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Abstract. A fine-grained FPGA overlay is a virtual device layer (vFPGA) implement-
ed on a physical commercial FPGA. A vFPGA can provide advantages such as bitstream
portability and design that works with third-party CAD tools. However, present vFPGAs
impose large resource and performance overheads on the underlying FPGA. In this work,
we focus on reducing these resource overheads by implementing an application-specific
routing architecture for vFPGAs. Because the routing circuits occupy the majority of re-
sources of typical FPGAs, removing routing channels not used for a given application set
can significantly reduce the resources required for a vFPGA. By evaluating the proposed
application-specific routing, using our previously proposed scalable-logic-module (SLM)
architecture on 5 × 5 tile array of 7-input logic elements, our approach reduces the num-
ber of lookup tables and flip-flop gates required on the physical FPGA by 40% and 39%,
respectively.
Keywords: Reconfigurable computing, Overlay, Virtual FPGA, Routing

1. Introduction. In recent years, field-programmable gate arrays (FPGAs) have been
widely adopted in cloud computing and edge computing applications. However, overcom-
ing some limitations of commercial FPGAs is becoming critical for the development and
deployment of FPGA-enabled applications. First, a bitstream generated for one FPGA
cannot be used on an FPGA of a different type because of hardware resource and ar-
chitectural differences. Due to this, FPGA developers have to modify their designs and
generate bitstreams for all target FPGAs. Second, the architecture details of commercial
FPGAs are not open, so third-party CAD tools cannot be integrated with the FPGA
design flow. Overlay-based virtual FPGAs (vFPGAs) have been introduced to address
these problems. A vFPGA is a reconfigurable device synthesized and implemented on a
commercial FPGA. Because the architecture of a vFPGA is opened, we can use third-
party CAD tools to design circuit for one and then generate a bitstream that is portable
to others.

Kristianti et al. [1] developed data encryption standard algorithm to optimize design
by implementing with VHDL on XC3S1200E FPGA devices for security system. Coole
and Stitt [2] addressed two problems with FPGAs – long placement and routing time,
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and lack of portability – by introducing intermediate fabrics, which are coarse-grained
virtual reconfigurable architectures specialized for different application domains. The au-
thors explored the use of intermediate fabric architectures with specialization techniques
aimed at minimizing the area and performance overhead of the virtual fabric. Kulkarni
et al. [3] proposed a virtual coarse-grained reconfigurable arrays (VCGRAs) architecture
which is formed the group of processing elements (PEs) along with the interconnection
network at a virtual higher abstraction level. Heyse et al. [4] mentioned that conven-
tional implementations of VCGRAs cause a large overhead. They solved it by using tool
flow for parametrized FPGA configurations. To address portability challenges in FPGA
design productivity owing to lack of code portability, Kirchgessner et al. [5] introduced
a framework for FPGA platform virtualization, called virtual reconfigurable computing
(VirtualRC) that is enabling portability across any supported platform. Bollengier et
al. [6, 7] designed fine-grained overlay implementing novel features in a cluster of hetero-
geneous commercial-of-the-shelf (COTS) FPGAs, and demonstrated the use of overlay in
an FPGA cluster by performing a hardware application live migration between two nodes
of a cluster. Koch et al. [8] presented a fine-grained FPGA-like overlay architecture which
can be implemented in the user logic of various FPGA families from different vendors.
Lysecky et al. [9] proposed a simple FPGA fabric as a virtual FPGA by using structural
VHDL and synthesized the firm-core virtual FPGA onto Xilinx Spartan physical FPGAs,
and then mapped 18 benchmark circuits onto the virtual FPGA.

