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Abstract. An element a of a semigroup S is called a left (right) magnifying element
if there exists a proper subset M of S satisfying aM = S (Ma = S). Let E be an equiv-
alence relation and P = {Xi | i ∈ Λ} be a partition on a nonempty set X. We consider
the set PE(X,P) = {α ∈ P (X) | ∀(x, y) ∈ E, (xα, yα) ∈ E and Xiα ⊆ Xi for all i ∈ Λ},
which is a submonoid of P (X), the set of all maps from A to X where A ⊆ X. The
main propose of this paper is to establish the necessary and sufficient conditions for ele-
ments in PE(X,P) to be a left or right magnifying element. The exposition of our results
provides the conceptual and practical application in establishing magnifying elements in
some submonoid of P (X). Furthermore, the characterization of these elements in gen-
eralized transformation semigroup is able to be a standard tool of studying more complex
transformation semigroups.
Keywords: Magnifying elements, Partial transformation semigroups, Equivalence rela-
tions, Partitions

1. Introduction. Let P (X) be the set of all maps from A to a nonempty set X where
A ⊆ X. It is well-known that P (X) is a semigroup under the composition of functions
with identity map idX or a monoid of all partial transformations on a nonempty set X.
Recall that an element a of a semigroup S is called a left (right) magnifying element if
there exists a proper subset M of S satisfying aM = S (Ma = S). This notion was
established by Ljapin [1] in 1963. The principal reason for establishing this element in
a semigroup is applying the useful properties if the semigroup with unit contains magni-
fying elements. This semigroup has many properties which is noted in [1], for example,
every magnifying element in the semigroup with unit is regular, an infinite monogenic
semigroup can be generated by every magnifying element in the semigroup with unit.
Moreover, magnifying elements property coincided with the property of invertibility of
that elements, e.g., every right magnifying element of a semigroup is left invertible but
not right invertible, every left magnifying element of a semigroup is right invertible but
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not left invertible. Actually, many researchers are interested in many elements in a semi-
group such as ideals, regulars, inverse elements, and idempotents. The study of these
elements had a long and fruitful idea in researches of semigroups. For instance, Chinram
and Gaketem studied essential (m,n)-ideal and essential fuzzy (m,n)-ideals in a semi-
group which play the important roles in studying of semigroups [12]. So it is also worth
studying magnifying elements in a semigroup, especially, transformation semigroups since
it appears everywhere in studying of mathematics. It is interesting and natural. As the
usual composition of transformations is associative, the set of transformations, respect
to the composition, forms a semigroup. Among all transformation semigroups, one that
is much interesting is the partial transformation semigroup which is large and important
enough in this field to be studied.
The investigations of magnifying elements in a semigroup were formed about 30 years

ago after the element was mentioned. In 1992, Catino and Migliorini [2] showed that
for a bisimple monoid S, either S is a group or S contains left and right magnifying
elements. Furthermore, they pointed out that in a monoid the existence of left magnifying
elements implies the existence of right magnifying elements, and vice versa. Two years
later, the conditions for elements to be a magnifying element in any submonoid of the
full transformation monoid were set up by Magill [3]. Recently, Luangchaisri et al. [5]
characterized left and right magnifying elements in P (X), which generalized those by
Magill given in [3]. In [4], Prakitsri determined the existence of left and right magnifying
elements in the linear transformation semigroups with infinite nullity and co-rank. Many
authors have extensively studied the transformation monoids that preserve an equivalence
relation in many aspects, e.g., regularity, Green’s equivalences, and natural partial orders
(see, for example, [6], [7], [8], [9] and [10]). In 2016, Purisang and Rakbud [11] investigated
the regularity of some submonoids of P (X) which is defined by a partition on X. In
2018, Chinram et al. [13] examined the magnifying elements in the monoid of all full
transformations which is a submonoid of P (X) preserving a partition on X.
We are motivated not only by its roles in the semigroup theory but also by our strong

belief that these elements in generalized transformation semigroup are to be able to be
standard tools for dealing with real world problems. Let us consider the following situa-
tion. The company plans to increase the efficiency of the organization. There are many
tasks to do but the company has the only one leader. The leader wants to find the repre-
sentatives to do all tasks perfectly without the laborious extravagance. Ideally, we assume
that one product needs infinite methods, both the leader and each employee have to weigh
their capabilities or satisfactions to each method by 1, 2, 3, . . . under the conditions each
method must have only one weight but some methods can have the same weight. From
this idea, the set of employee forms a semigroup of full transformations on a set N. If the
capable function of the leader satisfying the conditions to be a left or right magnifying
element, then we can choose some proper set of all employees to work having a perfor-
mance as good as all employee. In case some of the employees cannot do some methods
and hence we do not care if these employees do not weigh some methods. Then the set
of employee form a semigroups of the partial transformations on a set N.
Previously, the authors published the conditions for elements being left or right magni-

fying in the monoid of all full transformations preserving both an equivalence relation and
a partition on the set X in [14], and in the monoid of partial transformations preserving
an equivalence relation in [15]. However, no one has yet studied magnifying elements
in P (X) preserving both an equivalence relation and a partition on the set X. Conse-
quently, we will study magnifying elements in the semigroup of all partial transformations
preserving an equivalence relation E and a partition P on a nonempty set X denoted by

PE(X,P) = {α ∈ P (X) | ∀(x, y) ∈ E, (xα, yα) ∈ E and Xiα ⊆ Xi for all i ∈ Λ},
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where P = {Xi | i ∈ Λ}, a family of nonempty subsets of X satisfying X =
∪

i∈ΛXi and
Xi ∩Xj = ∅ for all i, j ∈ Λ such that i ̸= j.

