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Abstract. A large amount of freshwater is consumed to irrigate crops. IoT-based auto-
matic irrigation systems are needed to reduce water consumption. Security and privacy
issues, factors concerning climate conditions, and real-time soil and air features that
affect irrigation control make the development of such system challenging. This study
introduces a cloud-connected, secure multi-crop smart irrigation system (SMCSIS) to
address the excessive irrigation problem caused by precipitation after irrigation and to
reduce water consumption. SMCSIS makes real-time watering decision on the basis of
soil moisture predicted at the time of precipitation. The prediction depends on the data
captured from soil moisture sensor and climate prediction-based estimated evaporation.
An artificial neural network is developed and trained using five factors (air temperature,
wind speed and direction, UV, and humidity) captured from online weather forecasting to
obtain the estimate evaporation. A database containing the characteristics and irrigation
information for each crop is also developed for multi-crop irrigation. Access control and
blockchain technologies are used to maintain privacy and data integrity in the system.
A prototype has been developed to simulate the system for small farms. Experimental
results indicate that SMCSIS is functional, and it provides an effective solution to over-
come excessive irrigation.
Keywords: Smart multi-crop irrigation system, Blockchain, Soil moisture prediction,
Artificial neural network, Evaporation estimation, IoT, Automatic irrigation systems

1. Introduction. Agriculture is considered the backbone of food security and the ma-
jor factor that affects the economy of many countries [1]. The most important element
required in agriculture sector is water. In developing countries, the agriculture sector
consumes a substantial portion of freshwater compared with that in developed countries.
Most irrigation systems in developing countries are ineffective because they either cause
excess or scarcity of irrigation [1,2]. The large number of factors (such as climate, soil
type, season, crop type and age, soil moisture and temperature, and light) that affect the
process of irrigation management makes the process of developing an effective automatic
irrigation system a challenging problem. Most of these factors and agricultural data are
recently monitored by wireless sensor networks using Internet of Things (IoT) technolo-
gies and managed by cloud computing to gain the needed information and make proper
irrigation decisions [3-5].

The environmental parameters of soil moisture, soil and water PH, weather conditions
(temperature, humidity, ultraviolet [UV] light, wind speed, wind direction, and precipita-
tion), and crop height need to be monitored when developing automatic irrigation systems.
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Most studies monitored no more than three parameters, such as soil, humidity and weath-
er parameters. Few studies utilized crop parameter when developing automatic irrigation
systems [3]. In terms of weather parameters, most studies monitored temperature and
humidity, whereas very few considered wind (speed and direction) and precipitation. In
addition, weather forecasting (collected by sensors or from meteorological station) was
used in some studies, especially those who considered machine learning and regression
methods when developing the irrigation schedule [2,7-9]. Soil moisture is an important
real-time parameter used in most irrigation decision-making systems to determine when
to start or stop the irrigation process. By contrast, soil PH and nutrients are rarely used
[3]. Various wireless sensor network technologies are utilized to implement IoT-based ir-
rigation systems. Most studies used Raspberry Pi (P2 or P3) and/or Arduino boards,
especially Arduino UNO and Arduino Mega, as IoT nodes for irrigation systems [10-
13]. WiFi is the most popular communication technology used with automatic irrigation
systems due to its low cost. Global System for Mobile Communications (GSM) is used
for long-range communication. ZigBee is also employed to reduce energy consumption
although it has low data rates compared with other technologies. For prototypes and
irrigation systems for small gardens, Bluetooth is used due to its low cost and low energy
consumption. LoRa technology is recommended to be used to cover long communication
range (up to 20 miles) [3,4].
IoT-based irrigation systems require a large storage area to keep the data generated

by sensors during the monitoring process and the information regarding certain crops
(such as crop type, season, soil parameters, required fertilizers, and watering schedule
based on agronomist opinions). Therefore, databases are needed to keep all the necessary
information that could be used to analyze these data for the control of irrigation process
and the reduction in water consumption [10,12,14]. Machine learning [2] and artificial
intelligent approaches, such as fuzzy logic [15-17], artificial neural networks (ANNs), and
regression models [3], are recently used to optimize IoT-based irrigation systems utilizing
environmental parameters and weather conditions.
Like most IoT systems, IoT-based irrigation systems need to be secured, because such

systems could be a victim of various threats, such as privacy threats, software vulnerabili-
ty, malwares, denial of service, false data injection, in addition to data integrity problems
and confidentiality of end-to-end communication. Therefore, in IoT systems, a privacy
and data integrity model is crucially needed [18,19]. Access control polices need to be
defined to preserve the privacy and security in IoT systems. A trust model is important to
protect the communication in IoT and maintain authentication. Encryption algorithms
and authentication are used to secure data and prevent data altering by unauthorized ac-
cess. Blockchain is recently applied to secure IoT-based irrigation systems through tracing
the irrigation decisions made by the IoT system [20-22]. In IoTs, system utilization could
be improved by applying scheduling policy (such as rate monotonic policy) to schedule
tasks (workload generated by sensors) on the processor [23].
Most of the previous research developed smart irrigation system on the basis of irri-

