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Abstract. When the control system is stabilized by a stable controller, the controller
is said to be a strongly stabilizing controller. While there are many design methods of
stabilizing controllers, most existing methods do not consider the stability of stabilizing
controllers. Because the instability of the stabilizing controllers makes closed-loop sys-
tems very sensitive to disturbances and reduces the tracking performance to reference
inputs, it is required in practice to use the stable stabilizing controller whenever it is
possible. Youla et al. showed that not every plant can be stabilized by a stable controller
and examined a design procedure for stable stabilizing controllers. However, it is better
in practice to design controllers that make use of the individuality of given plants. From
this perspective, Hoshikawa et al. clarified the class of strongly stabilizable plants that
can be stabilized by a stable controller. However, they have not given a design method
of strongly stabilizing controllers for the class of strongly stabilizable plants. This is the
purpose of this paper, and to propose a design method, we clarify the parameterization
of all strongly stabilizing controllers for strongly stabilizable plants.
Keywords: Strong stabilization, Strongly stabilizable plants, Controller parameteriza-
tion, Closed-loop characteristics

1. Introduction. In this paper, we examine a design method for stable stabilizing con-
trollers using the parameterization of all plants that can be stabilized by a stable con-
troller. The parameterization problem is ensuring all stabilizing controllers for a plant
[1-8] and those plants can be stabilized [9]. Because this parameterization can successfully
search for all proper stabilizing controllers, it is used as a tool for many control problems.

For an unstable plant, the parameterization of all stabilizing controllers has been solved
by Youla et al. [1, 2]. The structure of the parameterization of all stabilizing controllers
for unstable plants has full-order state feedback, including a full-order observer [5]. Glaria
and Goodwin [6] gave a simple parameterization for single-input/single-output minimum-
phase systems. However, two difficulties remain. One is that the parameterization of
all stabilizing controllers given by Glaria and Goodwin generally includes improper con-
trollers. In practical application, the controller must be proper. The other is that they
do not give the parameterization of all internally stabilizing controllers. Yamada over-
came these problems and proposed the parameterization of all proper internally stabilizing
controllers for single-input/single-output minimum-phase systems [7].
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For a stable plant, the parameterization of all stabilizing controllers with an internal
model control structure that has advantages such as closed-loop stability is ensured simply
by choosing a stable internal model controller parameter, and closed-loop performance
characteristics are related directly to the controller parameters, making online tuning of
the internal model controller convenient [8]. However, there is a question as to whether
stabilizing controllers for unstable plants can be represented by an internal model control
structure. For this question, Morari and Zafiriou [8] examined the parameterization of all
stabilizing internal model controllers for unstable plants. However, their parameterization
involves two difficulties. First, their internal model is not necessarily proper. In addition,
their parameterization includes improper internal model controllers. To overcome these
problems, Chen et al. proposed the simple parameterization of all proper stabilizing
internal model controllers for minimum-phase unstable plants [10]. Zhang et al. [11]
proposed a new parameterization that does not need the coprime factorization and has a
form similar to Youla parameterization. In this way, the theory of the parameterization
of all stabilizing controllers has been advancing.
However, little attention has been paid to the stability of stabilizing controllers. If an

unstable stabilizing controller is employed, the unstable poles of the stabilizing controller
make the closed-loop transfer function have zeros in the right half plane. This results
in the closed-loop system being very sensitive to disturbances and reduces the tracking
performance to reference inputs [4, 12]. In addition, if the feedback-loop of the control
system is cut, that is, the control system breaks down to a feedforward control system,
the unstable poles of the stabilizing controller produce the unstable poles of the control
system. Thus, the control system becomes unstable even if the plant is stable. Based on
the presented reasons, it is desirable in practice that the control system is stabilized by a
stable stabilizing controller [12]. Therefore, several design methods of a stable stabilizing
controller, which is considered a strongly stabilizing controller, have been considered [4,
12-20, 22, 23].
There exist plants that cannot be stabilized by any stable controller. Youla et al.

