
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2021 ISSN 1349-4198
Volume 17, Number 4, August 2021 pp. 1191–1201

A HYBRID CONVOLUTIONAL NEURAL NETWORK-EXTREME
LEARNING MACHINE WITH AUGMENTED DATASET FOR DNA

DAMAGE CLASSIFICATION USING COMET ASSAY FROM BUCCAL
MUCOSA SAMPLE

Yues Tadrik Hafiyan1, Afiahayati1,∗, Ryna Dwi Yanuaryska2

Edgar Anarossi3, Vincent Michael Sutanto1, Joko Triyanto1

and Yasubumi Sakakibara4

1Department of Computer Science and Electronics
Faculty of Mathematics and Natural Sciences

Universitas Gadjah Mada
Sekip Utara, Bulaksumur, Sleman, Special Region of Yogyakarta 55281, Indonesia

∗Corresponding author: afia@ugm.ac.id

2Department of Radiology Dentomaxillofacial
Faculty of Dentistry

Universitas Gadjah Mada
Jl. Denta 1, Sekip Utara, Yogyakarta 55281, Indonesia

3Robot Learning Laboratory
Division of Information Science

Nara Institute of Science and Technology
8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan

4Department of Biosciences and Informatics
Faculty of Science and Technology

Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan

Received February 2021; revised May 2021

Abstract. DNA is the information carrier in cells that are susceptible to damage, ei-
ther naturally or due to external influences. Comet assays are often used by experts to
determine the level of damage. However, the comet assays gathered with swab technique
(Buccal Mucosa for example) often produced a higher noise level compared to ones that
are cell-cultured, thus, making the analysis process more difficult. In this research, we
proposed a novel way to assess the degree of damage from Buccal Mucosa comet assays
using a hybrid of Convolutional Neural Network (CNN) and Extreme Learning Machine
(ELM). The CNN was used to capture and extract spatial relation from every comet,
while the ELM was used as a classifier that can minimize the risk of vanishing gradient.
Our hybrid CNN-ELM model scored 96.96% for accuracy, while the VGG16-ELM scored
88.4% and ResNet50-ELM 76.8%.
Keywords: Buccal Mucosa, Comet assay, Convolutional neural network, Extreme learn-
ing machine

1. Introduction. DNA is one of the important components in the human body that
carries information that is passed on to the cells of its offspring [1]. As the smallest
component in cells, DNA does not escape from the possibility of being damaged. Comet
assay or Single-Cell Gel Electrophoresis (SCGE) is often used in assessing the degree of
DNA damage [1]. According to [2], DNA damage can also be caused by exposure to

DOI: 10.24507/ijicic.17.04.1191

1191



1192 Y. T. HAFIYAN, AFIAHAYATI, R. D. YANUARYSKA ET AL.

ionic radiation during the radiography process, even at low doses. The Buccal Mucosa is
directly exposed to the cytotoxic/genotoxic agent affecting the oral cavity and hence can
be used as a suitable sample for analyzing DNA damage. Moreover, the Buccal Mucosa
cells swab is the preferred harvesting procedure as it is less invasive than lymphocytes
cell culture and does not cause discomfort to the patients [2]. However, the swabbing
procedure has its drawback, as the swab activity may produce higher noise, thus, making
the analysis process more difficult.
The degree of DNA damage is often assessed by experts, but computational methods

are often used as an alternative. Several software was developed to measure the degree
of DNA damage, which is COMET Assay IIITM [3], Komet version 5.5 [4], and Comet
Assay Software Project (CASP) 1.2.2 [5,6] and a free software, OpenComet [7]. They
were designed for the sample from lymphocytes cell culture. They perform well on comet
assay from lymphocytes cell culture, but not from Buccal Mucosa swab. Because of the
low accuracy score, a specific computational method is required to detect the degree of
damage from the Buccal Mucosa swab.
[8] proposed a transfer learning approach to assess the degree of damage specifically for