gation factors monitored in real time (mainly soil moisture, temperature, and humidity)
and online weather forecasting. Few studies considered wind speed and direction [24].
Apart from real-time factors, some researchers used irrigation information on the basis of
agronomist opinions. A few research developed smart irrigation system for various crops
while considering the crop type and height [10,14]. To the best knowledge of the authors,
very few studies considered precipitation in near-future when developing an automatic
irrigation system [24]. Such systems could cause excessive irrigation problem. The pro-
jected evaporation must be calculated over the time period between the irrigation process
and the expected precipitation time to determine the appropriate amount of irrigation and
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address the problem of excessive irrigation, which could be caused by irrigation of crops
shortly before precipitation. In some research, the expected evaporation was calculated
(using evaporation equations) to develop a decision support system (DSS) for irrigation
scheduling [2].

The present study mainly focused on developing a secured, cloud-connected, multi-crop
smart irrigation system (SMCSIS) to overcome the excessive irrigation problem caused
by precipitation after irrigation. Employing precipitation forecasting could also reduce
water consumption. The contributions of this study are detailed as follows. First, the
feasibility of using ANN approach in determining the estimated evaporation (E) on the
basis of five factors (that is, temperature, humidity, wind speed and direction, and UV)
is investigated. Subsequently, the estimated evaporation (E) and crop characteristic Kc

coefficient are used to calculate the estimated soil moisture (ESM) at time T . ESM is
used to specify the next irrigation time. Second, two new algorithms are proposed to
schedule the next irrigation time on the basis of the calculated ESM at time T , and
the expected time of precipitation (after irrigation) to reduce water consumption and
overcome the problem of excessive irrigation when rainfall is expected in the near future.
The performance of the two suggested algorithms was evaluated from the point of view of
water consumption. Third, the developed irrigation system was designed to serve multi-
crop fields that utilized a database to determine the proper amount of watering for a
certain crop. The database contains information about various crops (e.g., crop type,
crop age, day or night irrigation, min/max soil moisture based on agronomist opinions,
season, soil type, and Kc coefficient). Finally, the developed system was secured by
defining a chain of trustees and creating audit log units to prove user activities and
maintain data integrity in real time. The irrigation decision in the developed system is
based on some factors (such as soil moisture and light to specify day or night) monitored
in real time in addition to online weather forecasting (temperature, humidity, wind speed
and direction, UV, and precipitation expectation). Two algorithms were proposed to
control the irrigation process. In the proposed system, a set of rules was applied on the
factors monitored in real time, weather forecasting (rainfall or not), and E to decide
about the irrigation time and amount of water required by a crop in accordance with the
database content for that crop. Access control policies were defined to preserve privacy
and data security, and a proper ciphering mechanism was applied on the crop database to
preventing intruders from altering stored data. A blockchain-based technology was also
used to create audit log modules to prove user activities and preserve data integrity. A
prototype was developed to control the irrigation process of a 100 m2 potato farm and
simulate and evaluate the performance of SMCSIS. The prototype is an Android mobile
application that could control the irrigation process on the basis of the decision made by
the irrigation system rules in accordance with the crop information (crop type, crop age,
and season) inputted by the user. Access control rules were specified to preserve security
and data integrity, and a simple notification system based on blockchain was applied. The
developed system is an IoT autonomous system (i.e., autonomous sensor nodes) connected
to a wireless sensor network (WSN) with Zigbee.

