e-09 1.1953e-03 0.016285
F19 N/A 3.018e-11 2.3638e-12 2.0023e-06 3.0199e-11 5.8282e-03 0.28378 9.9186e-11
F20 N/A 0.08418 6.8562e-04 8.5641e-04 2.4994e-03 0.082357 0.036439 0.019112
F21 N/A 0.26433 0.058263 0.011228 0.59969 0.42344 2.8389e-04 2.278e-05
F22 N/A 8.6359e-05 0.024103 2.9329e-03 0.14483 8.1706e-04 1.3936e-09 2.1224e-11
F23 N/A 0.0238 4.1926e-03 3.4029e-04 6.6273e-03 0.083025 7.6973e-04 4.9426e-05
F24 N/A 1.8368e-06 6.735e-03 2.6433e-03 0.66273 7.2446e-05 0.78446 7.7272e-06
F25 N/A 8.3146e-08 2.1156e-05 0.29047 3.4783e-03 9.3519e-08 7.394e-05 0.12967
F26 N/A 1.5079e-07 6.9048e-09 9.5238e-11 2.2463e-10 0.015873 6.9048e-03 7.9365e-03
F27 N/A 0.44642 1.6687e-07 5.106e-05 5.9428e-07 1.5367e-03 2.1156e-06 1.6062e-11
F28 N/A 9.0972e-05 6.2318e-07 1.0036e-03 0.073373 0.096985 9.8451e-04 0.017257
F29 N/A 5.4762e-03 8.4127e-05 7.9365e-04 2.2674e-07 7.861e-03 5.8263e-06 2.2133e-05

results shown in Table 9 indicate that p-values between TSSA and other algorithms are
less than 0.05 in most cases, which means the solutions of TSSA and the others could be
regarded to be uncorrelated.

5. Application on Container Deployment in Microservice Architecture. In mi-
croservice architecture, microservices call each other through HTTP request or RPC com-
munication. A simple example diagram is shown in Figure 5; in the diagram, microservice

A TRANSFORMED SALP SWARM ALGORITHM 295

Figure 5. Diagram of container deployment relationships in microservice architecture

1 calls microservice 3 17 times and microservice 1 runs in container 2, which is deployed
in terminal device 2. Since each microservice runs in separate containers, the number
of calls between microservices is equivalent to the number of calls between containers.
Therefore, when a container is deployed, number of calls between each container is a vital
factor that must be considered for container deployment problem.

At the same time, considering the limited resources of terminal devices, the resource
capacity of a single device is generally less than the sum of resources that all containers
need to be pre-allocated [6]. Multiple containers are inevitably deployed on different ter-
minal devices, and the communication overhead between devices has an impact on service
completion time [13]. In the actual situation, containers in the same device communi-
cate directly through network bridge; in this way, the communication overhead will be
much smaller than the communication overhead between devices. Ideally, we tend to
deploy containers with frequent call relationships to the same device or to devices with
low communication overhead, and satisfying the resource constraints of containers and
the terminal devices [14].

It can be seen that the container deployment problem in terminal device is NPC prob-
lem, and there are multiple solving algorithms [17]. Meanwhile, the dimensions of the
solution sets become larger as the number of containers increases, which will enlarge
the search spaces and make the optimization problem much more complex. For the
single-objective problem which has multi-dimension, several meta-heuristic algorithms
are proposed in recent years. These meta-heuristic algorithms are more effective than
the traditional methods. In this work, the container deployment problem is a composite
model with multimodal, which has multiple local optimal solutions. Based on the above
benchmark functions, TSSA is good at solving these kinds of problems.

In the next chapter, TSSA described above and the recently proposed meta-heuristic
algorithms are used to solve the container deployment problem in terminal devices. Fitness

296 B. MA, H. NI, X. ZHU AND Z. WANG

of the problem is based on the number of calls between containers and communication
overhead of terminal devices.

5.1. Container deployment model. In this chapter, we assume that there are N con-
tainers andM terminal devices for deploying containers. The container deployment model
is described as follows.

1) The set of N resources is {R1, R2, . . . , RN} and Ri represents the pre-allocated re-
sources of the i-th container, the normalized resource of each container is as shown
in Table 10.

Table 10. Pre-allocated resource of each container

Container 1 2 3 4 5 6 7 8 9 10
R: 1-10 1 2 3 4 5 6 5 4 3 2

2) We use X(i) to represent the device, in which i-th container is deployed and 1 ≤
X(i) ≤ M .

3) The set of M resources is {S1, S2, . . . , SM} and Sx represents the maximum amount
of resources that the x-th terminal device can provide. To simplify the model, we only
consider CPU resource to reduce the dimension of resources, the normalized resource
of each device is as shown in Table 11.