Buccal Mucosa comet assays. The research used VGG16 as the feature extractor, while
multi-layered perceptron was used as its classifier. The dataset used was considered tiny
and was classified using a deep architecture, thus, resulting in the model producing 70.5%.
The deep architecture used by this research was also prone to vanishing gradient problem
that often occurred in backpropagation process [6]. The accuracy score was relatively low;
therefore, a better computational method must be proposed to resolve this problem. [9]
used extreme learning machines and showed that this method can produce a high level
of accuracy and very fast computation time. The simplicity of extreme learning machine
architecture makes this architecture not vulnerable to vanishing gradients as experienced
in [8].
[10-12] proposed a hybrid architecture of Convolutional Neural Network (CNN) and

Extreme Learning Machine (ELM). The hybrid architecture was used mainly to solve the
classification task. [10] implemented the CNN and ELM architecture to classify Synthetic
Aperture Radar (SAR) satellite’s images from MSTAR database. The CNN was used to
extract the features, while the ELM was used as the classifier. This research concludes
that by using the hybrid architecture, the model is less prone to overfitting and, there
was a speedup in reaching convergence, while still maintaining the high accuracy. [10]
differed with our research as we tried to adopt the CNN and ELM hybrid architecture to
classify the Buccal Mucosa comet assay rather than the SAR satellite’s images.
[11] proposed the CNN-ELM method for hyperspectral images classification. The CNN-

ELM hybrid method improved the accuracy over previous researches, reaching an accuracy
score of 93.3% over Pavia University dataset, 98.85% on Pavia Center dataset, and 94.13%
on AVIRIS Salinas dataset. [11] differed from our research by the dataset used, the CNN
architecture, and the CNN training scheme as they conducted a one iteration CNN.
[12] proposed the CNN-ELM for age and gender classification. with enhancement in

CNN feature extraction that resulted in 52.3% for age classification accuracy and 88.2%
for gender classification accuracy on MORPH-II database. [12] also stated that the CNN-
ELM hybrid method outperformed other researches in terms of accuracy and efficiency.
[12] differed with our research as it used different CNN architecture and the dataset used
was different.
In this research, we proposed a hybrid method of CNN and ELM to classify comet

assay images, specifically the Buccal Mucosa. The CNN [13] was used to extract spatial
features from the comet images, while the ELM [14] was used as a classifier. The use
of ELM instead of multi-layered perceptron minimizes the risk of vanishing gradient,
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as it mainly consists of 1 input layer, 1 hidden layer, and 1 output layer. The simple
architecture of ELM also causes the training time to be considerably short compared to
other architecture. We also implemented data augmentation scheme in order to solve the
problem of small amounts of data. The contribution of this paper is a novel way to assess
the degree of damage from Buccal Mucosa comet assays using a hybrid method of CNN
and ELM. Our proposed model can reach high accuracy (96.96%) even for small amounts
of training data using augmentation strategy. Our proposed model outperforms previous
research for the same dataset [7,8].

This research is based on and a developed version of the authors’ thesis [15]. We
organized this paper as follows: Chapter 2 contains information about the comet assay
dataset, Chapter 3 explains the method used in this research, Chapter 4 shows the findings
and discussion derived from the results of the conventional and the hybrid architecture
proposed in this study, and Chapter 5 contains the conclusion and future work.

2. Dataset.

2.1. Data acquisition. In this research, we used a dataset that was used by a previous
study [8]. The dataset contains 65 segmented and enhanced Buccal Mucosa comet assay
images with a resolution of 100× 100× 3, which are divided into 5 different classes. Class
1 represents a comet assay without its tail, whereas Class 5 represents a comet assay with

Table 1. Example of Buccal Mucosa comet assay image from each class

Class Comet assay image

1

2

3

4

5
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the longest tail is. The longer the tail is, the more severe the DNA damage is. These
65 images were then divided as follows: 11 data of Class 1; 13 data of Class 2; 9 data of
Class 3; 25 data of Class 4; and 25 data of Class 5. Table 1 shows the example of images
that belong to each class.