The rest of this paper was organized as follows. Literature was reviewed in Section
two. In Section three, evaporation estimation utilizing ANN was demonstrated, and the
performance of the developed ANN was measured and assessed. Section four illustrated
the developed irrigation system, at which all the system modules and decision-making
algorithms were introduced and demonstrated. The developed prototype, along with
the testing and analysis phase, was discussed in Section five. Section six provided the
conclusion.
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2. Literature Review. Much research recently focused on utilizing IoT and WSNs to
develop automatic irrigations systems and reduce water consumption. Several studies
were also conducted to predict the watering schedule that reduces water consumption
[24]. Researchers used machine learning methods to predict soil moisture and determine
the estimated schedule for irrigation. In 2018, Goap et al. developed an IoT and machine
learning (ML)-based smart irrigation system. The developed system utilizes sensed data
and weather forecast data (from the Internet) to predict the irrigation requirement for
a certain field. The sensed data are soil moisture, soil temperature, air temperature,
ultraviolet (UV) light radiation, and relative humidity of the crop field. The used fore-
cast attributes are precipitation, air temperature, humidity, and UV for the near future.
Machine learning algorithms were proposed on the basis of applying a support vector
regression (SVR) model and k-means clustering algorithm to predict the soil moisture in
the crop field. The accuracy of the predicted soil moisture through SVR and k-means
outperformed the predicted soil moisture by using SVR only [2]. Goldstein et al. [7]
applied an ML model on a dataset constructed by collecting data from various sources
(soil sensors, a meteorological station, and irrigation records defined by an agronomist)
to predicting the weekly irrigation schedule. Three ML approaches were applied on the
dataset to predicting the irrigation schedule: linear regression (LR), gradient boosted
regression tree (GBRT), and boosted tree classifier (BTC). Comparison of the two regres-
sion approaches showed that GBRT outperformed LR, with accuracy reaching 92%. In
2020, Torres-Sanchez et al. studied three learning techniques, namely, LR, random forest
regression (RFR), and SVR to specify their efficiency in developing a robust model ex-
pert decision system for irrigation management. The developed system utilized climatic
and soil data for nine citric crops in Southeast Spain to determine the system accuracy.
The authors found that RFR was the best in emulating the agronomist in specifying the
irrigation schedule for various crops [3]. Shalini and Aravinda [25] introduced a study and
predictive analytic model to determine the expected amount of precipitation for irriga-
tion. In this study, four ML techniques (multiple LR, k-nearest neighbor, decision tree,
and random forest techniques) were used to construct the predictive model. The perfor-
mance of each of the four techniques was evaluated on the basis of root mean squared
error (RMSE) for choosing the best technique. The results showed that random forest
outperformed the other three techniques. Artificial neural network is used to estimate
soil moisture and develop IoT-based irrigation systems. Adeyemi et al. [26] utilized an
ANN to develop a dynamic model for one-day soil moisture flux prediction on the basis of
previous information concerning soil moisture, precipitation, and climate. The crop-water
productivity model, AquaCrop, was used to explain the developed ANN model in predict-
ing the irrigation schedule for potato-growing season. The predictive irrigation schedule
was compared with predefined irrigation schedule. The experimental results showed that
the predictive irrigation schedule is comparable to the predefined irrigation schedule and
saves approximately 20%-46% of irrigation water. Nawandar and Satpute [27] proposed
an IoT-based low-cost smart irrigation system utilizing ANN to enhance decision making
and improve irrigation efficiency. The developed system provides remote crop monitoring
using MQTT and HTTP to update the user about crop state. The experimental result of
irrigation schedule, decision making based on NN, and remote data monitoring for sam-
ple crop was illustrated to demonstrate the system performance. The developed model
suits greenhouse and farms. Some of the developed irrigation systems focus on security,
privacy, and data integrity. An irrigation system was developed to organize and manage
the use of water in rural areas [21]. The developed system utilizes blockchain technolo-
gies to maintain trust among system users (community members) and resource devices.
Munir et al. [22] developed an intelligent smart watering system (SWS) based on fuzzy



IOT BASED SECURE MULTI-CROP SMART IRRIGATION SYSTEM 1229

logic approach, and supported by an Android application to control water consumption
in small crop fields. Blockchain technology was also used to preserve security and privacy.
The experimental results indicated that SWS is effective and it secures irrigation appli-
cation. In this study, access control policies were defined to preserve privacy. Moreover,
a blockchain-based technology was also used to create audit log modules to prove user
activities and preserve data integrity.

Most studies consider soil moisture prediction significant in developing automatic irri-
gation system. In [2], five environmental parameters (soil moisture (read by sensor), air
temperature and humidity, soil temperature, and UV) are utilized to estimate soil mois-
ture. In [26], past soil moisture, precipitation, and climatic measurements were utilized to
estimate soil moisture. Few studies utilized crop parameter and wind speed and direction
when developing automatic irrigation systems [3,24]. In this study, five environmental
parameters (air temperature, humidity, wind speed and direction, and UV) are utilized to
estimate soil moisture in addition to Kc coefficient. In terms of soil moisture prediction,
various approaches have been applied to predicting soil moisture. In [2], ML approaches
(SVM and k-means) have been applied, whereas [26] applied ANN. In the present study,
ANN has been applied to estimating evaporation. Subsequently, soil moisture is estimat-
ed on the basis of soil sensor read, Kc coefficient, and estimated evaporation. In previous
studies, different approaches are developed to schedule irrigation based on on-field sen-
sor reads, regression models, machine learning, and ANN. Most studies did not consider
rainfall in the near future when developing the irrigation schedule [2,3,7]. Predictive an-
alytic model has been developed in [25] to predict the expected amount of precipitation
for irrigation based on machine learning. In this study, two algorithms are suggested to
schedule irrigation in rainy and non-rainy days. Finally, the suggested irrigation system
serves multi-crop fields that utilize a database (crop type, crop age, day or night irri-
gation, min/max soil moisture based on agronomist opinions, season, soil type, and Kc

coefficient) to determine the proper amount of watering for a certain crop.