Najem et al. [10] proposed a fine-grained overlay-based vFPGA approach to improve
portability, speed up reconfiguration, and promote resources abstraction. By implement-
ing the same vFPGA on different commercial FPGAs in a cluster, the same application
bitstream can be used on heterogeneous instances. Using the proposed platform as a
base, cluster-scale hardware management capabilities such as node-to-node application
migration, scheduling and load balancing, can be implemented. Brant and Lemieux [11]
implemented a fine-grained overlay as user logics on top of commercial FPGAs, calling
this ZUMA. ZUMA was designed as an open vFPGA architecture that reduces the im-
plementation cost by mapping overlay lookup tables (LUTs) and overlay multiplexers
onto a LUT configuration of the physical FPGA fabric. They designed a Clos-style input
interconnect block (IIB) network to improve the efficiency of the area for the internal
crossbar of the cluster, a resource efficient configuration controller, and a modeling archi-
tecture to determine the most efficient parameters for mapping to a given architecture.
Configurable LUT random-access memories (LUTRAMs) are used for implementing both
programmable LUTs and routing multiplexers. The ZUMA overlay architecture as com-
piled on Xilinx and Altera FPGAs required two thirds less LUTs when LUTRAMs were
used. However, the ZUMA architecture is heavily reliant on the physical FPGA structure
(e.g., LUT size), which limits bitstream portability. Wiersema et al. [12, 13] extended an
embedding of a ZUMA-based virtual FPGA fabric into a complete configurable system-
on-chip. The authors presented an open tool flow to synthesize configurations for the
virtual FPGA with the extension of ZUMA and its embedding into the ReconOS/Linux
system running on a Xilinx Zynq in order to analyze the area and delay overheads.

Between these coarse- and fine-grained vFPGAs, coarse-grained overlays have small
overheads but limited flexibility in logic expression while fine-grained overlays can imple-
ment any application circuit but have higher resource and performance overhead because
their large number of configuration memories have to be implemented with limited flip-
flop gates (FFs) on the physical FPGA. In this work, we focus on reducing the resource
overhead by implementing a vFPGA on an application-specific routing architecture for the
overlay. Because the routing circuits occupy the majority of resources in typical FPGAs,
removing routing channels not needed for a given application set can significantly reduce
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the resource requirements of a vFPGA. By implementing a vFPGA with the proposed
application-specific routing and our previously proposed scalable-logic module (SLM),
which requires less configuration memory, we can achieve a vFPGA architecture with a
better balance of overhead and flexibility.

The remainder of this paper is organized as follows. Section 2 describes fine-grained
overlay vFPGAs, including the strategy of virtual synthesis. The evaluation condition of
a vFPGA based on the SLM architecture and the results of evaluating the architecture
with a CAD tool are described in Section 3. The conclusion of this paper is given in
Section 4.

2. Fine-Grained vFPGA.

2.1. Overview. A fine-grained vFPGA architecture is cognate with a traditional FPGA
architecture because the reconfigurable elements are made up of logic blocks as fine-
grained reconfigurable elements. Logic Blocks, which comprise N clustered basic logic
elements (BLEs) include a full crossbar that connects both the logic block inputs (I) and
feedback from BLE outputs (N). A BLE includes a k-inputs LUT and one FF. A LUT
is used as fine-grained logic cell. It corresponds to a set of reconfigurable elements avail-
able to the application. When we explore vFPGA architecture, we must consider nine
important objectives: multi-tenancy, resource management, flexibility, isolation, scalabil-
ity, performance, security, resilience, and programmer productivity [14]. These are the
differences in the point of design for between conventional discrete FPGAs and vFPGAs.

2.2. Strategy. Figure 1 shows vFPGA implementation flow. A target application for
vFPGA is described by hardware design language (HDL) such as Verilog, SystemC for
high-level synthesis (HLS) design, or a domain-specific language (DSL). This design is
synthesized for the vFPGA (i.e., virtual synthesis), and the generated bitstream does not
depend on the specific FPGA. However, a traditional LUT-based vFPGA has the following
key features: a huge amount of memory cell bits are used for configuration. An n-input

FPGA FPGA FPGA

Figure 1. Example of virtual synthesis flow
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LUT requires 2n bits of configuration memory. Configuration memory cells are assigned
to FFs in vFPGA design. As the number of bits needed increases, so does the amount of
hardware resources required. In this paper, we proposed a vFPGA overlay architecture
based on SLM logic cells to mitigate the amount of configuration memory needed. A
primary feature of SLMs is that they require less configuration memory than traditional
LUTs do. The resulting vFPGA overlay can be implemented on various FPGAs, as shown
in Figure 1.

