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Abstract. John H. Conway (1937-2020) has introduced a series of cellular automa-
ta (CA) models to demonstrate that simple rules can lead to very complex phenomena.
Game of Life (GoL) is one of the most renowned CA models invented by Conway in
1970’s. In fact, GoL is a ‘game’ without players, by which the spread of artificial life
on 2-dimensional plane under periodic boundary conditions is progressively simulated.
The present study shows that GoL can be remodeled as a parameter-adjustable CA-based
logistic model applicable for simulating the population dynamics of organisms, by empha-
sizing the intrinsic modes of density effects found in original GoL which are equivalent
to the logistic and Allee effects observed in population dynamics in living organisms. The
strategy taken was to design a novel Hill-type density-responsive algorithm functioning
behind the actions of the logistic CA model extended from GoL. Lastly, the growth curves
simulated by the modified GoL and logistic model were compared to clarify that the growth
patterns in GoL obey the logistic growth prediction under strong influence of carrying ca-
pacity, but the harm by low density could be overcome by local configuration of live cells.
Keywords: Allee effect, Cellular automata, Game of Life, Hill equation, Logistic model

1. Introduction. In April, 2020, John H. Conway (1937-2020), a British mathematician
known for his active works in the theory of finite groups, knot theory, number theory,
combinatorial game theory and coding theory, has passed away due to compilations from
novel corona virus [1]. In 1970’s, Conway introduced a model of cellular automata (CA)
to demonstrate that simple rules can lead to a series of very complex behaviors [2,3].
Amongst his works on CA, Game of Life (GoL) became the most renowned and the
most studied automaton [4-7]. From the early days, GoL has attracted the attention of
ecologists [8], biologists [9], physicists [7,10] and information scientists [11]. To date, a
number of works have been dedicated to linking the phenomena in biological system such
as population dynamics with CA models including GoL [12].

The group of the author has previously demonstrated that the behaviors of living plants
and microorganisms in response to external stimuli can be expressed as the modes of au-
tomata by defining the states and the transition functions within these natural automata
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[13-15]. Briefly, some paramecium species [14,15], living plants and plant cells [13], or
plant-derived molecules [13,16,17] capable of environmental sensing were analyzed and
classified as natural sequential machines (such as Mealy and Moore machines) or finite
state automata, based on the assumption that the chemical and biological basis could be
the key component of natural computing approaches. By observing these living organ-
isms (as natural automata), after defining the modes of actions, the similarity between
the computational data processing and the biological decision-making processes without
the need for brains could be elucidated. Since the behavior of living organisms can be
expressed as automata, CA models such as GoL might be naturally applied for simulating
the population dynamics of living organisms.
In fact, every algorithm in CA must be backed by mathematical structure(s), and

the mathematical model applied in the recently performed work by Ibrahimi et al. [7],
focusing on the GoL’s nature as CA, was the logistic map model which was developed
and popularized since the work of May [18] based on the discrete-time demographic model
highly analogous to the classical logistic equation [19,20]. Generally, the logistic map can
be expressed by Equation (1).

xn+1 = rxn(1− xn) (1)

where the parameter r (representing the rate of intrinsic increase) discretely determines
the state of xn which ranges between 0 and 1 representing the ratio of existing population
to the maximum possible population [18]. As inspired by the above-mentioned work by
Ibrahimi et al. [7] rebuilding the GoL as a logistic map-based CA model, here the author
attempted to review and remodel the GoL as the parameter-adjustable logistic model
applicable for simulating the ecological population dynamics for living organisms which
are continuously challenged by the high- and low-density pressures, known to involve two
distinct parameters, carrying capacity (K) and Allee threshold (A), respectively.

2. Theoretical Background and Methods.

2.1. Design of the study. This section for theoretical background and methods con-
sists of three topics. Firstly, defined modes and mathematical features of original GoL are
described (see Section 2.2). As the second topic, the author describes the mathematical
background of the logistic equations and Hill’s equation, which are basis for ecological
population dynamics and biochemical kinetics, respectively (see Section 2.3). In the de-
scription of the logistic models, strong emphasis was made for comparison of density effects
in GoL and logistic population dynamics, by focusing on two parameters, namely Allee
threshold (A) determining the low-density effect (known as Allee effect) and high-density
limit known as carrying capacity (K) lowering the rate growth as organism approaches
the upper-density limit. By aiming to confer the density-responsive behaviors to GoL, a
novel Hill-type density-responsive function was chosen for substituting the logistic core
algorithm behind the actions of our logistic CA model extended from GoL.
In the last sub-section (see Section 2.4), an attempt for simulating the consequence of

modified GoL equipped with Hill-type CA invoking the altered A and K for decision-
making is described.