Table 11. Resource of each terminal device

Device 1 2 3 4 5 6 7
S: 1-7 8 7 9 10 11 6 12

4) A container can be operated at any device as long as the device can provide enough

resource, which means
∑N

i=1R
x
i ≤ Sx and Rx

i represents the i-th container is deployed
in the x-th device.

5) The paper uses F (X(i)) to represent whether
∑N

i=1R
x
i ≤ Sx, when the condition is

met, F (X(i)) = 1, otherwise F (X(i)) = inf.
6) The paper uses matrix P [N,M] to represent the uniqueness of containers, P x

i = 1
when i-th container is deployed in the x-th device, otherwise P x

i = 0.
7) Containers running in the same device work in parallel, and the operating speed of

each container will not be influenced by other containers, because the resource of
each container is pre-allocated. To simplify the model, every microservice would be
operated at the same speed.

8) Microservices running in container could call each other via HTTP request or RPC
remote call, the matrix of calling times are Calls[N,N] and Callsji represents the
times of i-th container calls j-th container, the calling relation are as shown in Table
12, for example, number of calls between 6-th container and 5-th container is 14 in
Table 12.

9) The communication overhead between each device is not negligible, the matrix of
communication overhead is Dealys[M,M], in which Delaysyx represents the commu-
nication overhead between x-th device and y-th device, for example, the normalization
communication overhead between 3-rd device and 5-th device is 2 in Table 13.

10) Based on these assumptions, the completion time of all microservices mainly depends
on the number of calls between containers and the communication overhead between
devices. In this model, the fitness is calculated as follows:

A TRANSFORMED SALP SWARM ALGORITHM 297

fitness =
N∑
i=1

N∑
j=1

P
X(i)
i ∗PX(j)

j ∗ Callsji ∗ Delays
X(j)
X(i) ∗ F (X(i)) ∗ F (X(j)) (10)

where P
X(i)
i is used to judge whether i-th container is deployed in the x(i)-th terminal

device, F (X(i)) is applied to distinguish whether the resource x(i)-th terminal device
is available.

Table 12. Number of calls to each container

Callsji i: 1-10

j: 1-10

0 28 1 13 29 35 168 0 15 10

28 0 17 4 8 1 20 0 0 12

1 17 0 5 9 21 1 25 33 7

13 4 5 0 7 3 6 8 14 9

29 8 9 7 0 14 23 27 0 8

35 1 21 3 14 0 9 11 13 17

168 20 1 6 23 9 0 5 5 8

0 0 25 8 27 11 5 0 23 29

15 0 33 14 0 13 5 23 0 8

10 12 7 9 8 17 8 29 8 0

Table 13. Normalization communication overhead relations

Callsji i: 1-7

j: 1-7

0 1 2 1 2 2 1

1 0 1 1 1 2 1

2 1 0 1 2 1 2

1 1 1 0 2 1 1

2 1 2 2 0 1 1

2 2 1 1 1 0 2

1 1 2 1 1 2 0

5.2. Result of TSSA on container deployment model problem. In this work,
10 containers would be deployed in 7 terminal devices which have restricted resources.
The number of calls to each container is as shown in Table 12 and the normalization
communication overhead relations are as shown in Table 13.

In this work, 7 algorithms are compared with the proposed TSSA and each algorithm
runs 500 iterations, 30 search agents are employed in these algorithms. In order to reduce
the accidental factors, each algorithm is tested for 50 times and we record the statistical
data such as average values, standard deviations and best values. The result of the
experiment is listed in Table 14.

The result of the experiment demonstrates that the proposed TSSA outperforms the
other algorithms in all respects. TSSA is capable of finding better solutions comparing
with all the other algorithms and it has the best stability as well. Based on the best

298 B. MA, H. NI, X. ZHU AND Z. WANG

Table 14. Result of container deployment

Algorithm Average Std Best p-value
TSSA 427.8250 20.2014 361 N/A
SSA 452.8000 23.7284 396 0.0086674
PSO 484.7250 36.3353 399 2.5364e-12
GOA 516.8750 26.4616 443 1.9205e-12
ALO 755.8500 62.4083 588 1.4285e-14
DA 510.7500 37.4068 420 3.9794e-13

MVO 437.8500 28.7354 380 0.068602
WOA 453.4000 32.5149 388 0.0031291

value of TSSA, we can find the corresponding terminal devices number of containers are
(1, 1, 7, 4, 4, 2, 1, 7, 7, 7).