Although vFPGAs offer portable design, resource abstraction, and faster configuration
times, traditional vFPGAs are also high cost because of the necessary integration scale,
speed, and power. As the scale integration of such vFPGAs increases, the routing part
becomes both more complex and larger. Here, it is assumed that vFPGA is used as
hardware macro block or hardware library with a limited application set. This means
that we can eliminate many unused resources, depending on application-specific routing.
In our approach, the amount of hardware resources of the logic part required are reduced
by using SLM as logic cells. In addition, the area devoted to wiring portion is reduced
by removing unused wiring. Then, we detect the unused wiring in the vFPGA with our
CAD tool and generate modified HDL files that account for the wiring information so as
to efficiently reduce the used area.

2.3. LUT-based vs SLM-based logic cells. Most FPGAs use LUTs as their logic cells.
The area requirement of LUTs is increased with the input size k, which means the area of
FPGAs increases when input size does. As an example, we consider a LUT with an input
size of 7. In LUT architecture, the input of LUT (k) is 7, the cluster size (N) is 4. The
flexibility of the switch block (Fs = 3) indicates that an output multipliexer in the switch
block can select an input from three directions for its output. The flexibility of inputs
and outputs of the connection block (Fc = 0.5) means that 50% of tracks in the routing
channel are connected to the logic cluster. Figure 2 shows the logic block structure with
7-input LUTs. The general input (I) of the logic block is 17, found by the calculation
I = k(N + 1)/2, rounded down. One BLE consists of a LUT, an FF, and a selector [15].
The selector’s function determines whether the value of the LUT is output or the value
of FF is the output. The resource and area overheads needed for a k-input LUT-based
fine-grained overlay includes 2k configuration memory bits, which are implemented with
limited FFs on the physical FPGA.
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Figure 2. Logic block structure with 7-input LUT
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Figure 3. The 7-SLM (5,2) structure

An SLM includes an input controller, a small LUT core and an output controller as
shown in Figure 3, where PN is the programmable NAND and M is the configuration
memory [16]. The minimum number of configuration memory bits is 2k−1 for k-input
SLM in this architecture. The programmable NAND (PN) circuit can negate inputs or
fix the output to 0 or 1 with two configuration memory cells. This structure has k-inputs,
a (k − 1)-LUT core, and one output that can be defined as k-SLM (k − 1, ω), where
0 ≤ ω ≤ k − 1. For multilevel SLMs, the sizes for a k-SLM (k − m, ω) are the following: a
k-input SLM with a (k−m)-LUT core, and ω controllable inputs with m-level controllers,
where 0 ≤ ω ≤ k − m and 1 ≤ m ≤ k − 2. If k = 7, then m = 2 − level, the number
of controllable inputs. Here, ω = 2, for a k-SLM (k − m, ω) = 7-SLM (5,2), that is, a
7-input SLM with 5-input LUT core, as shown in Figure 3.

2.4. Application-specific routing. Our vFPGA is similar to an FPGA homogeneous
tile based on a mesh structure, in which each tile includes one logic block, one switch block,
and two connection blocks. The logic block structure is used with the SLM structure;
the switch blocks located at the intersection of horizontal and vertical wiring are Wilton
type [17] (Fs = 3), and the flexibility of inputs and outputs of the connection blocks
connected to the wiring and logic blocks are half path wire (Fc = 0.5). In the routing
part, we eliminate the unused wiring of the input and output part between the logic tiles
to reduce the channel widths, which reduces hardware resources required. Figure 4 shows
a developed CAD flow. Figure 4(a) shows an architecture exploration flow that matches
that of a traditional FPGA. Then Figure 4(b) shows an evaluation flow. We modified
EasyRouter to detect unused wiring by combining P&R information from Figure 4(a).
Based on unused wiring, the final HDLs of each tile are generated.

