
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2020 ISSN 1349-4198
Volume 16, Number 2, April 2020 pp. 555–570

TOWARDS WORD SENSE DISAMBIGUATION USING MULTIPLE
KERNEL SUPPORT VECTOR MACHINE

Liyun Zhong and Tinghua Wang

School of Mathematics and Computer Science
Gannan Normal University

Economic & Technological Development Zone, Ganzhou 341000, P. R. China
wth2003nc@163.com

Received August 2019; revised December 2019

Abstract. Word sense disambiguation (WSD), the task of identifying the intended
meanings (senses) of words in context, has been a long-standing research objective for
natural language processing (NLP). In this paper, we investigate the problem of combin-
ing multiple feature channels using kernel methods for the purpose of effective WSD. A
straightforward method is to use a uniform combination of more adequate kernels, which
are built from different types of data representations or knowledge sources. Instead of
using an equal weight for all kernels in the combination, we consider the problem of
integrating multiple feature channels using the state-of-the-art multiple kernel learning
(MKL) approach, which can learn different weights that reflect the different importance
of the feature channels for disambiguation. This approach has the advantage of the
possibility to combine and select the more relevant feature channels in an elegant way.
Combined with the support vector machine (SVM), this approach is demonstrated with
several Senseval/Semeval disambiguation tasks.
Keywords: Word sense disambiguation (WSD), Multiple kernel learning (MKL), Sup-
port vector machine (SVM), Kernel method, Natural language processing (NLP)

1. Introduction. Ambiguity is inherent to human language. Particularly, word sense
ambiguity is prevalent in all natural languages, with a large number of words having
more than one meaning. For instance, the English noun bank can mean “sloping raised
land, especially along the sides of a river” or “an organization where people and busi-
nesses can invest or borrow money, convert to foreign money, etc. or a building where
these services are offered”. The correct sense of an ambiguous word can be determined
based on the context where it occurs, and correspondingly the problem of word sense
disambiguation (WSD) is defined as the task of automatically assigning the most appro-
priate meaning to a polysemous word in a given context [1]. As a fundamental semantic
understanding task at the lexical level in natural language processing (NLP), WSD can
benefit many applications such as machine translation, information retrieval, parsing, and
question answering. Machine translation uses the concept of WSD to make correct lexical
choices and information retrieval uses it to solve the ambiguity in the queries. In actual
applications, WSD is often fully integrated into the system and cannot be separated out
(for instance, in information retrieval, WSD is often not done explicitly but is just a by-
product of query to document matching). WSD is considered to be a key step in order
to approach language understanding beyond keyword matching [2]. Although WSD for
human is essentially a subconscious process and presents no difficulties, it is very difficult

DOI: 10.24507/ijicic.16.02.555

555

556 L. ZHONG AND T. WANG

to formalize the computational process of disambiguation since it is classified among “AI-
complete” problems [3], that is, it is a task whose solution is at least as hard as the most
difficult problems in artificial intelligence.
WSD methods can be generally classified into two types: knowledge-based and ma-

chine learning [1,4]. Knowledge-based WSD systems exploit the information in a lexical
knowledge base, such as WordNet and Wikipedia, to perform WSD. These approaches
usually pick the sense whose definition is most similar to the context of the ambiguous
word, by means of textual overlap or using graph-based measures [2,5,6]. Machine learn-
ing approaches, also called corpus-based approaches, do not make use of any knowledge
resources for disambiguation. These approaches range from supervised learning in which
a classifier is trained for each distinct word on a corpus of manually sense-annotated ex-
amples, to completely unsupervised methods that cluster occurrence of words, thereby
inducing senses. Recent advances in WSD have benefited greatly from the availability of
corpora annotated with word senses. Most accurate WSD systems to date exploit super-
vised methods which automatically learn cues useful for disambiguation from manually
sense-annotated data.
For machine learning-based WSD systems, commonly used algorithms include Näıve

Bayesian model, decision trees, maximum entropy, support vector machine (SVM), and
so on. Among them, kernel methods in general and SVM [7,8] in particular have demon-
strated excellent performance in terms of accuracy and robustness and applying kernel
methods to the WSD task is a very promising choice [9-14]. The approach used by kernel
methods is to map the input data into a feature space by means of kernel function and
then uses learning algorithm to discover relations in the space. Specifically, kernel meth-
ods work by mapping the data from the input space into a high-dimensional (possibly
infinite) feature space, which is usually chosen to be a reproducing kernel Hilbert space
(RKHS), and then building linear algorithms in the feature space to implement nonlinear
counterparts in the input space. The mapping, rather than being given in an explicit form,
is determined implicitly by specifying a kernel function, which computes the inner prod-
uct between each pair of data points in the feature space. There are several reasons that
make kernel methods applicable to WSD and other NLP problems [13]. Firstly, instead
of manual construction of feature space for the learning task, kernel functions provide
an alternative way to design useful features in the feature space automatically, therefore,
ensuring necessary representational power. Secondly, kernel methods offer a flexible and
efficient way to define application-specific kernels for introducing background knowledge
and modeling explicitly linguistic insights. This property allows to notably improve the
performance of the general learning methods and their simple adaptation to the specific
application. Lastly, kernel methods can be naturally applied to the non-vectorial types
of data, thus taking into account the structure of the data and greatly reducing the need
for careful feature engineering in these structures.
From the point of view of modularization, kernel methods consist of two main compo-

nents, namely the kernel and actual learning algorithm. The kernel can be considered as
an interface between the input data and the learning algorithm, and is the key component
to ensure the good performance of kernel methods [7,15]. Actually, for real applications,
kernel is the only task-specific component of kernel methods. In the domain of WSD, the
widely used kernel is the “Bag of Words” (BOW) kernel [7,13], which is based on the BOW
representation of the context in which an ambiguous word occurs. In this representation,
each word or term constitutes a dimension in a vector space, independent of other terms
in the same context. Despite its ease of use, this kernel suffers from well-known limita-
tions, mostly due to its inability to exploit semantic similarity between terms: contexts
sharing terms that are different but semantically related will be considered as unrelated.