2.2. Data preprocessing. We apply a few preprocessing techniques to the dataset, de-
scribed as follows.
1) Gray-scaling
The gray-scaling technique aims to convert images with RGB channels into 1 gray

channel images with an intensity between [0-256]. We did the gray-scaling technique as
green was the only dominant colour from all three channels. This technique transforms
the resolution of the data from 100× 100× 3 into 100× 100× 1, which would reduce the
computational training time due to smaller resolution. Equation (1) is used to convert
the RGB images into gray-scale image, where Rx,y is the intensity of red pixel, Gx,y is the
intensity of green pixel, Bx,y is the intensity of the blue pixel, x is the pixel position on
the x-axis, and y is the pixel position on the y-axis.

f(x, y) = 0.299 ∗Rx,y + 0.587 ∗Gx,y + 0.114 ∗Bx,y (1)

The weights are taken based on the provisions of BT.601 from the International Telecom-
munication Union-Radiocommunication sector [16].
2) Morphological Opening
We used the morphological opening to remove noises that are insignificant to the comet

and its tail. This method also amplified the boundaries between the comet and its back-
ground. In this research, we used a kernel with a size of 5× 5 for the opening.
3) Augmentation
We implemented the augmentation technique as we were dealing with a tiny dataset

that is prone to overfitting problems. The following operations were used to augment a
single image, namely: Rotation (between −25 to 25), Vertical Flip, Horizontal Flip, Zoom
(with magnification between 0.9 to 1.3 times).

2.3. Train-test split. We split the preprocessed data with 2 different schemes, namely
Non-Augmented and Split-Augmentation. The Non-Augmented scheme was applied to
the data before it was augmented. The 65 images were split into train-validation data
with the ratio of 80 : 20. Data splitting with a ratio of 80% for training data and 20%
for validation data is a splitting scheme that is often used in machine learning. The
goal is that an architecture which has been trained with 80% training data can have
its performance measured with the remaining 20% that the architecture has never seen
before. Table 2 shows the result of the Non-Augmented scheme. The Split-Augmentation
scheme is a scheme where the 65 images were split into train-validation data with a ratio

Table 2. Non-Augmented data split

Class Amount of data
Train-test split

Train data Validation data
1 11 8 3
2 13 10 3
3 9 7 2
4 25 20 5
5 7 5 2

Total 65 50 15
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Table 3. Split-Augmentation data split

Class Amount of data
Train-test split

Train data augmentation
Validation data

Before After
1 11 8 80 3
2 13 10 100 3
3 9 7 70 2
4 25 20 200 5
5 7 5 50 2

Total 65 50 500 15

of 80 : 20, and later the augmentation technique was applied to the training data only
(Table 3).

3. Hybrid CNN-ELM.

3.1. CNN as a feature extractor. In this research, CNN [13,17-19] was used to capture
spatial-space relation from all comet assay images. The CNN architecture consists of
3-layer groups, with each group containing 2 convolutional layers, 1 max-pooling layer,
and 1 dropout layer (Figure 1). The deeper the layer group is, the number of filters
will increase, and the filter size will decrease. In the training stage, the fully-connected
layer was used as the classifier of the model. However, the fully-connected layer would
be replaced with the ELM once the CNN model converged. Equation (2) shows how the
kernel vector of the convolution process is applied to the input vector.

(I ∗K)i,j =

k1−1∑
m=0

k2−1∑
n=0

c∑
c=1

Ii+m,j+n,c ·Km,n,c + b (2)

I is the input vector, K is the kernel vector, and c is the number of channels from input
vector I. The general architecture of CNN as a feature extractor (input shape, output
shape, kernel size, number of filters) is shown in Table 4.

Figure 1. CNN-ELM architecture
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Table 4. General architecture of the CNN

Layer Input shape Output shape Description
Convolution 1 (N, 100, 100, 1) (N, 94, 94, 8) 8 filters, 7× 7 kernel
Convolution 2 (N, 94, 94, 8) (N, 90, 90, 8) 8 filters, 7× 7 kernel
Max-pooling 1 (N, 90, 90, 8) (N, 45, 45, 8) 2× 2 kernel
Convolution 3 (N, 45, 45, 8) (N, 39, 39, 16) 16 filters, 7× 7 kernel
Convolution 4 (N, 39, 39, 16) (N, 33, 33, 16) 16 filters, 7× 7 kernel
Max-pooling 2 (N, 33, 33, 16) (N, 16, 16, 16) 2× 2 kernel
Convolution 5 (N, 16, 16, 16) (N, 12, 12, 32) 32 filters, 5× 5 kernel
Convolution 6 (N, 12, 12, 32) (N, 8, 8, 32) 32 filters, 5× 5 kernel
Max-pooling 3 (N, 8, 8, 32) (N, 4, 4, 32) 2× 2 kernel