showed that a plant is strongly stabilizable if and only if it satisfies the parity interlacing
property condition and examined a design procedure of stable stabilizing controllers [13].
However, while they gave a method to identify strongly stabilizable plants, they did not
specify a specific form of strongly stabilizable plants.
Wakaiki et al. examined the sensitivity reduction problem with stable controllers for

linear time-invariant multiple-input/multiple-output distributed parameter systems [17].
Wakaiki et al. considered the strong and robust stabilization problem that a class of plants
has finitely many simple unstable zeros, but possibly infinitely many unstable poles sta-
bilized by a stable controller in linear time-invariant single-input/single-output infinitely
dimensional systems [18]. However, they do not clarify the class of strongly stabilizable
plants. If the class is clarified, we can obtain the parameterization of all stable stabilizing
controllers. From this perspective, Hoshikawa et al. clarified the parameterization of all
strongly stabilizable plants [21]. Although Hoshikawa et al. indicated the possibility of
obtaining the parameterization of all stable stabilizing controllers based on their results
[21], no paper has derived a parameterization of all stable stabilizing controllers. To de-
sign a stable stabilizing controller, the parameterization of all stable stabilizing controllers
should be a powerful tool. This motivates us to obtain the parameterization of all stable
stabilizing controllers.
The strong stabilization can be applied to control systems working in an environment

where the feedback interconnection is easy to break. Examples are power plants and
communication networks.
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The purpose of this paper is to propose a design method for stable stabilizing controllers
for plants that can be stabilized by a stable controller in [21] using the parameterization
of all stable stabilizing controllers. To propose a design method of stable stabilizing con-
trollers, we clarify the parameterization of all strongly stabilizing controllers for strongly
stabilizable plants in [21]. In addition, we investigate the characteristics of the closed-loop
system resulting from the parameterization of all stable stabilizing controllers.

This paper is organized as follows. In Section 2, we formulate the problem considered
in this study. In Section 3, we propose the parameterization of all stable stabilizing
controllers for strongly stabilizable plants. In Section 4, we show the control system
characteristics with the parameterization of all stable stabilizing controllers. In Section 5,
we propose a design method of stable stabilizing controllers based on the parameterization
of all stable stabilizing controllers given in Section 3. In Section 6, we provide a numerical
example to illustrate the effectiveness of the proposed design method. Section 7 gives
concluding remarks.

Notation
R The set of real numbers.
R(s) The set of real rational functions with the variable s.
RH∞ The set of stable proper real rational functions.
U The set of unimodular functions on RH∞. That is, U(s) ∈ U implies both

U(s) ∈ RH∞ and U−1(s) ∈ RH∞.

2. Problem Formulation. Consider the control system in{
y(s) = G(s)u(s) + d(s)

u(s) = C(s) (r(s)− y(s))
, (1)

where G(s) ∈ R(s) is the plant, C(s) ∈ R(s) is the controller, y(s) ∈ R(s) is the output,
u(s) ∈ R(s) is the control input, d(s) ∈ R(s) is the disturbance, and r(s) ∈ R(s) is the
reference input.

The strong stabilization is the control method that makes the control system in (1)
stable by using stable controllers. Therefore, if the plant G(s) in (1) can be stabilized by
a stable controller C(s), we call the plant G(s) a strongly stabilizable plant. According
to [21], the parameterization of all strongly stabilizable plants is given by

G(s) =
Q1(s)

1−Q1(s)Q2(s)
, (2)

where Q1(s) ∈ RH∞ and Q2(s) ∈ RH∞ are some stable proper real rational functions.
According to [8], the stabilizing controllers can be represented by the internal model

control structure, that is, the stabilizing controller is parameterized in the form of

C(s) =
Q(s)

1−Q(s)G(s)
, (3)

where Q(s) ∈ RH∞ is the Youla parameter. However, this parameterization does not
ensure the stability of the resulting controller C(s). The purpose of this paper is to
obtain the parameterization of all stable stabilizing controllers for the plant G(s) given
in the form of (2) and to propose a design method of stable stabilizing controllers based
on the obtained parameterization.

3. The Parameterization of All Stable Stabilizing Controllers for Strongly Sta-
bilizable Plants. In this section, we derive the parameterization of all stable stabilizing
controllers for strongly stabilizable plants. This parameterization is summarized in the
following theorem.
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Theorem 3.1. Consider the strongly stabilizable plant G(s) represented in the form of
(2). Then, all stable stabilizing controllers C(s) are parameterized by

C(s) =
Q2(s) + (1−Q1(s)Q2(s))Q(s)

1−Q1(s)Q(s)
, (4)

where Q(s) ∈ RH∞ is given by

Q(s) =
1− Q̂(s)

Q1(s)
, (5)

with Q̂(s) ∈ U making Q(s) proper and satisfying

Q̂(si) = 1 (∀i = 1, . . . , n) (6)

for the unstable zeros si (i = 1, . . . , n) of Q1(s).