TOWARDS WORD SENSE DISAMBIGUATION USING MULTIPLE KERNEL SVM 557

To address this problem, a number of attempts have been made to incorporate semantic
knowledge into the BOW kernel, resulting in the so-called semantic kernels [7,8,10-13].
Besides the BOW representation of the context in which an ambiguous word occurs, more
structured representations, such as strings, trees and graphs, can be also employed to
represent word contexts [5,6,9,13]. Lodhi et al. [16] proposed the string kernel, which is
significantly different from the BOW model, for effective text categorization which can
be seen as the general domain of WSD. In string kernel, features are not terms, but all
possible ordered subsequences of characters occurring in documents. The string kernel
was later extended to the word-sequences kernel [17,18], which is used to compare the
sequences of words. Compared with the string kernel, the word-sequences kernel greatly
reduces the average length of symbols per document, which yields a significant improve-
ment in computational efficiency. Moreover, matching word sequences allows working
with more linguistically meaningful symbols. For WSD, Giuliano et al. [9] modified the
generic definition of the sequence kernel to enable it to recognize the collocations in a
local window of the word to be disambiguated. Specifically, they defined two new kernels:
the N -gram collocation kernel and N -gram part-of-speech (POS) kernel, which is defined
as a sequence kernel applied to sequences of lemmata and POSs around the word to be
disambiguated, respectively. The third kind of kernel used for text categorization is the
tree kernel [19,20], which is a powerful way to encode the syntactic structure information
of the input documents in the form of parse trees. The main underlying idea of tree
kernels is to count the number of tree substructures common to both parse trees.

Generally, the BOW kernel, sequence kernel and tree kernel capture the word frequency,
syntagmatic relation and syntactic structure information, respectively. The features that
are extracted from the context in which an ambiguous word occurs have different char-
acteristics and can be considered as heterogeneous, which motivates the use of multiple
kernel learning (MKL) [21-24] for classification problems. Giuliano et al. [9] first proposed
using kernel combination approach for WSD. The benefit of kernel combination is that
it allows to integrate heterogeneous sources of information in a simple and effective way.
Although it has been shown in [9] that it is quite possible to substantially improve the
disambiguation performance using a combination of more adequate kernels (each kernel
in the combination being adequate to the source of information represented by the part
of the features that the kernel uses), it used an equal weight for each kernel in the com-
bination and thus ignored the fact that different kernels associated with different input
data representations make different contributions to the WSD task. Instead, we can use
weights that reflect the importance of knowledge source that the kernel uses for disam-
biguation via MKL. In addition, since all the presented WSD systems do not exploit the
syntactic information produced by a parser, we can integrate such information by adding
a tree kernel in the framework MKL. To summarize, in this paper, we apply the newly
proposed MKL approach [24] to integrate the multiple sources of information provided by
different representations for robust WSD. MKL aims to learn an optimal combination of a
set of predefined base kernels in order to identify a good target kernel for the applications.
Since the base kernels can be built from different types of data representations, the MKL
approach has the advantages of the possibility to combine and select the most relevant
data representation in an elegant way.

The rest of this article is outlined as follows. Section 2 briefly introduces MKL in the
SVM framework. Section 3 introduces our proposed approach which includes a detailed
description of the individual kernels and how to learn the convex combination of these
basic kernels. Experimental results are reported in Section 4, followed by some concluding
remarks in Section 5.

558 L. ZHONG AND T. WANG

2. Preliminaries.

2.1. Support vector machine. Ambiguity is inherent to human language. Particularly,
word sense ambiguity is prevalent in an SVM which is a theoretically well motivated algo-
rithm developed from statistical learning theory and has shown impressive performance
in many fields [7,8]. Suppose we are given a set of labeled training samples {(xi, yi)}li=1 in
a binary classification problem, where xi ∈ X ⊂ Rn (R denotes the set of real numbers) is
the input data and yi ∈ {+1,−1} is the corresponding class label. The goal of the SVM
is to find an optimal hyperplane wTϕ(x) + b = 0 that separates the training points into
two classes with the maximal margin, where w is the normal vector of the hyperplane, b
is a bias, and ϕ is a feature map which maps xi to a high-dimensional feature space. This
hyperplane can be obtained by solving the following optimization problem

min
1

2
∥w∥2 + C

l∑
i=1

ξi

s.t. yi
(
wTϕ(xi) + b

)
≥ 1− ξi

ξi ≥ 0, i = 1, . . . , l

(1)

where ξ = (ξ1, . . . , ξl)
T is the vector of slack variables and C is the regularization pa-

rameter used to impose a trade-off between the training error and generalization. In
order to solve the SVM optimization problem, suppose αi be the Lagrange multiplier
corresponding to the i-th inequality in (1), the dual problem of (1) is shown to be

max
l∑

i=1

αi −
1

2

l∑
i=1

l∑
j=1

yiyjαiαjk(xi,xj)

s.t.
l∑

i=1

αiyi = 0,

0 ≤ αi ≤ C, i = 1, . . . , l

(2)

where k(xi,xj) = ϕ(xi) · ϕ(xj) is the kernel function which implicitly defines the feature
map ϕ. After the solution is obtained, the SVM decision function is given by

f(x) = sgn

(
l∑

i=1

αiyik(xi,x) + b

)
(3)

where the samples xi with αi > 0 are called support vectors.
For multiclass classification problems, there are several approaches available to extend

binary SVM to multiclass SVM [11,12,25]. These approaches roughly fall into two cate-
gories. The first denoted as all-in-one or single machine is to directly consider all data
in one optimization formulation. The second involves considering a decomposition of a
multiclass problem into several binary subproblems and then combining their solutions.
There are two widely used strategies to decompose a multiclass problem: one-versus-rest
(1-v-r) and one-versus-one (1-v-1). Given a problem with d classes, the 1-v-r strategy
constructs d binary SVMs, in which each of them is trained to separate one class from
the other classes, while the 1-v-1 strategy constructs d(d− 1)/2 binary SVMs, in which
each of them is trained to separate one class from another class. When a test sample
is provided, it is applied to all the binary SVMs and their outputs are combined based
on some voting techniques, such as “MaxWins” voting scheme which counts how often
each class is output by the binary SVMs and the test sample is then assigned to the most
voted class. It has been shown that when the parameters of SVM are properly tuned and
selected both approaches usually present no significant difference in terms of classification
accuracy. However, the decomposition approach is often recommended for practical use
because of conceptual simplicity and lower computational overhead.