Flatten (N, 4, 4, 32) (N, 512)
Dense (N, 512) (N, 1024) ReLU, 1024 neurons
Output (N, 1024) (N, 5) Softmax, 5 neurons

3.2. ELM as a classifier. ELM is a classifier which consists of 1 input layer, 1 hidden
layer, and 1 output layer [14]. This simple architecture was proposed to minimize the
effect of vanishing gradient that often occurs in the backpropagation process of deep
fully-connected architecture. The ELM also offered faster training speed. The ELM used
in this research received an input matrix with a resolution of (N, 512) from the CNN
and produced output with a resolution of (N, 5) with N as the number of images (Figure
1). The following steps provide a brief illustration of the ELM architecture used in this
research.
1) Initialize an input matrix X {i, n}, which in this case, is the output from CNN, a

matrix with a resolution of (N, 512). i = 1, 2, . . . , N (N is number of data samples) and
n = 1, 2, . . . , 512 (512 is number of input layer neurons).
2) Determine input weights matrix, where j = 1, 2, . . . , L (L is the number of hidden

neurons). The weights are initialized using either random normal or random uniform
distribution, thus, resulting in input weights matrix with a resolution of (512, L).
3) Determine output weights matrix Hi,j (i is the i-th row of sample and j is the

column of hidden neuron j). Each element in the matrix is the calculation result of
the dot product between xi,n and wn,j added by b, and then processed by the activation
function g(wj · xi + bj). This step will result in a matrix with a size of (N,L). L will be
determined by experiment parameters.
4) Determine output weights matrix βjm using Equation (3), where Hτ

ij is pseudoinverse
of Moore-Penrose matrix and tjm is the vector target. The equation will result in an output
weights matrix with a size of (L, 5).

βjm = Hτ
ij · tjm (3)

5) Determine the output yim using Equation (4). The equation will result in output
matrix y with row length of N and column length of m. The equation will result in a
matrix with a resolution of (N, 5).

yim = Hij · βjm (4)

3.3. Training stage. The training stage is divided into 4 steps, namely, CNN kernel
training, intermediate layer feature extraction, determining the weight of ELM, and pre-
dicting using the CNN-ELM hybrid. These steps were applied to the Non-Augmented
and Split-Augmentation schemes. Firstly, the CNN kernels shown by Table 4 need to be
trained to be able to capture spatial relations from each comet assay image. In this step,
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batch training was used with each batch containing 20 images. When the CNN converged,
the training stops and the fully-connected layer would be replaced by an ELM classifier.
For the next step, we modified the CNN model by removing the fully-connected layer.
This step caused the model to produce a feature matrix with a resolution of (N, 4, 4, 32)
which is then flattened into a matrix with a resolution of (N, 512). Afterwards, the weights
of the ELM need to be initialized. The input weights were randomly generated with either
normal random or uniform random distribution. The output weights were obtained from
the dot product between Moore-Penrose pseudoinverse of the matrix with target matrix
as shown in Equation (4). The feature data extracted from the modified CNN model was
then predicted using the ELM defined in the previous step. Figure 2 showed the detailed
training stage of the CNN-ELM architecture. To measure the quality of our models, we
used an accuracy metric which can be calculated using Equation (5).