Proof: From [4], all stabilizing controllers are parameterized by

C(s) =
X(s) +D(s)Q(s)

Y (s)−N(s)Q(s)
, (7)

where N(s) and D(s) are coprime factors of G(s) over RH∞ satisfying

G(s) =
N(s)

D(s)
, (8)

X(s) ∈ RH∞ and Y (s) ∈ RH∞ are some transfer functions satisfying

N(s)X(s) +D(s)Y (s) = 1 (9)

and Q(s) ∈ RH∞ is arbitrary. Noting that the strongly stabilizable plant G(s) is repre-
sented in the form of (2), we choose the coprime factors N(s) and D(s) as

N(s) = Q1(s) (10)

and

D(s) = 1−Q1(s)Q2(s), (11)

respectively. From (10) and (11), it is straightforward to verify that the following pair of
X(s) and Y (s) satisfy (9):

X(s) = Q2(s) (12)

and

Y (s) = 1. (13)

Substituting (10), (11), (12) and (13) into (7), we have

C(s) =
Q2(s) + (1−Q1(s)Q2(s))Q(s)

1−Q1(s)Q(s)
. (14)

In this way, when the strongly stabilizable plant G(s) is represented in the form of (2),
all strongly stabilizing controller C(s) is parameterized by (4).
Next, we confirm that C(s) given by (4) is stable. Because Q1(s) ∈ RH∞, Q2(s) ∈

RH∞, and Q(s) ∈ RH∞, the resulting controller C(s) in (4) is stable if and only if Q(s)
in (5) makes 1 − Q1(s)Q(s) belong to U . Therefore, we prove that Q(s) in (5) makes
1−Q1(s)Q(s) belong to U .
First, the necessity is shown. That is, we show that if Q(s) in (4) makes 1−Q1(s)Q(s)

belong to U , then Q(s) ∈ RH∞ is written by (5). Based on the assumption that Q(s) in

(4) makes 1−Q1(s)Q(s) belong to U , using Q̂(s) ∈ U , we have
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1−Q1(s)Q(s) = Q̂(s). (15)

When si (i = 1, . . . , n) denote the unstable zeros of Q1(s), the condition

1−Q1(si)Q(si) = 1 (16)

holds true. Therefore, Q̂(s) satisfies (6). From easy manipulation, (15) is rewritten as

Q(s) =
1− Q̂(s)

Q1(s)
. (17)

The fact that Q(s) in (17) belongs to RH∞ is confirmed as follows: From Q̂(s) ∈ U , if
Q(s) in (17) is unstable, the unstable poles of Q(s) are equal to the unstable zeros si and

(i = 1, . . . , n) of Q1(s). Because Q̂(s) satisfies (6),

1− Q̂(si) = 0 (∀i = 1, . . . , n) (18)

hold true. This means that unstable zeros si (i = 1, . . . , n) of Q1(s) are not equal to the

unstable poles of Q(s). Therefore, Q(s) is stable. That is, when we select Q̂(s) to make
Q(s) proper, Q(s) in (17) belongs to RH∞. Thus, the necessity has been shown.

Next, the sufficiency is shown. That is, if Q(s) in (4) is given by (5), then 1−Q1(s)Q(s)
belongs to U . Using Q(s) in (5), 1−Q1(s)Q(s) is rewritten as

1−Q1(s)Q(s) = Q̂(s). (19)

Because Q̂(s) ∈ U , 1 − Q1(s)Q(s) belongs to U . Thus, the sufficiency has been shown.
We have thus proved the theorem. �

In this section, we obtained the parameterization (4) of the strongly stabilizing con-
trollers. For further development, the characteristics of the closed-loop system resulting
from the parameterization should be investigated to derive the design method of stable
stabilizing controllers.

4. Characteristics of Closed-Loop System. In this section, we investigate the char-
acteristics of the closed-loop system with the stabilizing controller given by (4).

First, the reference tracking characteristic is considered. If the parameterization of all
stable stabilizing controllers in (4) is employed, the transfer function from the reference
input r(s) to the output y(s) of the control system in (1) is given by

y(s)

r(s)
= 1− (1−Q1(s)Q2(s)) Q̂(s). (20)

Therefore, for the output y(s) to follow the step reference input r(s) = 1/s without
steady-state error,