2.2. Cellular automata (CA) and Game of Life (GoL). The automata theory is the
mathematical study of abstract machines which is commonly handled in the theoretical
computer science and in a wide-variety of interdisciplinary fields combining the natural
sciences and the theoretical computer science [13].
In CA models, two types of neighborhood are known. The von Neumann neighborhood

is composed of a central cell and its four adjacent cells on a two-dimensional (2D) square
lattice [21]. The Moore neighborhood series form a group of neighborhoods with distinct
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shapes (square or cube), dimensionality (D), and radius (φ) [22]. The most common
example is composed of a central cell and its eight surrounding cells (D = 2, φ = 1)
while its expansion with larger neighborhoods (e.g., D = 2, φ = 2, 3, and so on) could be
defined if required [7].

According to definition, GoL invokes an outer totalistic model with simple rules [17,23],
in each cell on the 2D square grids designed to stay in either of two states, dead or alive [7].
In fact, GoL is the “game” progressively simulating the spread of live cell population with
time. The extent of live cell occupancy within the neighboring blocks locally determines
the thriving behavior of artificial life in a discrete black-and-white (all-or-nothing) manner.

At each generation (time step) in the system, the states of all the cells are synchronously
updated according to the rules (1) to (4) defined as below (as summarized in Figure 1)
[7].

Rule (1): Any live cell with fewer than two in its Moore neighborhood will die (decay,
as shown in Figure 2, case 1).

Rule (2): Any central live cell with more than three live surrounding cells in its Moore
neighborhood will decay in the upcoming generation.

Rule (3): A dead cell needs exactly three living neighbors to re-grow in the next gen-
eration.

Figure 1. Simple rules in GoL determining the fate of cells according to
the state of cellular occupancy: (A) the rule for empty cells; (B) the rule
for occupied cells
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Figure 2. Typical growth patterns in GoL affected by initial arrangements
of live cells. Here, the behavior of CA on a 2D 8 × 8 square lattice under
periodic boundary conditions is simulated.

Rule (4): The live cells will remain alive (stabilized) in the upcoming generation only
if they have two or three living neighbors.
Figure 2 catalogues the typical growth patterns initiated by different sets of cellular

allocation on the 8× 8 2D plane under the periodic boundary conditions. In the case 1,
the live cell population (initially consisted with only 2 live cells) is exposed to immediate
decay; the case 2 was shown to be trapped in the loop endlessly repeating two alternating
states; in the cases 3 and 4, the games were arrested at stabilized states only after 3 and 5
generations, respectively; in the case 5, the population was again arrested at a stabilized
state within 8 generations.
It seems that the growth of cells in original GoL is strongly suppressed under kind of

high and low-density effects (as designed to allow no explosive growth). Therefore, some
modifications in algorithm are required to allow the microbial exprosive growth through
the mode of growth which is basically insensitive to the harm by low density condition
unless genetically modified [24,25]. In fact, the aim of the present study is to develop a
GoL-extended growth-simulating model showing enhanced growth, which is compatible
with the growth-simulating logistic mathematical models.
Recently, Ibrahimi et al. [7] have demonstrated a deterministic phase transition and

self-organization in Conway’s GoL expressed as a logistic CA in which a single parameter
tunes the dynamics of CA, consequently expanding their discrete state space into a Cantor
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set. Their attempt may provide a potent platform for further studies on various emergent
phenomena such as deterministic phase transitions, pattern formation, autocatalysis, and
self-organization.

2.3. Mathematical background for combining the logistic equations and Hill’s
equation. Nowadays, logistic models are applied to a wide variety of cases in interdis-
ciplinary fields, chiefly statistics, ecology, demography, and biological mathematics all
focusing on the population dynamics [19], as the original studies emerged out through
the data-based microbiological [26] and demographical [27] studies. In ecology and pop-
ulation biology, logistic equation and its derivatives are widely applied for simulating the
population size or density [25] and the individual size [20] of living organisms.

After formalization of logistic equation by pioneering scholars [28,29], the rate of in-
trinsic increase (r) and the carrying capacity (K) were defined as key factors determining
the growth of population size (N), as shown in Equation (2).

dN

dt
= rN

(
K −N

K

)
(2)

In addition to the upper limit of population growth defined by K, it is assumed that
there must be the lower threshold of population density, defined as Allee threshold (A).
These two distinct modes of population density effects under K and A, known as logistic
effect and Allee effect, respectively, have been observed in a large biological spectrum cov-
ering most organisms with minor exceptions such as the lack of A in plants and bacterial
species [24,25,30,31].