Accuracy =
TP + TN

TP + TN+ FP + FN
(5)

(a) CNN-ELM (b) Pre-trained model-ELM

Figure 2. Training stage flowchart

3.4. VGG16 and ResNet50 as a feature extractor. VGG16 [20] and ResNet50 [21]
are two pre-trained models that have millions of parameters trained with ImageNet data.
These models are often used in the image classification task, as they can store knowledge
obtained from prior training and applying it to another problem [8]. In this research,
we tried to utilize transfer learning from both models and combine them with the ELM
classifier (Figure 2). The VGG16 and ResNet50 were used as a feature extractor, while
ELM was used as a replacement for the fully-connected layer of both models. We compared
our hybrid CNN-ELM model with VGG16-ELM and ResNet50-ELM. This comparison
was intended to know the performance of our architecture compared to other popular
architecture. Similar training stages were applied into both VGG16 and ResNet50, with
the two only differences which were the kernel training step is skipped and the data
resolution produced by the intermediate layer feature extraction step was (N, 4608) for
VGG16 and (N, 32768) for ResNet50.
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4. Results and Discussion.

4.1. Hybrid CNN-ELM. We trained the hybrid CNN-ELM architecture using each
data split scheme (Table 5), where we also observed the impact of the number of epochs
towards the accuracy score and training time (Table 6). From the result (Table 5),
it seems that the Split-Augmentation scheme took the longest training time compared
to other schemes due to the larger amount of data. However, the Split-Augmentation
scheme scored the highest accuracy rates, followed by the Non-Augmented scheme. The
score for the Non-Augmented scheme was quite low, maxed at 44.66%. On the other
hand, the scheme that implemented Augmentation technique scored a far better score,
reaching 96.96% for Split-Augmentation scheme. It is quite self-explanatory that the Non-
Augmented scheme did not perform well because of its small dataset size. Aside from that,
the number of epochs increased along with the accuracy score for Non-Augmented, but
the opposite happened to the Split-Augmentation.

Table 5. Accuracy and training time by split scheme and epochs

Split scheme Epochs Accuracy Training time (s)

Non-Augmented
10 38.66% 34.44
20 39.33% 65.9
30 44.66% 99.69

Split-Augmentation
10 96.96% 193.49
20 93.97% 848.19
30 91.46% 2093.92

Table 6. Accuracy and training time by random weights type and number
of neurons

Random types Number of neurons Accuracy Training time (s)

Uniform
1024 65.4% 285.71
2048 63.52% 495.03
4096 71% 1427.93

Normal
1024 95.09% 276.2
2048 93.89% 400.61
4096 93.21% 1383.09

We also observed the impact of random weight initialization technique for the ELM
(Table 6). In this experiment, we utilized the Split-Augmentation scheme as it produced
a higher accuracy score compared to other scheme. The model that used random uniform
scored lower than the model that utilized random normal for its weight initializer. The
uniform weighted model scored an accuracy maxed at 71%, while the normal weighted
model scored 95.09% for its highest. However, the increasing number of neurons did
prolong the training time but did not show a pattern of increasing accuracy scores. Thus,
we believe that random normal weights initialization for the CNN-ELM hybrid method
is the better choice compared to the random uniform.

4.2. Hybrid VGG16-ELM and hybrid ResNet50-ELM. Aside from CNN-ELM hy-
brid architecture, we also implemented two additional architectures, namely the VGG16-
ELM and ResNet50-ELM. We observed the relation between each pre-trained model and
the dataset split scheme (Table 7). Both pre-trained models failed to score high accuracy



HYBRID CONVOLUTIONAL NEURAL NETWORK-EXTREME LEARNING MACHINE 1199

Table 7. Accuracy and training time by split scheme and pre-trained model

Split scheme Pre-trained model Accuracy Training time (s)

Non-Augmented
VGG16 50.66% 5.85
ResNet50 25.33% 5.23

Split-Augmentation
VGG16 88.4% 40.99
ResNet50 76.8% 23.16

Table 8. Accuracy and training time by random weights type and number
of neurons

Class Comet assay image Accuracy Training time (s)

Uniform
1024 90.99% 40.26
2048 91.4% 46.39
4096 90.5% 105.18

Normal
1024 88.8% 40.5
2048 91.19% 48.47
4096 90.48% 105.3

using the Non-Augmented scheme, as the dataset is considered as a tiny dataset and train-
ing with tiny dataset often results in a bad accuracy score. The VGG16-ELM reached the
highest accuracy while using the Split-Augmentation scheme, scoring about 88.4%, fol-
lowed by the ResNet50-ELM (76.8%) using the same Split-Augmentation scheme. From
Table 7, it can be concluded that VGG16-ELM outperformed ResNet50-ELM in terms of
accuracy, although it took a slightly longer training time.