TOWARDS WORD SENSE DISAMBIGUATION USING MULTIPLE KERNEL SVM 559

The last two decades have witnessed an explosion of the use of SVM for WSD [9,11-
14,26-30]. Among them, we highlight the following work. Cabezas et al. [26] presented a
supervised word sense tagger using SVM. Their system was designed for performing WSD
independent of the language of lexical samples provided for Senseval-2 task. Lee et al. [28]
used SVM learning and multiple knowledge sources to perform WSD for Sensenval-3 Eng-
lish lexical sample task and multilingual lexical sample task. Pahikkala et al. [29] explored
the capability of SVM for the gene versus protein name disambiguation task. Giuliano et
al. [9] presented a semi-supervised technique for WSD using SVM that exploited external
knowledge acquired in an unsupervised manner. In addition, regarding the disambigua-
tion performance, SVM has been shown to achieve the best results compared with several
supervised approaches [13,27,30].

2.2. Multiple kernel learning. Instead of formulating an optimization criterion with a
fixed kernel k, one can leave the kernel k as a combination of a set of predefined kernels,
which results in the problem of MKL [21-23]. MKL maps each sample to a multiple-
kernel-induced feature space and a linear classifier is learned in this space. The feature
mapping used in MKL takes the form of ϕ(·) = [ϕT

1 (·), . . . , ϕT
M(·)]T, which is induced by M

predefined base kernels {km(·, ·)}Mm=1 with alternative kernel forms or kernel parameters.
The linear combination of these kernels is given by

k =
M∑

m=1

µmkm (4)

where µm is the corresponding combination coefficient. Let µ = (µ1, . . . , µM)T ∈ ∆,
where ∆ is the domain of µ. By varying the constraint on µ, different MKL models can
be obtained. For example, when µ ∈ ∆ lies in a simplex, i.e.,

∆ =

{
µ : ∥µ∥1 =

M∑
m=1

µm = 1, µm ≥ 0

}
(5)

we call the L1-norm of kernel weights, and the resulting model is the L1-MKL. Most MKL
methods fall into this category. When

∆ =
{
µ : ∥µ∥p ≤ 1, p > 1, µm ≥ 0

}
(6)

we call the Lp-norm of kernel weights, and the resulting model is Lp-MKL. A special case
is the L2-norm of kernel weights and the resulting model L2-MKL.

The idea of MKL can be generally applied to many kinds of kernel methods, such as the
commonly used SVM and kernel fisher discriminant analysis (KFDA), leading to SVM-
based MKL and discriminant MKL, respectively. Our work in this paper will mainly focus
on the SVM-based MKL formulations. Like SVM, the dual problem of SVM-based MKL
can be represented as

max
l∑

i=1

αi −
1

2

l∑
i=1

l∑
j=1

yiyjαiαj

M∑
m=1

µmkm(xi,xj)

s.t.
l∑

i=1

αiyi = 0, µ ∈ ∆,

0 ≤ αi ≤ C, i = 1, . . . , l

(7)

The goal of training MKL is to learn µm, αi and b with the given M base kernels, and
the final decision function is given by

f(x) = sgn

(
l∑

i=1

αiyi

M∑
m=1

µmkm(xi,x) + b

)
(8)

560 L. ZHONG AND T. WANG

Compared with traditional kernel methods employing a fixed kernel, MKL demonstrates
flexibility in automated kernel learning and also reflects the fact that typical learning
problems often involve multiple, heterogeneous data sources. In the following, we aim at
using MKL for robust WSD, which does not only consider the uniform combination of
different kernels.

3. Word Sense Disambiguation Using Multiple Kernel Learning. In this section
we use MKL to combine heterogeneous sources of information that we found relevant for
WSD. For each of these aspects it is possible to define kernels independently.

3.1. Bag-of-words kernel. In the machine learning-based WSD systems, the features
extracted from the contexts are usually in the bag-of-words (BOW) representation which
reduces a text to a histogram of word frequencies. Formally, let t0 denote the word to be
disambiguated and x = (t−bl, . . . , t−1, t1, . . . , tbr) be the context of t0, where t−bl, . . . , t−1

are the words in the order they appear preceding t0, and correspondingly t1, . . . , tbr are
the words that follow t0 in the context. Consider that we are also given a vocabulary V
consisting of n words, which can be extracted from all the contexts in the training corpus.
The BOW model (also called vector space model, VSM) [7] of the context x is defined as
follows:

ϕ : x→ ϕ(x) = (tf(t1,x), . . . , tf(tn,x))
T ∈ Rn (9)

where tf(ti,x), 1 ≤ i ≤ n, is the frequency of the occurrence of the word ti in the context
x. If we consider the feature space defined by the VSM, the BOW kernel is given by the
inner product between the feature vectors:

kBOW(xi,xj) = ϕ(xi) · ϕ(xj) =
∑
t∈V

tf(t,xi)tf(t,xj) (10)

Note that in this case the input space is the set of contexts.
BOW model is probably one of the simplest constructions used in text processing.

Despite its ease of use, the BOW model suffers from the well-known limitation: although
the contexts are represented by the words they contain, the word positions, orders and
other grammatical information in the context are lost. In addition, semantic information
disappears as well, hence contexts sharing words that are different but semantically related
are considered as unrelated. To overcome such limitations, many researchers have explored
the extensions or improvements of the BOW kernel including word position-sensitive
kernels [31], semantic kernels [7,9,11-14] and so on.