3. Evaporation Estimation Based on ANN: Proposed Technique. The feed-
forward NN (FFNN) is a machine learning approach that has the potential to approximate
the function represented by the dataset [28]. Therefore, we applied the FFNN method for
estimating evaporation, which in turn is used to estimate soil moisture. In this study, a
supervised feed-forward NN (FFNN) was proposed to estimate the evaporation. First, an
evaporation dataset containing data collected every hour for 4 years to test the feasibility
of using ANN for evaporation estimation. The dataset contained 26280 records. It needed
to be cleaned up as some records contain null values. After the dataset was cleaned, the
total valid records became 24890. Each record consists of six fields: air temperature,
relative humidity of air, wind speed, wind direction, Net radiation, and evaporation field.
An FFNN, which consists of three layers (input nodes, one hidden layer, and one output
node), was developed and trained using the dataset. The suggested FFNN consists of five
input nodes (air temperature, relative humidity of the air, wind speed, wind direction,
and Net radiation), one hidden layer with 10 nodes, and one output node (evaporation).
It was trained utilizing Levenberg-Marquardt optimization with learning rate α = 0.45.
The average performance of the five folds, as measured using RMSE, was 0.0523. Five-
fold cross validation was utilized to evaluate the performance of the developed FFNN, at
which the dataset was partitioned five times into five sets, each set of size 4978 records.
The suggested FFNN was trained five times, where four sets were used for training and
one set for testing. On the basis of the promising results of the testing dataset (evapora-
tion dataset), actual data were collected (using online weather forecasting) to obtain the
five features (air temperature, relative humidity of air, wind speed, wind direction, and
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UV), in addition to a soil moisture sensor, which was used to read soil moisture (SM t)
every 30 minutes. The actual evaporation was calculated using Equation (1) to act as the
actual output field. The training dataset was constructed by collecting data for 60 days
from five different regions in non-rainy days.

Eavr = abs(SM t − SM t−1) (1)

After the dataset was collected and cleaned, FFNN was developed with three layers (in-
put nodes, hidden layer, and one output node). The number of nodes in the hidden layer
was specified using validation data, in which various numbers of nodes were tested (be-
tween 1 and 14 nodes). Ten nodes in the hidden layer showed the best performance. The
developed FFNN was trained utilizing Levenberg-Marquardt optimization with learning
rate α = 0.45. The estimated evaporation (EE avr) could then be obtained for a certain
hour in the next day by testing the FFNN with five attributes (air temperature, relative
humidity of air, wind speed, wind direction, and UV) through accessing the online weath-
er forecasting. The EE avr (at a certain hour) that resulted from applying the trained
FFNN on the five features specified by the online weather forecasting was compared with
Eavr, which was calculated using Equation (1), to evaluate the behavior of the developed
FFNN in real time. Monitoring of the system behavior for 6 days (test data) revealed
that the average RMSE = 0.089041919. Compared with the RMSE when utilizing the
testing dataset above, the RMSE increased (from 0.0523 to 0.089041919) because UV
was used instead of Net radiation in addition to margin of error that resulted from using
online weather forecasting. A notable detail that selects the proper feature set highly
affects the system accuracy. Therefore, FFNN was trained by excluding one feature at a
time (i.e., ANN was trained with four features). The results showed that the feature that
could be excluded without majorly affecting the system performance was when excluding
“wind direction”. Table 1 illustrates the performance of the FFNN in obtaining EE avr

compared with Eavr. The results showed that using the five features to obtain EE avr is
recommendable.

Table 1. The performance of the FFNN in obtaining EE avr compared with Eavr

NN architecture
(input × hidden × output)

The performance of FFNN (RMSE)
Utilize TestWing dataset Utilize Actual data

5× 10× 1 0.077141919 0.089041919
4× 10× 1 0.080663447 0.091963447

4. Secured Multi-Crop Smart Irrigation System (SMCSIS): The Proposed
Model. In most automatic irrigation systems, farmers specify irrigation schedule to con-
trol the irrigation process. Nowadays, IoT-based irrigation systems (ubiquity applications)
are developed to the control irrigation process to reduce water consumption. Various types
of sensors (soil moisture, WL, soil temperature, pH of water and soil, and leaf wetness) are
used in smart irrigation systems [25,29]. In most smart irrigation systems, the irrigation
decision and the amount of used water are based on the sensors read at time t. Howev-
er, rainfall after irrigation causes crop withering due to excessive irrigation. Therefore,
SMCSIS, which is capable of avoiding excessive irrigation in case of precipitation in near
future, was developed in the present work. SMCSIS is provided with a database (multi-
crop database) that contains information about the amount of water needed by each crop
(irrigation information) on the basis of its type and age (growth stage), soil type, season,
and Kc coefficient. The irrigation information in the database is populated in accordance
with the agriculture prescription provided by agronomists. The developed SMCSIS model
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mainly consists of three layers, namely, application layer, data processing, and decision-
making layer, and data collection and control layer. In addition to maintaining privacy
data through defining trustees and specifying the access control policies for them, the
application layer serves as a user-interface layer that provides user services concerning
user log in, user authentication, message passing between user, and data processing, and
a decision-making layer. The second layer is the data processing and decision-making
layer (located in cloud), which controls the irrigation process on the basis of the attribute
values (factors) entered by the user and the irrigation records in the multi-crop database.
The data processing and decision-making layer mainly consists of three modules: multi-
crop database module, engine module, and audit log module. Multi-crop data, along
with the irrigation information of each crop, are saved in the database module, which is
updated by authorized users. Data are processed and decisions are made in the engine
module. The audit log module, which tracks user events and actions, is utilized to assist
in preserving transparency and data integrity. The third layer is the data collection and
control layer, which collects data from a real field utilizing on-field sensors (soil moisture
sensor and UV light sensor). Moreover, data are collected from a WL sensor in the water
tank to control the actuators of tank-fill water pumps. This layer also controls the water
pump actuator for field irrigation on the basis of the decision made by the engine of the
irrigation decision. Figure 1 illustrates the main model of SMCSIS.