We then fine-tuned the ELM for the best pre-trained hybrid method, VGG16-ELM
architecture. We conducted a random weights initialization and number of neurons ex-
periment, with the result tabulated in Table 8. The accuracy scores of the random weights
experiments were not far apart and the number of neurons did not seem to affect the ac-
curacy score. However, the random uniform with 2048 neurons did score the highest
accuracy (91.4%) compared to other combinations of random weights and number of
neurons.

4.3. Comparison of hybrid methods. The CNN-ELM hybrid method scored a higher
accuracy score compared to VGG16-ELM and ResNet50-ELM (Table 9), scoring 8.56%
higher than the VGG16-ELM and 20.16% higher than the ResNet50-ELM architecture.
We believe this happened because the pre-trained hybrid methods were trained for a more
general task rather than specifically for comet assay classification tasks, while our CNN-
ELM was the opposite. However, in terms of training time, the pre-trained-ELM hybrid
consumed far lower time compared to the CNN-ELM architecture but still maintained
reasonably good accuracy scores. This happened because we did not train the pre-trained
VGG16 and ResNet50.

Table 9. Accuracy comparison with previous research

Model Accuracy
CNN-ELM 96.96%

VGG16-ELM 88.4%
ResNet50-ELM 76.8%
VGG16-MLP [8] 70.5%
OpenComet [7] 11.5%
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4.4. Comparison with previous works. Comparison of the performance of our model
is very limited because previously there were only a few researches on the Buccal Mu-
cosa comet assay classification. We compared our models with two models from previous
researches [7,8]. Our work was closely related to the VGG16-MLP architecture [8] but
performed better even when the only differences are the classifier and the augmentation
technique. [8] used 1 hidden layer multi-layered perceptron with 300 neurons as its classi-
fier. We suspected that ELM performs better than the MLP as MLP generally performs
well when used in a deep architecture. However, as the MLP went deeper, it is becoming
more prone to vanishing gradient problems. Thus, we believe that by using ELM instead
of MLP, we minimize the risk of the vanishing gradient and simultaneously maintaining
the good accuracy score. [8] also implemented different augmentation techniques, where
their augmented data had a size of 250 and our data had at least 500 images for training
data. This also can be the cause of why our proposed hybrid architecture performs better
on classifying comet assay compared to their model. Our model also performed better
compared to OpenComet tools [7], where the OpenComet only managed to achieve an
accuracy of 11.5% when using the same dataset. We suspect that the very low score on
the OpenComet tool is because it was designed for samples from cultured lymphocyte
cells which have very low noise, in contrast to the data we used where Buccal Mucosa
has high noise because it was taken using the swab technique. However, we were unable
to compare the computation time with previous researches [7,8] due to the absence of
computation time in these researches.

5. Conclusion. We have proposed and shown how to detect damaged DNA using comet
assay images and hybrid CNN-ELM architecture. We used CNN to extract spatial relation
features from the comet assay images and use the ELM as a substitute for CNN’s classifier.
The ELM was proposed to replace the fully-connected layer as a fully-connected layer
uses backpropagation technique which is prone to vanishing gradient problems and is
often time-consuming. By using ELM, we also minimize the risk of vanishing gradient
problems and fasten the prediction time. We trained on the dataset using 2 different
schemes, namely Non-Augmented and Split-Augmentation. The augmentation step was
intended to increase the dataset size, thus resulting in a model with a good classification
capability. Our hybrid CNN-ELM model obtained 96.96% for accuracy score, followed by
the hybrid VGG16-ELM and ResNet50-ELM (88.4% and 76.8% respectively). There is
still a shortcoming in this research, namely the segmentation process of Buccal Mucosa
comet assay is still done manually. This deficiency will have a big impact when more
and more data is used. Therefore, we recommend applying an automatic segmentation
process so that it can handle large amounts of data.
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