3.2. Sequence kernel. Sequences (or strings) of symbols naturally occur in text analysis
and other areas such as bioinformatics. As far as text analysis is concerned, very often we
have to deal with the sequences: words are sequences of characters, syntagmatic relations
are established by sequences of words. In general, the strategy of modeling syntagmatic
relation is to extract bigrams and trigrams of the collocated words as features to describe
the local contexts. Focusing on WSD, most of the methods utilize a very rich feature set,
including bigrams and trigrams in the local context of the word to be disambiguated [1].
However, syntagmatic features are very difficult to be modeled, because they typically
generate huge feature spaces when extracted explicitly. In addition, non-consecutive or
shifted collocations are very hard to represent.
As an alternative, sequence kernels (or string kernels) [7,16-18] can be used to analyze

the syntagmatic relations. Rather than making use of features such as word frequencies,
sequence kernels use the number of all possible ordered subsequences contained in a text.
In general, sequence kernels count the number of (possibly non-contiguous) matching

TOWARDS WORD SENSE DISAMBIGUATION USING MULTIPLE KERNEL SVM 561

subsequences shared by two sequences. Non-contiguous occurrences are penalized ac-
cording to the number of gaps they contain. Formally, let Σ be a finite alphabet and
x = s1s2 · · · s|x| be a sequence over Σ (i.e., si ∈ Σ, 1 ≤ i ≤ |x|). Let i = [i1, i2, . . . , in],
with 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ |x|, be a subset of the indices in x, we denote the sub-
sequence si1si2 · · · sin by x[i] ∈ Σ. Note that x[i] does not necessarily form a contiguous
subsequence of x. The length spanned by x[i] in x is len(i) = in − i1 + 1. The sequence
kernel of order n for the pair of sequences x and z over Σ is defined as follows:

kn(x, z) =
∑
u∈Σn

∑
i:x[i]=u

∑
j:z[j]=u

λ
len(i)+len(j)
1 (11)

where λ1 ∈ (0, 1] is a decay factor used to penalize non-contiguous subsequences. When
λ1 = 1 there is no penalization of gaps, meaning every subsequence will contribute equally
to the kernel value whether the elements in the sequence are contiguous or not. As λ1

decreases the gap penalization increases, meaning that when λ1 → 0 the kernel will
be reduced to counting the number of consecutive subsequences. This definition is the
so-called gap-weighted subsequence kernel, which was initially introduced to compare
sequences of characters [16] and was later extended to compare sequences of words [17,18].

The basic idea behind the sequence kernel is that two sequences are similar if they
have in common many subsequences. For WSD, we restrict the generic definition of the
sequence kernel to recognize the collocations in a local context of the word to be disam-
biguated. In particular, the new kernel is defined as an up-to-n gap-weighted subsequence
kernel applied to the sequences of lemmata around the word to be disambiguated:

kseq(x, z) =
n∑

i=1

ki(x, z) (12)

This formulation allows us to estimate the number of common subsequences of lemmata
(i.e., collocations) between two samples (contexts), in order to capture the syntagmatic
similarity. This kernel depends on the parameters n (the length of the non-contiguous
subsequences) and λ1 (the decay factor). For example, when n = 2, this kernel allows us
to represent all (sparse) bigrams in the local context of a specified word.

The limitation of such sequence kernel is very conspicuous, i.e., only exact lemma-
matches contribute to the similarity. To solve this problem, two alternative soft-matching
criteria based on WordNet synonymy and domain proximity were used to improve the
kernel [9]. Both criteria are based on the assumption that every word in a sentence can
be substituted by another preserving the original meaning, if these words are paradig-
matically related (e.g., synonyms or domain related words). For example, if we consider
the terms “Ronaldo” and “football star” as equivalent, then the sentence “Ronaldo scores
the first goal” is equivalent to “The football star scores the first goal”, providing a strong
evidence to disambiguate the verb “score” in the first sentence.

As for the computational complexity, an explicit computation of (11) is unfeasible
even for small values of n. Fortunately, it can be efficiently calculated by a dynamic
programming algorithm with a complexity of o(n |x| |z|) [16]. It is worth noting that
when computing the order-n kernel kn(x, z), this algorithm computes all kernels ki(x, z)
for i < n as intermediaries, which offers the possibility to compute (12) at almost no extra
cost.

3.3. Tree kernel. A tree is defined as a connected directed graph with no cycles. We
denote trees as T1, T2, . . ., tree nodes as n1, n2, . . ., and the set of nodes in the tree Ti

as NTi
. Let F =

{
f1, f2, . . . , f|F |

}
be the set of tree fragments (substructures) and Ii(n)

an indicator function which is equal to 1 if the target fi is rooted at node n and equal

562 L. ZHONG AND T. WANG

to 0 otherwise. The main idea of tree kernels [19,20] is to compute the number of com-
mon substructures between two trees T1 and T2 without explicitly considering the whole
fragment space. Formally, the tree kernel over T1 and T2 is given by

ktree(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

Ψ(n1, n2) =
∑

n1∈NT1

∑
n2∈NT2

|F |∑
i=1

Ii(n1)Ii(n2) (13)

where the Ψ function is equal to the number of common fragments rooted in nodes n1 and
n2, and thus, depends on the fragment type. We report its algorithm for evaluation of
the number of syntactic tree fragments since the structures we here work with are parse
trees. In a parse tree, each node with its children is associated with the execution of a
grammar production rule. A syntactic tree fragment is a set of nodes and edges from the
original tree which is still a tree and with the constraint that any node must have all or
none of its children. The algorithm for efficiently computing Ψ is as follows:
Step 1. If the productions at n1 and n2 are different, then Ψ(n1, n2) = 0;
Step 2. If the productions at n1 and n2 are same, and n1 and n2 have only leaf children

(i.e., they are pre-terminal symbols), then Ψ(n1, n2) = λ2;
Step 3. If the productions at n1 and n2 are same, and n1 and n2 are not pre-terminals,

then Ψ(n1, n2) = λ2

∏nc(n1)
i=1

(
1 + Ψ

(
chi

n1
, chi

n2

))
.

nc(n1) is the number of children of n1, ch
i
n is the i-th child of node n and λ2 is a

decay factor penalizing larger structures. Note that, since the productions are same,
nc(n1) = nc(n2).