By combining the above-mentioned pair of distinct density effects, some different varia-
tions of mathematical expressions (Equations (3)-(7)) have been proposed as listed below
[25,32-34].

dN

dt
= rN

(
K −N

K

)(
N − A

A

)
(3) [33, etc.]

dN

dt
= rN

(
K −N

K

)(
N − A

K

)
(4) [32, etc.]

In these equations, the extent of Allee effect largely differs, for instance, Equations (3)
and (4) are known to express ‘strong’ and ‘weak and/or flexible’ Allee effects, respective-
ly. Interestingly, an equation capable of expressing the Allee effects without setting the
threshold (A) can be derived (Equation (5)), by completely shrinking the size of A in the
flexible equation (Equation (4)) down to A = 0.

dN

dt
=

rN2

K2
(K −N) (5) [32, etc.]

Recently, the author made further arrangements of the Allee effect model lacking A
value [25]. In order to invoke higher generality to the model, the exponent in Equation
(5) (fixed as 2) was replaced with the flexible exponent α (to be either an integer or a
non-integer) (Equation (6)).

dN

dt
=

rNα

Kα
(K −N) (6) [25]

The resultant Equation (6) allows us to perform expanded application of the Allee-type
of density effect without defining Allee threshold as similarly to Equation (5). In addition,
Equation (6) enables the attenuation of the extent of Allee effect from weak to strong by
freely altering the size of the exponent. By fixing the exponent at 1, this equation becomes
identical to Equation (2), consequently losing the room for Allee effect.
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Finally, further generality was conferred to the model by reintroducing the room for
given A (Equation (7)). By freely modulating the size of r, K, α and A in Equation (7),
any growth pattern can be effectively reproduced. Recently, the usefulness of Equation
(7) was demonstrated by simulating the population dynamics in some density-sensitively
growing photosynthetic organisms (Paramecium bursaria and Synechocystis spp. PCC
6803) [25].

dN

dt
=

rNα

Kα+1
(K −N)(N − A) (7) [25]

These logistic models powerfully simulate the growth of organisms in a macroscopic
manner by assuming that the whole microbial population senses and responds to its own
size state (density). In contrast, each microbial cell composing the population may sense
the local density in a microscopic manner through interactions with neighboring cells.
Therefore, it is natural to infer that the series of decisions made at individual cellular
level orchestrate the growing patterns in the whole population. From this point of view,
we need to choose a simple and proper mathematical algorithm to be introduced into CA
in the modified GoL, which must be practically equivalent to the logistic Allee models.
One of the candidate equations to be applied is Hill’s equation (Equation (8)) which

highly resembles the Michaelis-Menten equation (Equation (9)), one of the most renowned
biochemical formulae expressing the velocity (V ) of enzyme reaction as a function of
substrate concentration ([S]) with a pair of regulatory parameter and constant, namely,
Vmax, the maximal rate of reaction and Michaelis constant (Km), the constant for [S]
at which a half maximal velocity can be manifested. Previously, the author performed a
historical review tracing the origins of, and developments of Hill’s equation and Michaelis-
Menten equation applied in various areas [19].
In 1910, three years prior to the proposal of Michaelis-Menten equation, Hill’s equa-

tion was originally proposed by A. V. Hill in order to describe the equilibrium relation-
ship between O2 tension and the saturation of hemoglobin [19]. Independently, in 1913,
Michaelis-Menten equation was proposed specifically for enzyme reaction. Hill’s equation
can be generalized as the output y as a function of x (Equation (8)) [19], where ymax, c
and α stand for maximal output, the constant allowing 1/2 ymax, and Hill’s coefficient
determining the steepness of the curve, respectively.
Obviously, Michaelis-Menten equation (Equation (9)) can be considered to be a specific

derivative of Hill’s equation (Equation (8)) where the flexible exponent known as Hill’s
coefficient α is fixed to be 1 (thus, omitted).

y =
ymaxx

α

cα + xα
(8)

V =
Vmax[S]

Km + [S]
(9)

Today, Hill’s equation is widely applied not only to bio-medical and pharmacological
studies, but also in a variety of basic and applied eco-physiological fields covering photo-
synthesis [35] and microbial viability [19]; and even in a field of informatics, especially for
probabilistic estimation and calculation of Shannon’s entropy [36].
It has been previously demonstrated that the time-dependent growth curves simulated

by conventional logistic equation (Equation (2)) for given microorganisms such as parame-
cia, can be mimicked or reproduced by a Hill-type equation expressed as a function of
time as in Equation (10) [19].

y =
ymaxt

α

cα + tα
(10) [19]
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In fact, Equation (10) can be the expresses for a wide-variety of biological phenomena of
interest (y) as the function of time (t) under the controls by the constant (c) equivalent to
Michaelis constant modulating the timing of reaction attaining 1/2 ymax, and the exponent
α modifying the steepness of the progress.