(1−Q1(0)Q2(0)) Q̂(0) = 0 (21)

must be satisfied. Because Q̂(s) ∈ U , Q̂(s) has no zero at the origin, there is no Q̂(s)

satisfying (21). However, if Q̂(s) is chosen to satisfy

Q̂(0) ≃ 0, (22)

the output y(s) follows the step reference input r(s) = 1/s with a small steady-state error.
Next, we consider the disturbance attenuation characteristic. The transfer function

from the reference input d(s) to the output y(s) is given by

y(s)

d(s)
= (1−Q1(s)Q2(s)) Q̂(s). (23)
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Therefore, to attenuate the step disturbance d(s) = 1/s completely,

(1−Q1(0)Q2(0)) Q̂(0) = 0 (24)

must be satisfied. Because Q̂(s) ∈ U , Q̂(s) has no zero at the origin, there is no Q̂(s)

satisfying (24). However, if Q̂(s) is chosen to satisfy

Q̂(0) ≃ 0, (25)

the step disturbance d(s) = 1/s is attenuated effectively.

5. Design Method of Stable Stabilizing Controllers. In this section, we propose
a design method of stable stabilizing controllers. From Theorem 3.1, to design a stable
stabilizing controller C(s), we need to settle Q̂(s) ∈ U that satisfies (6) and makes Q(s)
in (5) proper. In addition, for the output y(s) to follow the reference input r(s) = 1/s

with a small steady-state error, Q̂(s) needs to satisfy (22). A design method of Q̂(s) ∈ U
satisfying (6) and (22), making Q(s) in (5) proper, and stabilizing controller C(s) is
summarized as follows.

1) Let Q1(s) be factorized as

Q1(s) = Q1i(s)Q1o(s), (26)

where Q1i(s) ∈ RH∞ is the inner function satisfying Q1i(0) = 1 and Q1o(s) ∈ RH∞ is
the outer function.

2) Using Q1o(s), design Q̄(s) ∈ RH∞ as

Q̄(s) =
k

Q1o(s)(τs+ 1)α
, (27)

where τ ∈ R, α is an arbitrary positive integer to make Q̄(s) proper, that is α is greater
than or equal to the relative degree of the plant G(s), and k is a constant satisfying
k < 1 and k ≃ 1.

3) Using Q̄(s) in (27), define Q̂(s) ∈ U by

Q̂(s) = 1−Q1(s)Q̄(s) = 1−Q1i(s)
k

(τs+ 1)α
, (28)

satisfying (6) and (22) and making Q(s) proper.

4) Using Q̂(s) in (28), settle Q(s) in (5) by

Q(s) = Q̄(s) =
k

Q1o(s)(τs+ 1)α
. (29)

5) Using Q(s) in (29), fix a stable stabilizing controller C(s) in (4).

The small gain theorem ensures that Q̂(s) in (28) belongs to U . Next, we confirm that

Q̂(s) in (28) satisfies (6) and (22) and makes Q(s) proper. First, we show that Q̂(s) in (28)

satisfies (6). Q̂(s) in (28) is rewritten as (28). Because the unstable zeros si (i = 1, . . . , n)
of Q1(s) are equal to that of Q1i(s), it follows that Q1i(si) = 0 (∀i = 1, . . . , n). Therefore,

Q̂(s) in (28) satisfies (6). Next, we show that Q̂(s) in (28) satisfies (22). Because Q1i(0) =
1 and k ≃ 1, we have

Q̂(0) = 1− k ≃ 0. (30)

Therefore, Q̂(s) in (28) satisfies (22). Finally, we show that Q̂(s) in (28) makes Q(s)
proper. Because Q(s) is determined by (29) with Q̄(s) in (27), Q(s) is proper. In this

way, we find that Q̂(s) ∈ U defined by (28) is guaranteed to satisfy (6) and (22) and to
make Q(s) proper.
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6. Numerical Example. This section presents a numerical example to illustrate the
features of the proposed design method. Consider the strong stabilization of the controlled
plant

G(s) =
(s− 7)(s+ 1)

(s− 1)(s+ 3)(s+ 5)
. (31)

We note that G(s) is rewritten in the form of (2):

G(s) =

s−7
(s+2)(s+3)

1 + s−7
(s+2)(s+3)

s+3
s+1

, (32)

where Q1(s) and Q2(s) in (2) are chosen as

Q1(s) =
s− 7

(s+ 2)(s+ 3)
(33)

and

Q2(s) = −s+ 3

s+ 1
. (34)

Therefore, G(s) in (31) is strongly stabilizable.
Using the design method described in Section 5, we obtain a stable stabilizing controller

C(s) to make the output y(s) follow the step reference input r(s) = 1/s with a small
steady-state error and to attenuate effectively the step disturbance d(s) = 1/s. First
Q1(s) in (33) is factorized by (26), where