3.4. The proposed MKL approach. WSD can be viewed as a problem of classifying
each word, according to its surrounding context, to one of its senses. Therefore it is a
classification problem with a few classes, i.e., multiclass classification problem. We here
apply MKL [21-23] approach to WSD. Given the base kernels discussed above, a composite
kernel can be created as follows:

k(x,z) = µ1
kBOW(x, z)√

kBOW(x,x)kBOW(z,z)
+ µ2

kseq(x,z)√
kseq(x,x)kseq(z,z)

+ µ3
ktree(x, z)√

ktree(x,x)ktree(z,z)

(14)

where µ1+µ2+µ3 = 1, µi ≥ 0 (i = 1, 2, 3). This model integrates essentially the multiple
sources of information provided by different context representations. In some sense, the
parameters µi (kernel weights) impose a tradeoff among the word frequency, syntagmatic
relation and syntactic structure information of contexts for WSD. Moreover, since kernel
weights reflect the importance of the different knowledge sources for WSD, this composite
kernel allows us to introduce a priori knowledge in the WSD systems by designing specific
µi and to extract some useful information from the best tuned µi parameters. In addition,
due to the different scales of the values of the three individual kernels, they are normalized
before combination. This can avoid one kernel value being overwhelmed by that of another
one. For example, for the sequence kernel, since the number of subsequences associated
with a sequence increases with its length, the value of the kernel is highly dependent on
the size of the sequences to be compared. In order to compensate for this size effect, it is
commonplace to consider the normalized version of the kernel.
MKL approaches can be generally classified into two types: one-stage MKL and two-

stage MKL [21-23]. The one-stage MKL algorithms learn both the optimal weights for
kernel combination and the SVM solution by solving a joint optimization problem while
two-stage MKL algorithms first learn the optimal kernel weights according to certain

TOWARDS WORD SENSE DISAMBIGUATION USING MULTIPLE KERNEL SVM 563

criteria, then applies the learned optimal kernel to train a kernel classifier. Compared with
one-stage MKL algorithms, two-stage MKL algorithms generally achieve comparable or
even better classification performance, while incurring much less computational cost. In
our recently published work [24], we presented an effective two-stage MKL algorithm based
on the notion of Hilbert-Schmidt independence criterion (HSIC) Lasso [32]. In discussing
the connection between MKL and HSIC Lasso, we found that the proposed algorithm not
only has a clear statistical interpretation that minimum redundant kernels with maximum
dependence on output labels are found and combined, but also can efficiently compute
the global optimal solution by solving a Lasso optimization problem. We here apply this
two-stage MKL approach to determine the kernel weights, i.e., parameters µi, and train
the SVM classifier using the learned composite kernel for robust WSD.

Mathematically, let L̄ = HLH and K̄ = HKH, where K, L and H are the kernel
matrix for input data which is defined as Kij = k(xi, xj), kernel matrix for output labels
which is defined as L = yyT (y = (y1, . . . , yl)

T), and centering matrix which is defined
as H = I − eeT

/
l (I is the identity matrix and e = (1, . . . , 1)T), respectively. The

combination coefficient µ can be estimated by the HSIC Lasso:

min
1

2

∥∥∥∥L̄− M∑
m=1

µmK̄m

∥∥∥∥2
F

+ λ3∥µ∥1
s.t. µ1, . . . , µM ≥ 0

(15)

where ∥·∥F is the Frobenius norm and λ3 > 0 is the regularization parameter. We sketch
the overall WSD procedure using MKL in Algorithm 1, where the centered kernel matrix
can be calculated by

K̄ij = Kij −
1

l

l∑
i=1

Kij −
1

l

l∑
j=1

Kij +
1

l2

l∑
i=1

l∑
j=1

Kij (16)

Readers can refer to Reference [24] for detailed information.

Algorithm 1. WSD using MKL

Input: Data {(xi, yi)}li=1, base kernels

{km(·, ·)}3m=1 =

{
kBOW(x, z)√

kBOW(x,x)kBOW(z, z)
,

kseq(x, z)√
kseq(x,x)kseq(z, z)

,
ktree(x, z)√

ktree(x,x)ktree(z, z)

}
,

and regularization parameters C and λ3.

Output: SVM classifier f(x).

1: Initialize µ = e/3.

2: Calculate the kernel matrix L = yyT.

3: Calculate the centered kernel matrices L̄ and
{
K̄m

}3
m=1

.

4: Obtain µ by solving (15).

5: Normalize each element of µ as µm ← µm

/∑3
m=1 µm.

6: Combine the kernel matrices using the weight µ and train an SVM classifier.

4. Experimental Evaluation. This experiment evaluates the performance of the pro-
posed method with several Senseval/Semeval1 benchmark examples. Senseval/Semeval is
an international organization devoted to the evaluation of WSD systems. We consider
four kernels, i.e., BOW kernel, sequence kernel, tree kernel, and the proposed composite

1http://www.senseval.org/

564 L. ZHONG AND T. WANG

kernel for comparison. These kernels are embedded in the SVM classifier individually.
Besides, we use the MFS (most frequent sense) method as the baseline model, which
selects the most frequent sense in the training data as the answer, independently of the
contexts of the ambiguous word.

4.1. Experimental setup. We select the data sets for four words, namely interest, line,
hard and serve, which have been used in numerous comparative studies of WSD. Tables
1-4 show the detailed descriptions and distributions of different senses of these four words.
The interest data [33] consists of 2368 instances where the noun interest is used in one of
six senses taken from the Longman Dictionary of Contemporary English (LDOCE). The
instances are extracted from the part of speech tagged subset of the Penn Treebank Wall
Street Journal Corpus (ACL/DCI version). The line data [34] consists of 4147 instances
where the noun line is used in one of six possible WordNet senses. This data was extracted
from the 1987-1989 Wall Street Journal (WSJ) corpus and the American Printing House
for the Blind (APHB) corpus. The distribution of senses is somewhat skewed with more
than 50% of the instances used in the product sense while all the other instances more or
less equally distributed among the other five senses. The hard data [35] consists of 4333
instances taken from the San Jose Mercury News Corpus (SJM) and are annotated with
one of three senses of the adjective hard, from WordNet. The distribution of instances is
skewed with almost 80% of the instances used in the not easy-difficult sense. The serve
data [35] consists of 4378 instances with the verb serve as the target word. They are
annotated with one of four senses from WordNet. Like line data it was created from the
WSJ and APHB corpora.