Figure 1. SMCSIS: The proposed model

4.1. Application layer. The first layer is the application layer, which is a mobile ap-
plication accessed by authorized users (based on login with username, password, and
authentication code sent to the user). This layer acts as an interface between the users
(trustee group) and the data processing and decision-making layer. The main tasks of the
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application layer are data collection and transmission to the data processing and decision-
making layer, and notifying the trustee group about all the activities accomplished by the
system and the users. The data entered by the user concerning crop field information
(crop type, age, season, and soil type) are passed to the Engine of Irrigation Decision
in the data processing and decision-making layer to be processed. The end user is also
able to update the multi-crop database after approving end-user authorization. The log-
in information of the end-user is passed to the audit logs to preserve security through
monitoring and documenting all user activities. Finally, all messages concerning user and
system activities are posted to the trustee group through the application layer.

4.2. Data processing and decision-making layer. A data processing and decision-
making layer was developed to process data and then makes proper irrigation decision to
manage the irrigation process. This layer is located in cloud.

4.2.1. Database module: Multi-crop database. Irrigation scheduling decision is needed to
determine the amount of water required for irrigation and when to irrigate. The irrigation
method and scheduling vary in accordance with crop type, growth stage, soil type (sand
or clay), season, needed soil moisture, light (day or night), humidity, and temperature.
Real-time data (such as current soil moisture, light, temperature, and humidity) are
collected by the sensors, while the amount of water required by a crop is determined by
agronomists on the basis of crop features. Therefore, a database was developed to retain
the crop features (crop type, crop age, day or night irrigation, min and max soil moisture
based on agronomist opinions, season, soil type, and Kc coefficient), the amount of water
required for irrigation (min, max, and average soil moisture threshold), and the number
of times to irrigate (per day or week). The information is used to set the initial irrigation
schedule and when to activate the sensors. The crop characteristic Kc coefficient of each
crop is also kept in the database to be used in calculating the estimated evaporation (as
explained in the engine model). The Kc coefficient varies between 0 and 1 according to
the periods of growth of the crop (as defined by experts). Therefore, for each crop, three
Kc values are kept in the database (initial stage, mid-stage, and final stage) [30]. In the
present study, the database was developed using MySQL, and information was specified
on the basis of agronomist opinions and irrigation guides for farmers. The database could
be updated by authorized user(s), as specified by the system access control policy.

4.2.2. Engine module: Irrigation decision. This module is responsible for making irriga-
tion decision that is based on crop features (factors) stored in the multi-crop database,
field features entered by the user, and factors monitored in real time from the field (soil
moisture and UV light radiation to specify day or night). Online climate forecasting
is used to obtain wind speed, wind direction, UV, and precipitation expectation on the
basis of the geographical position of the field (as specified by the user). The developed
engine makes the irrigation decision in accordance with real-time soil-moisture sensing,
precipitation expectation, and the average amount of soil moisture required by a crop (as
specified in the database). One of two algorithms could be used depending on the season:
Irrigation Algorithm without Precipitation (NPI) and Irrigation Algorithm considering
Precipitation (PI). Both algorithms predict Eavr/hour for 5 cm-shallow soil obtained by
the trained NN by using climate expectation from online climate systems. For both algo-
rithms, the time of the next irrigation (TEI) must be estimated using the TEI algorithm
on the basis of EE avr calculated by FFNN/hour (utilizing the weather forecasting read).
First, the real-time soil moisture (SM t) must be read and treated as ESM at time t. The
next step is to find (H), which indicates the hours needed to reach the minimum soil
moisture (min) required by the crop (as specified in the database). The expected soil



IOT BASED SECURE MULTI-CROP SMART IRRIGATION SYSTEM 1233

moisture (ESM)/hour (ESM t+1) must be calculated on the basis of crop characteristic Kc

coefficient and the EE avr calculated at time t by utilizing FFNN (as illustrated in Section
3 above). Equations (2) and (3) illustrate how to obtain ESM at time t+ 1.