Q1i(s) = −s− 7

s+ 7
(35)

and

Q1o(s) = − s+ 7

(s+ 2)(s+ 3)
. (36)

Using Q1o(s) in (36), Q̄(s) ∈ RH∞ is given by (27), where k, α, and τ are settled by

k = 0.999, (37)

α = 1 (38)

and

τ = 0.1. (39)

Then, Q̄(s) is obtained as

Q̄(s) = −(s+ 2)(s+ 3)

s+ 7

0.999

0.1s+ 1
. (40)

Q̂(s) ∈ U is given by (28) and written by

Q̂(s) = 1 +
s− 7

s+ 7

0.999

0.1s+ 1
. (41)

Substituting (41) into (5), we have

Q(s) = −(s+ 2)(s+ 3)

s+ 7

0.999

0.1s+ 1
. (42)

From (42) and (4), we obtain a stable stabilizing controller C(s) for the strongly stabiliz-
able plant G(s) in (31) as

C(s) =
−10.99(s+ 0.3798)(s+ 3)(s+ 4.803)

(s+ 2.594× 10−3)(s+ 1)(s+ 26.99)
. (43)



2138 T. AKUZAWA, D. ZHANG, T. HOSHIKAWA ET AL.

Using the stable stabilizing controller C(s) in (43), the response of the output y(t) of
the closed-loop system (1) for the step reference input r(t) = 1 is depicted in Figure 1.
Figure 1 verifies that the closed-loop system in (1) is stable and that the output y(t)
follows the step reference input r(t) = 1 with a small steady-state error.

t[sec]

y
(t
)

0 1 2 3 4 5 6 7 8
−0.5

0

0.5

1

1.5

2

Figure 1. Response of the output y(t) for the step reference input r(t) = 1
with a nominal controlled plant

In contrast, when the step disturbance d(t) = 1 is exerted, the response of the output
y(t) of the closed-loop system (1) is depicted in Figure 2. Figure 2 verifies that the
disturbance d(t) = 1 is effectively attenuated.
The presented example shows that the proposed method can design a stable stabilizing

controller C(s) based on reference tracking and the disturbance attenuation characteris-
tics.
To check the robustness of the proposed design method, we consider the situation where

a minimum-phase controller C(s) in (43) is required to stabilize the plant

G1(s) =
(s− 7.3)(s+ 1)

(s− 1)(s+ 3)(s+ 5)
, (44)

which is obtained by perturbing the plant G(s). In this situation, the response of the
output y(t) for the step reference input r(t) = 1 is depicted in Figure 3. The response
of the output y(t) for the step disturbance d(t) = 1 is depicted in Figure 4. Figures 3
and 4 indicate that the closed-loop system with the proposed controller (43) possesses
robustness against the plant perturbation.
Furthermore, we compare the proposed design method with that of [8], by which C(s)

is parametrized by

C(s) =
Q(s)

1−Q(s)G(s)
. (45)
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Figure 2. Response of the output y(t) for the step disturbance d(t) = 1
with a nominal controlled plant

t[sec]

y
(t
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Figure 3. Response of the output y(t) of for step reference input r(t) = 1
with a perturbed controlled plant

By using the same Youla parameter Q(s) with (5), we obtain another controller

C(s) =
−9.99(s+ 2)(s+ 3)(s+ 5)(s− 1)

(s+ 27.66)(s− 1.782) (s2 + 5.116s+ 9.942)
. (46)
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Here, the poles of C(s) contain 1.782, and C(s) in (46) is obviously unstable. Therefore,
the controllers that we obtain by the design method [8] are not necessarily stable.

t[sec]

y
(t
)

0 1 2 3 4 5 6 7 8
−1

−0.5

0

0.5

1

1.5

Figure 4. Response of the output y(t) for step disturbance d(t) = 1 with
a perturbed controlled plant

7. Conclusions. We newly revealed the parameterization (4) of all stable stabilizing
controllers and investigated the characteristics of the resulting closed-loop system. Fur-
thermore, based on the results, we proposed a design method of stable stabilizing con-
trollers such that the steady-state error caused by the step reference and disturbance
inputs is kept as small as possible. The features of the proposed design method were
illustrated through the numerical example. In this paper, we only addressed the stability
requirement on the controller’s poles, but not on the controller’s zeros. In a forthcoming
paper, we will clarify the parameterization of all minimum-phase stabilizing controllers
and study the characteristics of the resulting closed-loop system.
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