Table 1. Description and distribution of senses of interest

Sense Sense tag frequency Percentage (%)
readiness to give attention 361 15.24
quality of causing attention to be given to 11 0.46
activity, etc. that one gives attention to 66 2.79
advantage, advancement or favor 178 7.52
a share in a company or business 500 21.11
money paid for the use of money 1252 52.87

Table 2. Description and distribution of senses of line

Sense Sense tag frequency Percentage (%)
cord 373 8.99
division 374 9.02
formation 349 8.42
phone 429 10.34
product 2218 53.48
text 404 9.74

Table 3. Description and distribution of senses of hard

Sense Sense tag frequency Percentage (%)
not easy (difficult) 3455 79.74
not soft (metaphoric) 502 11.59
not soft (physical) 376 8.68

TOWARDS WORD SENSE DISAMBIGUATION USING MULTIPLE KERNEL SVM 565

Table 4. Description and distribution of senses of serve

Sense Sense tag frequency Percentage (%)
supply with food 1814 41.43
hold an office 1272 29.05
function as something 853 19.48
provide a service 439 10.03

For each data set, we partition it into a training set and a test set: 70% of the data set
is used for training and the rest for prediction. Stratified sampling is used to preserve the
ratio of different classes in the train and test files. The data set was preprocessed using
the text mining infrastructure (TMI) [36]. The preprocessing includes sentence boundary
determination, stop word removal and stemming. We used the stemmer and stop word list
embedded in the TMI. After the proper preprocessing, we used the LIBSVM package2

to train and test the SVM model. We adopted the following parameterization of the
considered kernels:

• There is no parameter to tune for the BOW kernel. It is evident that the BOW kernel
is essentially a linear kernel. In fact, in WSD and text categorization applications, the
number of features of a data set is usually large, even much larger than the number
of instances. In this case, one may not need to map data to a higher dimensional
space since the nonlinear mapping does not improve the performance [37].
• The gap penalization factor λ1 and length n of the subsequences in sequence kernel
are taken from {0.1, 0.5, 1.0} and {2, 3}, respectively. Recall from Section 3.2 that
the smaller the value of λ1, the bigger the gap penalization. As a result, when λ1 → 0,
gap-weighted subsequence kernel reduces to kernel based on contiguous subsequences.
In practice, we do not observe significant variations when λ1 decreases below 0.1.
• The decay factor λ2 for tree kernel is taken from {0.001, 0.01, 0.1, 0.5}. Since a
parse tree is an ordered tree, each document, that is a sequence of sentences, is
represented as an ordered tree of ordered trees. Thus a document can be a tree
where each root’s child is the parse tree of a sentence and the leaves are its word’s
lemma. Nevertheless, we do not use the complete parse tree, but only the nodes of
the following word types: noun, proper noun, adjective, verb, pronoun and adverb.
• The regularization parameter λ3 for the proposed MKL is taken from {10−2, 10−1, . . .,
102}.

In addition, the parameters of all kernels as well as the SVM parameter C, which is taken
from {10−2, 10−1, . . . , 102}, are optimized by 5-fold cross-validation on the training set.
For example, for the proposed MKL approach, we perform 5-fold cross-validation by grid-
search over two dimensions, i.e., C = {10−2, 100, . . . , 102} and λ3 = {10−2, 10−1, . . . , 102}.

4.2. Results and discussion. We measure the classification performance using the F1

score, which is a popular measure for comparing performances of different algorithms
typically on the data with skewed class distribution. We recall that, given a confusion
matrix for a class c such as the one in Table 5, the precision of a classifier, for the class
c, is the ratio of the number of texts correctly assigned to c to the total number texts
assigned to c. The recall is the ratio of the number of texts correctly assigned to c to the
total number of texts belonging to c. The F1 score is the harmonic mean of the precision

2http://www.csie.ntu.edu.tw/∼cjlin/libsvm

566 L. ZHONG AND T. WANG

and the recall. Formally, these measures are shown as follows:

Precision(c) =
TPc

TPc + FPc

(17)

Recall(c) =
TPc

TPc + FNc

(18)

F1(c) =
2 ∗ Precision(c) ∗ Recall(c)
Precision(c) + Recall(c)

(19)

For multiclass classification problems, the micro-average and the macro-average are
used to evaluate the classifier. Table 6 gives the formulae for the precision and recall.
According to the kind of average used, the global F1 score is then given by

F1 =
2 ∗ Precision ∗ Recall
Precision + Recall

(20)

Table 5. Confusion matrix for class c

Positive Negative
Predicted positive TPc FPc

Predicted negative FNc TNc

Table 6. Micro-average and macro-average for d classes

Micro Macro

Precision

∑
c TPc∑

c (TPc + FPc)

∑
c precision(c)

d

Recall

∑
c TPc∑

c (TPc + FNc)

∑
c recall(c)

d

The average classification results in terms of the micro- and macro-F1 over 10 trials are
summarized in Tables 7 and 8, respectively. Figures 1 and 2 provide more straightforward
illustration of performance comparison using F1 measures with different methods. The
bold numbers in Tables 7 and 8 denote the best performance of these methods on each
data set. To conduct a rigorous comparison, the paired t-test [38] is performed. The paired
t-test is used to analyze whether the difference between two compared algorithms on one
data set is significant. The p-value of the paired t-test represents the probability that
two sets of compared results come from distributions with an equal mean. A p-value of
0.05 is considered to be statistically significant. The win-tie-loss (W-T-L) summarizations
based on t-test are attached at the bottoms of Tables 7 and 8, where the proposed WSD
using MKL (denoted by WSD-MKL) and other methods are respectively compared. In
comparing two algorithms such as algorithm I versus algorithm II, a win or loss means
that algorithm I is better or worse than algorithm II on a data set. A tie means that both
algorithms achieve the same performance.
From these tables and figures, we find that all kernels produce significantly better

classification performances than the MFS baseline. More importantly, for all data sets
we see that the proposed WSD-MKL achieves significant performance improvement over
the other three kernels. Take the interest data set for example: WSD-MKL achieves the
micro-averaged F1 value of 87.83% whereas the BOW kernel, sequence kernel, and tree
kernel achieve that of 86.00%, 85.19%, and 84.23%, respectively. WSD-MKL achieves