Eavr(t) = EE avr(t) ×Kc (2)

ESM t+1 = ESM t − Eavr(t) (3)

TEI Algorithm: The estimate time for the next irrigation
Input and variables:

- T is the current time scheduled for irrigation
- ESM t+1 is the expected soil moisture at time t+ 1 (using Equations (2) and (3))
- SM T is the soil moisture sensor read at time t
- Min: minimum soil moisture for a crop
- h is number of hours until the next irrigation (the duration between current SM T

until reaching minimum soil moisture for the crop “Min”)

Output

- TEI is the approximated time of the next irrigation (initially equals the current date
and time of irrigation)

Step 1: ESM t = SM t

Step 2: Find h, accumulate hours by repeatedly applying Equations (2) and (3) until
ESM t+1 ≤ Min

h =

ESM t+1≤Min∑
t=T

1

Step 3: TEI = current time and date + h

NPI Algorithm: Irrigation algorithm without considering precipitation
Input and variables:

- T is the current time
- TEI is the expected time of the next irrigation (algorithm TEI)
- ESM TEI is the expected soil moisture at time TEI (using Equations (2) and (3))
- SM T is the soil moisture sensor read at time T
- Min, Max, Av are the minimum, maximum, and average amount of soil-moisture
required by a crop (as specified in the multi-crop database)

- Eavr is the average expected evaporation/hour for 5 cm shallow soil (obtained by
the trained FFNN) using climate expectation from online climate.

- TE : the total expected evaporation between T and TRF , where TE =
∑TRF

i=T Eavri

- H: time of next irrigation

Output: IR (irrigation status)
Step 1: If current time (T ) and date match the schedule time and date of the target

crop (H), then

SM T = Read Sensor ()

Step 2: Find time schedule for the next read
If (SM T ≤ Min) then IR = Irrigate (SM T ,Max)
Else No irrigation
SM T = Read Sensor ()

H = TEI (SM T , current time and date) // call TEI to calculate time and date of
next read

Goto Step 1
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Irrigate Function (SM T ,Max):
Input and variables:

- NT is the time till the next read. (It is specified by the user based on water pumping
amount)

While (SM T < Max)
Send 1 for relay to carry on with irrigation
T = T +NT
SM T = Read Sensor ()
Send 0 for relay to stop irrigation

PI Algorithm: Irregation algorithm considering precipitation
Input and variables:

- T is the current time
- TRF is the time of rainfall expectation (TRF > T )
- SRF : the time of stop raining (based on online climate forecasting)
- RFPTRF : the percent of rainfall at time TRF (based on online climate forecasting)
- ESM TRF : the expected soil moisture at time TRF (using Equations (2) and (3))
- SM T : the soil moisture sensor read at time T
- Min, Max, Av are the minimum, maximum, and average ((Max−Min)/2) amount
of soil-moisture required by certain crop respectively (as specified in the multi-crop
DB)

- Eavr: the average expected evaporation/hour for 5 cm shallow soil (obtained by the
trained FFNN )

- TE : the total expected evaporation between T and TRF , where TE =
∑TRF

i=T Eavri

- Climate expectation (obtained from the online climate forecasting)
- H: time of next irrigation

Output: IR (irrigation status),
If time (T ) match time of next irrigation (H)
Step 1: SM T = Read Sensor ()
Step 2: Find time schedule for the next read
If (SM T < Min) then IR = Irrigate (SM T , Average)
SM T = Read Sensor ()

H = TEI (current date and time, SM T ) // find time of next irrigation
Step 3: Based on climate expectation for the next hours (H), get TRF , SRF , and

RFPTRF

Case 1: No rainfall within time duration till H
If (SM T ≤ Min)
IR = Irrigate (SM T ,Max)

Else IR = 0 //no irrigation
Goto Step 1
Case 2: Rainfall at time TRF & TRF < (H)

IR = 0
At time SRF Goto Step 1

Case 3: Rainfall at time TRF & TRF ≈ (H)

TE =
∑TRF

i=T Eavri // based on Equation (2)
ESM TRF = (SM T − TE )
Case 3.1: (5% < RFPTRF ≤ 20%)

IR = Irrigate (SM T , Average)// irrigate until soil moisture reaches average
moisture
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At time SRF Goto Step 1
Case 3.2: (RFPTRF > 20%)

If (ESM TRF ≤ Min) then IR = Irrigate (SM T ,Min)// irrigate
Else IR = 0 // no irrigation
At time SRF Goto Step 1

Case 3.3: (RFPTRF ≤ 5%)
IR = Irrigate (SM T ,Max)// irrigate

Goto Step 1

4.2.3. Audit logs module. Audit logs are used to track user events in a sharing environment
to verify compliance with privacy policies. Therefore, user actions should be listed in
the audit logs [31,32]. In the present study, audit trail (audit logs) was employed to
preserve privacy and data security through monitoring and documenting user access and
their activities. Audit logs list user access, activities, data modification attempts, and
timestamp of each access and activity to ensure data integrity. User activities, such as
user request for irrigation decision for certain crop-field, data values entered by the user
(crop type, crop age, soil type, and season), and database updating, are documented with
the timestamp of user access and activities (log record indicates what event is performed
by whom). Each user access and activity will be reported to the trustees (through the
application layer) utilizing blockchain technique to preserve data integrity and enhance
information security.