6. Conclusions. The paper proposed a Transformed Salp Swarm Algorithm (TSSA), in
which tent chaotic initialization distribution was used and we optimized the exploration
mechanism in search space as well as exploitation mechanism. The performance of TSSA
was tested on 29 benchmark functions and compared to 7 algorithms. The p-values of
Wilcoxon rank-sum statistic tests were also used to compare relevance of solutions. When
TSSA was applied to container deployment problem in microservice architecture, it could
promote the performance of the original SSA and outperformed all the other comparison
algorithms.
For future work, we intend to further improve the performance of TSSA, and our work

will also focus on a larger scale of container cluster. In order to meet the increasing
industrial demand, we expect that the optimized algorithm could be used in hundreds of
containers and terminal devices. Besides, we will also modify model constraints to reduce
the specification of the scene.

Acknowledgment. The work is partially supported by these projects:

• Strategic Leadership Project of Chinese Academy of Sciences: SEANET Technology
Standardization Research System Development (Project No. XDC02010701);

• Innovation Youth Talent Project of Institute of Acoustics of Chinese Academy of Sci-
ences: Research on Key Technologies of Embedded Container File System (Project
No. Y754061601).

REFERENCES

[1] R. Zhao and X. Zhu, A review of the microservice architecture, Journal of Network New Media,
vol.8, no.43(01), pp.58-61+65, 2019.

[2] D. Bernstein, Containers and cloud: From LXC to Docker to Kubernetes, IEEE Cloud Computing,
vol.1, no.3, pp.81-84, 2014.

[3] R. Morabito, A performance evaluation of container technologies on Internet of Things devices, IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS), San Francisco, CA,
pp.999-1000, 2016.

[4] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili et al., Salp swarm algorithm: A bio-inspired optimizer
for engineering design problems, Advances in Engineering Software, vol.114, pp.163-191, 2017.

[5] S. Arora and P. Anand, Chaotic grasshopper optimization algorithm for global optimization, Neural
Computing and Applications, pp.1-21, 2018.

[6] J. Ha et al., A web-based service deployment method to edge devices in smart factory exploit-
ing Docker, International Conference on Information and Communication Technology Convergence
(ICTC), Jeju, pp.708-710, 2017.

A TRANSFORMED SALP SWARM ALGORITHM 299

[7] S. Mirjalili and A. Lewis, The whale optimization algorithm, Advances in Engineering Software,
vol.95, pp.51-67, 2016.

[8] S. Saremi, S. Mirjalili and A. Lewis, Grasshopper optimization algorithm, Advances in Engineering
Software, vol.105, pp.30-47, 2017.

[9] S. Mirjalili, Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-
objective, discrete, and multi-objective problems, Neural Computing and Applications, vol.27, no.4,
pp.1053-1073, 2016.

[10] S. Mirjalili, S. M. Mirjalili and A. Hatamlou, Multi-verse optimizer: A nature-inspired algorithm for
global optimization, Neural Computing and Applications, vol.27, no.2, pp.495-513, 2016.

[11] S. Mirjalili, The ant lion optimizer, Advances in Engineering Software, vol.83, pp.80-98, 2015.
[12] M. R. Asadi and S. M. Kouhsari, Optimal overcurrent relays coordination using particle-swarm-

optimization methodology, Proc. of IEEE Power Syst. Conf., pp.1-7, 2009.
[13] B. I. Ismail et al., Evaluation of docker as edge computing platform, 2015 IEEE Conference on Open

Systems (ICOS), Bandar Melaka, pp.130-135, 2015.
[14] C. Kaewkasi and K. Chuenmuneewong, Improvement of container scheduling for docker using ant

colony optimization, The 9th International Conference on Knowledge and Smart Technology (KST),
Chonburi, pp.254-259, 2017.

[15] M. Abdelbaky, J. Diaz-Montes, M. Parashar, M. Unuvar and M. Steinder, Docker containers across
multiple clouds and data centers, IEEE/ACM the 8th International Conference on Utility and Cloud
Computing (UCC), Limassol, pp.368-371, 2015.

[16] M. Sureshkumar and P. Rajesh, Optimizing the docker container usage based on load scheduling, The
2nd International Conference on Computing and Communications Technologies (ICCCT), Chennai,
pp.165-168, 2017.

[17] C. Li, H. Zhang, H. Zhang and Y. Liu, Short-term traffic flow prediction algorithm by support vector
regression based on artificial bee colony optimization, ICIC Express Letters, vol.13, no.6, pp.475-482,
2019.

[18] F. Wilcoxon, S. Katti and R. A. Wilcox, Critical values and probability levels for the Wilcoxon rank
sum test and the Wilcoxon signed rank test, Sel Tables Mathematical Statistics, vol.1, pp.171-259,
1970.

[19] W. Xiao, H. Deng, Y. Sheng and L. Hu, Factored grey wolf optimizer with application to resource-
constrained project scheduling, International Journal of Innovative Computing, Information and
Control, vol.14, no.3, pp.881-897, 2018.