TOWARDS WORD SENSE DISAMBIGUATION USING MULTIPLE KERNEL SVM 567

Table 7. Micro-averaged F1 values for the considered five methods

Data set
Micro-F1 (%)

MFS BOW kernel Sequence kernel Tree kernel WSD-MKL
interest 52.87 86.00 85.19 84.23 87.83
line 53.48 82.94 80.93 79.70 84.72
hard 79.74 83.70 83.86 82.54 85.81
serve 41.43 86.29 85.74 84.63 88.96
W-T-L 4-0-0 4-0-0 4-0-0 4-0-0 –

Table 8. Macro-averaged F1 values for the considered five methods

Data set
Macro-F1 (%)

MFS BOW kernel Sequence kernel Tree kernel WSD-MKL
interest 11.53 64.21 62.32 61.73 72.63
line 11.62 75.21 74.86 73.10 78.44
hard 14.87 33.13 33.75 31.48 35.86
serve 9.76 55.21 54.93 53.64 60.47
W-T-L 4-0-0 4-0-0 4-0-0 4-0-0 –

Figure 1. Comparison of micro-averaged F1 using different methods

the macro-averaged F1 value of 72.63% with relative improvements of 13.11% ((72.63 −
64.21)/64.21), 16.54% ((72.63 − 62.32)/62.32), and 17.66% ((72.63 − 61.73)/61.73) over
the BOW kernel, sequence kernel, and tree kernel, respectively. This indicates that the
BOW representation, sequence representation and syntactic-tree representation of the
context of the word to be disambiguation are complementary and the proposed WSD-
MKL approach can well integrate them. Furthermore, we find that the tree kernel is
consistently outperformed by other two kernels (BOW kernel and sequence kernel). This
implies that, compared with the word frequency and syntagmatic relation information,
the syntactic structure is not competitive for WSD.

It is also worth noting that, due to the severely skewed class distribution of the data
sets, for all methods the micro-averaged F1 values are consistently higher than the macro-
averaged F1 values. Conceptually, the micro-averaged F1 will not be affected by the small

568 L. ZHONG AND T. WANG

Figure 2. Comparison of macro-averaged F1 using different methods

classes since it gives an equal weight to all instances. On the contrary, the macro-averaged
F1 is an average over all the classes so the small classes will drastically affect the value.
In summary, compared with the single kernel SVM, the proposed multiple kernel SVM

can significantly improve the performance of WSD tasks. We attribute this to the fact
that, as a typical learning problem, WSD often involves multiple, heterogeneous data
sources or representations and MKL can automatically combine and learn the most rel-
evant representations for disambiguation. Furthermore, for every application of SVM,
users have to choose which kernel to use and sometimes even have to design their own
kernels. Is it possible to alleviate choosing kernels or designing specialized kernels? It is
evident that MKL is a great step towards that solution.

5. Conclusions. We have presented a WSD method based on the MKL framework,
which first combines multiple and heterogeneous sources of information in a global ker-
nel function and then trains an SVM classifier using the obtained global kernel. This
MKL approach can well explore and combine the word frequency, syntagmatic relation
and syntactic structure information, and therefore outperforms the kernels that take into
account the word frequency, syntagmatic relation or syntactic structure information in-
dividually. To our knowledge, no other work has so far combined the multiple properties
of context in such a principled way for WSD. Possible extensions of this work include the
theoretical verification of the superior performance of the proposed approach, conducting
more experiments on the lexical-sample and all-words tasks, as well as extending to other
semantic analysis tasks to further verify the effectiveness of the proposed approach.

Acknowledgment. This work is partially supported by the National Natural Science
Foundation of China (No. 61966002) and the Natural Science Foundation of Jiangxi
Province of China (No. 20192BAB207016). The authors also gratefully acknowledge the
helpful comments and suggestions of the reviewers, which have improved the presentation.

REFERENCES

[1] R. Navigli, Word sense disambiguation: A survey, ACM Computing Surveys, vol.41, no.2, pp.1-69,
2009.

[2] E. Agirre, O. L. Lacalle and A. Soroa, Random walks for knowledge-based word sense disambiguation,
Computational Linguistics, vol.40, no.1, pp.57-84, 2014.

TOWARDS WORD SENSE DISAMBIGUATION USING MULTIPLE KERNEL SVM 569

[3] D. Y. Turdakov, Word sense disambiguation methods, Programming and Computer Software, vol.36,
no.6, pp.309-326, 2010.

[4] B. Krawczyk and B. T. McInnes, Local ensemble learning from imbalanced and noisy data for word
sense disambiguation, Pattern Recognition, vol.78, pp.103-119, 2018.

[5] R. Navigli and M. Lapata, An experimental study of graph connectivity for unsupervised word sense
disambiguation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, no.4,
pp.678-692, 2010.

[6] E. A. Corrêa Jr, A. A. Lopes and D. R. Amancio, Word sense disambiguation: A complex network
approach, Information Sciences, vols.442-443, pp.103-113, 2018.

[7] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University
Press, New York, USA, 2004.

[8] Z. Wang, Q. Zeng and M. Lv, Modeling the external truck arrivals in container terminals based on
DBN and SVM, ICIC Express Letters, vol.12, no.10, pp.1033-1040, 2018.

[9] C. Giuliano, A. Gliozzo and C. Strapparava, Kernel methods for minimally supervised WSD, Com-
putational Linguistics, vol.35, no.4, pp.513-528, 2009.

[10] T. Pahikkala, S. Pyysalo, J. Boberg, J. Järvinen and T. Salakoski, Matrix representations, linear
transformations, and kernels for disambiguation in natural language, Machine Learning, vol.74, no.2,
pp.133-158, 2009.