Here, a novel set of Hill’s derivatives designed to reproduce the density-sensitive be-
havior of CA in GoL is newly proposed, by introducing the values equivalent to A and K
(Equation (11)).

G =
dα

Aα + dα
− dα

Kα + dα
(11)

where growth decision (G) by CA can be expressed as a combined function of the live cell
density (d) in the neighboring blocks (Moore neighborhood), under the influence of two
types of density thresholds (A and K) and Hill’s coefficient (α).

2.4. Intrinsic density effects programmed in GoL. As shown in Figure 3(A), the
lower and upper thresholds equivalent to A and K corresponding to the lower and higher
density effects can be found in conventional GoL. Note that GoL apparently employed
two distinct K equivalents, designated as Kg and Ks, corresponding to the upper density
limits in the neighborhood for newly inducing the growth in unoccupied cell (Kg) and for
conferring the stability (or maintenance) to the occupied cells (Ks), respectively. In the

Figure 3. The parameters equivalent to A and K corresponding to the
lower and higher density effects determined in conventional and modified
GoL models
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modified model (Figure 3(B)), designed to be used for further simulation in this study, an
altered A (lower than carrying capacities in original GoL) and unified K were introduced
for simplification and for enhanced growth.

3. Results and Discussion.

3.1. Effect of the neighborhood size. As shown in Figure 4(A), the size of Moore
neighborhood to be employed in the modified GoL can be modulated depending on the
purpose. By employing the Hill-type algorithm based on Equation (11), growth of the
cells in conventional and modified GoL models was simulated as function of density in
the Moore neighborhoods. In Figure 4(B), discrete growth profiles and continuous growth
profiles resulted from different neighborhood sizes are compared.

Figure 4. Effect of Moore neighborhood size on the discreteness or contin-
uousness of the growth profiles performed with conventional and modified
GoL
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3.2. Comparison with logistic equation-based simulation. For further simulation
(to be compared with conventional logistic kinetics), the modified GoL model with small-
est Moore neighborhood (φ = 1) was used (Figure 5). The oscillation of population size in
the logistic simulation shown in Figure 5(B) is apparently due to the selection of extreme-
ly high r value. In fact, the oscillating dynamism is readily lost as r was set below ca.
1.7; thus, smoothly attaining the plateau within 6-7 generations and the high population
level is maintained throughout the range of simulation period (data not shown).

By comparison of the growth curves for modified GoL and logistic model, it seems
that the growth of live cell population in the modified GoL obeys the logistic growth

Figure 5. Trace of the population growth initiated by two adjacent live
cells in the modified and conventional GoL on a 2D cellular space of 8× 8
square lattice under periodic boundary conditions, followed by comparison
with a logistic simulation
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Figure 6. Comparison of the microscopic CA-based approach and macro-
scopic population-targeting logistic equation-based approach for simulating
the oscillatory changes in cellular population in modified GoL

patterns under strong influence of K. This study could be viewed as a good example for
microscopic CA model reflecting the behaviors of individual cells collectively reproducing
the macroscopic ecological outcome as summarized in Figure 6.
Interestingly, the data implies that the low-density effect (harm) can be overcome

in GoL-based CA model with specific local conformation possibly reflecting the na-
ture of non-uniformly aggregating natural microbial cells with tendency to form colonies
or biofilms; thus, unlike uniformly growing culture systems such as paramecium and
cyanobacterial cultures [25], Allee threshold (A) effective at cellular/individual level can
be no-longer found in the whole culture. This could be a likely answer to the fundamental
question why microbial communities in the natural ecosystem rarely show sensitivity to
low density effect. In contrast, K effective at cellular level and/or individual level resem-
bles the one found in the whole population or community levels, and therefore, K could be
reproduced both in the micro- and macro-organisms. In the future, greater impacts could
be expected if this GoL-derived logistic CA model could be applicable for simulation of
the growth or behavior of macro-organisms, chiefly plants and animals.

4. Conclusion. Here, an attempt to remodel the GoL as the parameter-adjustable eco-
logical models was presented. The strategy taken here is that a novel Hill-type density-
responsive function could be the core algorithm behind the actions of this logistic CA
model extended from GoL. Strong emphasis was made for comparison of the modes of
density effects in the modified and conventional GoL and the standard logistic population
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dynamics, by focusing on two parameters, namely A andK. In the near future, this model
must be applied for simulation of a wider range of organisms covering the communities of
plants and animals.
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