4.3. Data collection and control layer. In the IoT system, the data collected by
sensors are periodically sent to the Internet or Intranet to be processed by the server
and interpreted on a front-end interface. In WSN, the sensors connect to a router, where
data are passed to their final destination via the router. Thus, the IoT system could
be connected to WSN routers to collect the data from the sensors [33]. Either an IoT
autonomous system or WSN could be used on the basis of the requirements of a developed
system. In the present study, the developed irrigation system (SMCSIS) uses the IoT
autonomous system (i.e., autonomous sensor nodes), which is connected to WSN with
Zigbee. Figure 2 illustrates the framework of the WSN for SMCSIS, whereas Figure 3
illustrates the schematic diagram of one-set of on-field sensors. In SMCSIS, three on-
field sensors (soil moisture, UV light, and WL in tank) and a water pump actuator are
connected to Arduino-Uno (microcontroller), which is connected to Zigbee. Arduino-Uno
reads the output of these sensors. Data are collected by the sensors in a periodic or non-
periodic time (i.e., the user could run the sensor readings when needed). The periodic
sensor reading (e.g., hourly) is determined by the user on the basis of soil type, season,
crop type, and age.

Figure 2. SMCSIS: Framework of the IoT system connected to WSN
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Figure 3. The schematic diagram on one set on-field sensors connected to WSN

The data collection and control layer also activates/deactivates the water pump. For
instance, water pump is activated to pump water from the water tank to the farm when
needed. The amount of water required for irrigation is specified on the basis of sensor
reading and crop information in the database to control the irrigation process. The de-
signed irrigation system is a mobile application that helps in dynamically scheduling the
irrigation process in accordance with the crop information in the database, sensor reads,
and climate prediction (from online climate forecasting). A sensor is used to check the
WL in the tank to fill it when WL < WL-threshold in the tank.

WL Algorithm: Fill the Water-Tank
Input and variables:

- Water-Level-Threshold: Minimum water level that should be in the tank before start-
ing irrigation

Tank-Water-Level = Read Sensor ()
If Tank-Water-Level < Water-Level-threshold, then

Send alarm (water shortage).
Start to fill the tank

Else If (Tan-Water-Level <Water-Min-level) and the pump is pumping water, then
Stop pumping
Send alarm (tank empty).

From the database, the system could determine the quantity of water (in liters) needed
for irrigation and specify the irrigation schedule, and the irrigation duration is determined
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by the Engine Model by utilizing soil moisture (sensor reads), light (day/night), and the
required irrigation for a certain crop (as specified by the database).

5. Testing and Analysis. A prototype of SMCSIS was developed and tested on a small
farm area to observe its performance. The prototype was designed and implemented
to control the crop irrigation on scientific bases. A small part of a farm (100 m2) was
dedicated for testing the behavior of the prototype.

5.1. Experimental results. As well known, the accuracy of the ESM is a significant
factor for the success of the proposed method. Consequently, the accuracy of ESM must
be found and compared with the actual reads. Thus, the actual soil moisture was read
using on-field soil sensor and ESM was calculated for 7 days (three times/day). The ESM
is obtained based on the EEavr, which is calculated utilizing FFNN/hour (as illustrated
in Section 3 above) and crop characteristic Kc coefficient (as shown in Equations (2) and
(3)), which illustrates how to obtain ESM at time t+ 1. Table 2 illustrates the sample of
evaporation based on actual evaporation for 7 hours and EEavr obtained after applying
the developed FFNN.

Table 2. Sample of evaporation based on actual data and EEavr

Evaporation in mm/hours EEavr (obtained by FFNN) Absolute error
0.030112 0.0629 0.032788
0.048703 0.07261 0.023907
0.047237 0.070818 0.02358
0.041905 0.073469 0.031564
0.036698 0.075245 0.038547
0.014115 0.075136 0.06102
0.005692 0.068293 0.062601

Figure 4 illustrates a comparison between actual soil moisture and ESM for a 7-day
duration. The RMSE between the actual soil moisture and ESM was approximately 0.39,
whereas the MSE was approximately 0.154.