[11] T. Wang, J. Rao and Q. Hu, Supervised word sense disambiguation using semantic diffusion kernel,
Engineering Applications of Artificial Intelligence, vol.27, pp.167-174, 2014.

[12] T. Wang, W. Li, F. Liu and J. Hua, Sprinkled semantic diffusion kernel for word sense disambigua-
tion, Engineering Applications of Artificial Intelligence, vol.64, pp.43-51, 2017.

[13] X. Li, S. Qing, H. Zhang, T. Wang and H. Yang, Kernel methods for word sense disambiguation,
Artificial Intelligence Review, vol.46, no.1, pp.41-58, 2016.

[14] W. Zhu, Semi-supervised word sense disambiguation using von Neumann kernel, International Jour-
nal of Innovative Computing, Information and Control, vol.13, no.2, pp.695-701, 2017.

[15] T. Wang and W. Li, Kernel learning and optimization with Hilbert-Schmidt independence criterion,
International Journal of Machine Learning and Cybernetics, vol.9, no.10, pp.1707-1717, 2018.

[16] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini and C. Watkins, Text classification using
string kernels, Journal of Machine Learning Research, vol.2, pp.419-444, 2002.

[17] N. Cancedda, E. Gaussier, C. Goutte and J.-M. Renders, Word-sequences kernels, Journal of Machine
Learning Research, vol.3, pp.1059-1082, 2003.

[18] N. Cancedda and P. Mahé, Factored sequence kernels, Neurocomputing, vol.72, nos.7-9, pp.1407-1413,
2009.

[19] S. Bloehdorn and A. Moschitti, Combined syntactic and semantic kernels for text classification, Proc.
of the 29th European Conference on Information Retrieval, Rome, Italy, pp.307-318, 2007.

[20] T. Goncalves and P. Quaresma, Text classification using tree kernels and linguistic information,
Proc. of the 7th International Conference on Machine Learning and Applications, San Diego, USA,
pp.763-768, 2008.

[21] M. Gönen and E. Alpayın, Multiple kernel learning algorithms, Journal of Machine Learning Re-
search, vol.12, pp.2211-2268, 2011.

[22] S. S. Bucak, R. Jin and A. K. Jain, Multiple kernel learning for visual object recognition: A review,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, no.7, pp.1354-1369, 2014.

[23] Y. Gu, J. Chanussot, X. Jia and J. A. Benediktsson, Multiple kernel learning for hyperspectral
image classification: A review, IEEE Transactions on Geoscience and Remote Sensing, vol.55, no.11,
pp.6547-6565, 2017.

[24] T. Wang and X. Tu, Multiple kernel learning using nonlinear Lasso, IEEJ Transactions on Electrical
and Electronic Engineering, vol.14, no.5, pp.760-767, 2019.

[25] C. W. Hsu and C. J. Lin, A comparison of methods for multiclass support vector machines, IEEE
Transactions on Neural Networks, vol.13, no.2, pp.415-425, 2002.

[26] C. Cabezas, P. Resnik and J. Stevens, Supervised sense tagging using support vector machines, Proc.
of the 2nd International Workshop on Evaluating Word Sense Disambiguation Systems, Toulouse,
France, pp.59-62, 2001.

[27] Y. K. Lee and H. T. Ng, An empirical evaluation of knowledge sources and learning algorithms
for word sense disambiguation, Proc. of the Conference on Empirical Methods in Natural Language
Processing, Philadelphia, USA, pp.41-48, 2002.

570 L. ZHONG AND T. WANG

[28] Y. K. Lee, H. T. Ng and T. K. Chia, Supervised word sense disambiguation with support vector
machines and multiple knowledge sources, Proc. of the 3rd International Workshop on the Evaluation
of Systems for the Semantic Analysis of Text, Barcelona, Spain, pp.137-140, 2004.

[29] T. Pahikkala, F. Ginter, J. Boberg, J. Järvinen and T. Salakoski, Contextual weighting for support
vector machines in literature mining: An application to gene versus protein name disambiguation,
BMC Bioinformatics, vol.6, no.1, pp.157-168, 2005.

[30] Z. Zhong and H. T. Ng, It makes sense: A wide-coverage word sense disambiguation system for free
text, Proc. of the ACL System Demonstrations, Uppsala, Sweden, pp.78-83, 2010.

[31] T. Pahikkala, S. Pyysalo, F. Ginter, J. Boberg, J. Järvinen and T. Salakoski, Kernels incorporating
word positional information in natural language disambiguation tasks, Proc. of the 18th International
Florida Artificial Intelligence Research Society Conference, Menlo Park, USA, pp.442-447, 2005.

[32] M. Yamada, W. Jitkrittum, L. Sigal, E. P. Xing and M. Sugiyama, High-dimensional feature selection
by feature-wise kernelized Lasso, Neural Computation, vol.26, no.1, pp.185-207, 2014.

[33] R. F. Bruce and J. Wiebe, Word-sense disambiguation using decomposable models, Proc. of the
32nd Annual Meeting of the Association for Computational Linguistics, Las Cruces, USA, pp.139-
146, 1994.

[34] C. Leacock, G. Towell and E. Voorhees, Corpus-based statistical sense resolution, Proc. of the ARPA
Workshop on Human Language Technology, Plainsboro, USA, pp.260-265, 1993.

[35] C. Leacock, G. A. Miller and M. Chodorow, Using corpus statistics and WordNet relations for sense
identification, Computational Linguistics, vol.24, no.1, pp.147-165, 1998.

[36] L. E. Holzman, T. A. Fisher, L. M. Galitsky, A. Kontostathis and W. M. Pottenger, A software
infrastructure for research in textual data mining, International Journal on Artificial Intelligence
Tools, vol.13, no.4, pp.829-849, 2004.

[37] C. W. Hsu, C. C. Chang and C. J. Lin, A practical guide to support vector classification, Technical
Report, Department of Computer Science, National Taiwan University, 2003.

[38] J. Demšar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning
Research, vol.7, pp.1-30, 2006.