3. Evaluation.

3.1. Evaluation condition and environment. For this evaluation, 7-LUT and 7-SLM
(5,2) architectures are used. The main objective is to use fine-grained overlay vFPGA
architecture in a hardware library implementation with our CAD tool in order to reduce
the amount of hardware resources required by removing unused wiring. We use ABC [18]
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Table 1. Comparison of array size and channel width

Circuits Array size (7-LUT) Array size (7-SLM (5,2)) CW (7-LUT) CW (7-SLM (5,2))
9sym (4 × 4) (5 × 5) 16 12
example2 (5 × 5) (5 × 5) 16 16
i4 (5 × 5) (5 × 5) 22 22
mult32a (5 × 5) (5 × 5) 12 14
rd84 (5 × 5) (5 × 5) 16 18
s832 (5 × 5) (5 × 5) 18 16
x1 (5 × 5) (5 × 5) 22 22
C1355 (5 × 5) (5 × 5) 24 20
C499 (5 × 5) (5 × 5) 20 20

for technology mapping, VPR 7.0 [19, 20] is used in placement, and EasyRouter [21] in the
routing part, as shown in Figure 4(a). By running the routing part with EasyRouter, we
find the minimum viable channel width (setting fixed channel width), array size, and HDL
files. The target devices are Xilinx Artix-7 xc7a200tffg1156-1, Kintex-7 xc7k420tffv1156-
1, and Kintex UltraScale+ KCU116 xcku5p-ffvb676-2-e, using Xilinx Vivado 2018.2. After
placement and routing, we have the hardware usage of both architectures for each logic tile
for the target applications set (nine circuits). Table 1 shows the comparison of channel
width (CW) before evaluation and the array size for both LUT-based and SLM-based
logic tiles. In most cases, the array size of the SLM architecture is similar to that of the
LUT architecture. We can directly calculate the hardware resources required for one logic
tile with our CAD tool, as shown in Figure 4(a). Before removing the unused wiring,
the comparison results of hardware resources in one logic tile with Artix-7, Kintex-7, and
Kintex UltraScale+ are found; these are shown in Table 2.
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Table 2. Hardware resources in one logic tile before removing unused wiring

Structure LUTs FFs
7-LUT with Artix-7 1,378 927
7-SLM (5,2) with Artix-7 832 570
7-LUT with Kintex-7 1,374 927
7-SLM (5,2) with Kintex-7 836 570
7-LUT with Kintex UltraScale+ 1,346 927
7-SLM (5,2) with Kintex UltraScale+ 819 570

3.2. Evaluation result. Our aim is to reduce the routing area for multiple tiles (5 × 5)
with an SLM architecture for a fine-grained overlay vFPGA. After routing with Easy-
Router, we know the minimum channel width for each circuit. The least amount of
routing resources that run parallel and allow the successful routing of each circuit is
called the minimum channel width. We choose the largest minimum channel width of all
circuits as the maximum channel width to fix the minimum necessary FPGA scale to be
able to implement all desired circuits. After calculation in this way, we use 24 (CW) for
7-LUT and 22 (CW) for 7-SLM (5,2), as shown in Table 1.

For the target vFPGA, the channel width can be assigned as the maximum channel
width multiplied by 1.2 to provide sufficient resources for target applications. We calculate
(24 × 1.2) = 30 (CW) for 7-LUT and (22 × 1.2) = 28 (CW) for 7-SLM (5,2). Applying
the corresponding channel width, we use EasyRouter to generate a log file that includes
the wiring information. By calculating how many wirings are used or unused within the
(5 × 5) logic tiles for a fine-grained overlay vFPGA, we modify the HDL files by using
these wiring information results, and evaluate the hardware resources used in the vFPGA
by removing unused wiring, as shown in Figure 4(b). As a result, we can remove 7.5%
(by routing area) of wiring as unused wiring in 7-LUT and 4.6% in 7-SLM (5,2).