The prototype of SMCSIS was applied on small part of a 100 m2 farm for growing
potato. A set of on-field sensors was deployed to collect data from the farm. For evaluation
of the system performance, the system prototype was used to control the irrigation process
for the period between September and January. Three parts of the farm (all had the
same area of 100 m2) were irrigated under different scenarios to test and validate the
performance of the irrigation system. The first scenario was performing manual irrigation
under the supervision of an agronomist. In the second scenario, the irrigation process
was performed automatically on the basis of on-field sensor reads. In this scenario, the
on-field soil moisture was read three times per day in case of hot-dry weather. Otherwise,
it was read two-times/day. The watering decision was made on the basis of the degree
of soil moisture compared with the minimum permissible moisture for the crop. This
scenario did not consider the rainfall within the next hours. In the third scenario, the
prototype of SMCSIS was applied to controling the irrigation process. Table 3 illustrates
the ratio of water consumption of scenarios 2 and 3 with respect to scenario 1. The
ratio of water consumption was calculated for two cases (non-rainy and rainy days). In
the non-rainy days, scenario 2 and scenario 3 showed comparable improvement in water
consumption because scenario 3 applied the scenario 2 algorithm. The small increase in
water consumption in scenario 3 was due to the time estimation of the next read that was
based on weather forecasting. In the rainy days, scenarios 1 and 3 outperformed scenario
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Figure 4. Actual and estimated soil moisture for 7 days duration

Table 3. Water consumption (WCon) scenarios 2 and 3 with respect to
scenario 1

Cases Scenario 2 (S2) Scenario 3 (S3)

Non-rainy days
WConS2/WConS1 Water saving WConS3/WConS1 Water saving

0.83612 0.16388 0.841173 0.158827
Rainy days 1.044383 (excessive irrigation) 0.909847 0.090153

2 because they considered the rainfall within the next 24 hours before making irrigation
decision.
The significant problem faced by potato cultivation is rot, which is caused by excessive

irrigation. The problem of excessive irrigation appears when the watering process is
carried out shortly before the rain. The experimental results showed an increase in rotting
ratios of the potato crop in the second scenario (approximately 6%) compared with that
in the other two scenarios (very low rotting ratios of ∼1%). The experimental results
proved the effectiveness of the proposed system in saving water and avoiding excessive
irrigation. Finally, the suggested FFNN proved to be effective in estimating evaporation
based on the five factors (air temperature, humidity, wind speed and direction, and UV).

5.2. Flow of control. The sensors are initially activated on the basis of the irrigation
schedule for the crop under normal conditions of the season (or manually by the farmer).
The amount of water for irrigation is specified on the basis of climate forecasting, soil-
moisture sensor reads, and crop information. The time of the next sensor activation is
also specified, and the irrigation schedule will be updated correspondingly. The designed
system is a mobile application. User could use the mobile application and set information
about the crop to the Arduino board. The irrigation process is illustrated in the irrigation
algorithm of the prototype.

The prototype of the proposed irrigation algorithm
Setup stage
1) Register trustee group, and specify users authority
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2) Construct crops database
Processing stage
1) User log-in and authentication
2) Enter information about the crop (crop-type, crop-age, soil-type), and the season
3) The system will search the database to specify the initial irrigation schedule, Kc

factor, and the Min/Max required soil moisture
4) Send the commands to Arduino to activate soil moisture sensor (SM), and UV

(Light) sensor.
5) Receive the sensors readings (SM and UV) from sensors
6) Mobile application will access online climate to check for rainfall for the period

between two successive irrigations
7) If no rainfall within the specified period, call NPI algorithm, else call PI algorithm
8) Ask for user approval on the irrigation decision (optional in the prototype)
9) Register all activities in audit trail file
10) Send messages to all trustee group in the chain (utilize blockchain to preserve

data integrity)
The prototype provides friendly interface, where user could choose one of four different

ways to send command to Arduino (Terminal, Arrow keys, Button and Slider, and Voice
Control).

6. Conclusions. In this study, SMCSIS was developed to overcome the excessive irri-
gation problem (caused by precipitation) and to improve water consumption. In SMC-
SIS, estimated evaporation was calculated using FFNN, which was trained in using five
features (temperature, humidity, wind speed, direction, and UV) collected from online
weather forecasting. EE avr was then used to calculate ESM at time T . The performance
of FFNN was measured using RMSE (∼0.0890). Despite the weather forecast error, FFNN
was proven to be efficient in estimating evaporation on the basis of weather prediction.
ESM was then calculated in accordance with EE avr and Kc coefficient. The experimental
results showed that the estimation was comparable to the actual soil moisture, where
RMSE was ∼0.39. Real-time watering decision was made on the basis of ESM at the time
of precipitation in rainy days and the time table of soil moisture sensor read in non-rainy
days.

In this study, real-time watering decision was made on the basis of an estimate of soil
moisture and probability of precipitation for the coming hours. Two algorithms were
proposed to control the irrigation process and make the irrigation decision. An algorithm
was initially proposed to determine the next watering schedule (time) in accordance with
ESM, which was then used to make the watering decision on non-rainy days. Another
algorithm was proposed to control the irrigation process, taking account of rainfall during
the coming hours to overcome excessive irrigation. A prototype for controlling the irriga-
tion process of the 100 m2 potato farm was developed to test and evaluate the performance
of the proposed irrigation system. The experimental results proved the effectiveness of
the proposed system in saving water and avoiding excessive irrigation.
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