Table 3 shows the hardware resources of 7-LUT and 7-SLM (5,2) configurations in
(5 × 5) logic tiles by using an Artrix-7 device after removing the unused wiring. Table 4,
shows a wiring reduction by 7.5% from removing unused wiring in the 7-LUT case, by
20.31% with LUTs and by 2.46% with FFs on Artix-7; for Kintex-7, these numbers are
20.13% for LUTs and 2.46% for FFs. For Kintex UltraScale+, these are 19.12% for LUTs
and 2.46% for FFs. Eliminating 4.6% of the wiring as unused wiring with 7-SLMs (5,2),
we can also reduce the LUTs by 40.22% and the FFs by 39.38% on Artix-7. For Kintex-7
(resp., Kintex UltraScale+), these numbers are 40.16% (resp., 40.32%) for LUTs, and
39.51% (resp., 39.38%) for FFs.

3.3. Discussion. A reduction of about 20% was achieved for LUTs and 3% for FFs re-
duction on three devices after removing an unused 7.5% of the writing for 7-LUT systems.
In 7-SLM (5,2) systems, the reductions were about 40% for LUTs and 39% for FFs on
three devices after removing an unused 4.6% of the wiring. For fine-grained vFPGAs of
both architectures with the same (5 × 5) logic tiles for all target applications, we can
reduce the area of routing resources on three devices by removing the unused wiring.

4. Conclusions. Overlay architectures, which are virtual configurable architectures that
run on top of the physical architecture of FPGAs, allow design portability across FPGAs
from many vendors. However, there can be area overhead problems because of the different
hardware resources available. To fix this, we intend to reduce the hardware resource
overhead by the implementation of application-specific routing architectures in vFPGAs.
In this paper, we only focused on the reduction of the routing area of the vFPGA for Xilinx
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Table 3. Hardware resources in (5 × 5) tiles after removing unused wiring
in Artix-7 as an example

7-LUT LUTs FFs 7-SLM (5,2) LUTs FFs
TILE0101 946 900 TILE0101 772 552
TILE0102 920 889 TILE0102 798 558
TILE0103 966 910 TILE0103 816 564
TILE0104 959 913 TILE0104 847 561
TILE0105 919 880 TILE0105 839 561
TILE0201 1,290 882 TILE0201 756 546
TILE0202 936 895 TILE0202 840 564
TILE0203 959 912 TILE0203 844 567
TILE0204 956 913 TILE0204 846 561
TILE0205 918 886 TILE0205 835 564
TILE0301 1,372 912 TILE0301 766 555
TILE0302 1,357 906 TILE0302 833 567
TILE0303 969 916 TILE0303 837 567
TILE0304 1,357 916 TILE0304 865 567
TILE0305 1,375 896 TILE0305 820 570
TILE0401 1,353 921 TILE0401 807 555
TILE0402 972 907 TILE0402 831 555
TILE0403 1,372 913 TILE0403 850 567
TILE0404 946 909 TILE0404 819 567
TILE0405 949 895 TILE0405 837 564
TILE0501 1,362 909 TILE0501 799 552
TILE0502 971 906 TILE0502 839 567
TILE0503 966 912 TILE0503 835 564
TILE0504 1,381 905 TILE0504 821 567
TILE0505 982 901 TILE0505 843 567

Table 4. Reduction in hardware resources by removing unused wiring

Structure Unused wiring LUTs FFs
reduction reduction reduction

7-LUT with Artix-7 7.5% 20.31% 2.46%
7-SLM (5,2) with Artix-7 4.6% 40.22% 39.38%
7-LUT with Kintex-7 7.5% 20.13% 2.46%
7-SLM (5,2) with Kintex-7 4.6% 40.16% 39.51%
7-LUT with Kintex UltraScale+ 7.5% 19.12% 2.46%
7-SLM (5,2) with Kintex UltraScale+ 4.6% 40.32% 39.38%

FPGA devices. We can find how much the unused wiring can be removed, which reduces
the required resources. In future works, we intend to generate bitstreams for vFPGA.
And also, we will try to implement vFPGA on FPGA devices of different vendors.
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