2. Preliminaries. In this section, we would like to introduce the reader to the basic
concepts of the abstract theory of semigroups.

A binary operation on a set S is a mapping from the set of all order pairs of elements
of S into S.

A binary operation · on a set S is called associative if a · (b · c) = (a · b) · c for every
a, b, c ∈ S.

A semigroup is a system (S, ·) consisting of a nonempty set S together with the binary
associative operation ·, i.e., a · b belongs to S and (a · b) · c = a · (b · c) for all elements
a, b, c in S.

For convenience, we write S instead of (S, ·) and let ab stand for a · b for any elements
a, b in S.

A subset T of a semigroup S is called a subsemigroup of S if T is a semigroup under
the operation of S.

A non-empty set T of a semigroup S is a subsemigroup of S if a, b ∈ T , then ab ∈ T .
The intersection of any set of subsemigroup of S is either an empty set or a subsemigroup

of S.
An element a of a semigroup S is called a left (right) magnifying element if there exists

a proper subset M of S such that aM = S (Ma = S).
Let X be a nonempty set. A partial transformation of X is the collection of mappings

from a subset of X into X with composition which is denoted by P (X). Throughout
the rest of this paper, for any α, β ∈ P (X) and x ∈ X, the notations xα and xαβ are
used instead of α(x) and (β ◦ α)(x), respectively. By the composition of mappings, it is
closed and associative law holds. Therefore, P (X) is a semigroup under the composition
of functions. We then call P (X) the partial transformation semigroup.

The transformation on a nonempty set X is a mapping of X into itself. We denote
T (X) the set of all transformation on X. Clearly, T (X) is a subsemigroup of P (X). We
then call T (X) the full transformation semigroup.

A mapping α from a set X into itself is said to be surjective if every element of x′ ∈ X
there exists a least one element x ∈ X such that xα = x′.

A mapping α from a set X into itself is said to be injective if distinct elements of X
are mapped by α into distinct elements, i.e., if x1α = x2α, then x1 = x2.

A monoid is a semigroup S containing an identity element e ∈ S such that for all a ∈ S,
ea = a = ae.

Since the identity mapping on X belongs to P (X), we have P (X) as a monoid.
If X is a non-empty set, then a subset E of the direct product X × X is called a

relation on X. For elements x, y ∈ X, we may write (x, y) ∈ E or xEy if x relates to y by
a relation E. A relation E on a set X is called an equivalence relation on X if it satisfies
the following properties:

1) reflexive, i.e., (x, x) ∈ E for all x ∈ X,
2) symmetric, i.e., for all x, y ∈ X, if (x, y) ∈ E, then (y, x) ∈ E,
3) transitive, i.e., for all x, y, z ∈ X, if (x, y) ∈ E and (y, z) ∈ E, then (x, z) ∈ E.

In this paper, the equivalence class of element x in a nonempty set X determined by E
is denoted by [x]E = {y ∈ X | xEy}. Let X/E = {[x]E | x ∈ X} and (Xi, xj) = Xi∩ [xj]E
for xj ∈ X and Xi ∈ P .

Let PE(X) = {α ∈ P (X) | ∀(x, y) ∈ E, (xα, yα) ∈ E} denote the set of all partial
transformations on X that preserves an equivalence relation E.
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Theorem 2.1. PE(X) is a submonoid of P (X).

Proof: Clearly, PE(X) is a subset of P (X) and the identity mapping on X belongs to
PE(X). Let α, β ∈ PE(X) and let x, y ∈ X be such that (x, y) ∈ E. Then (xα, yα) ∈ E
and hence (xαβ, yαβ) ∈ E. So αβ ∈ PE(X). Therefore, PE(X) is a submonoid of P (X).
�
Theorem 2.2. [15] Let E be an equivalence relation on a set X. A function α ∈ PE(X)
is a left magnifying element if and only if α is injective but not surjective, domα = X
and for any x, y ∈ X, (xα, yα) ∈ E implies (x, y) ∈ E.

Theorem 2.3. [15] Let E be an equivalence relation on a set X. A function α ∈ PE(X)
is a right magnifying element if and only if α is surjective, for any (x, y) ∈ E, there exists
(a, b) ∈ E such that x = aα and y = bα and either

1) domα ̸= X or
2) domα = X and α is not injective.

Let P (X,P) = {Xiα ⊆ Xi for all i ∈ Λ} denote the set of all partial transformations
on X that preserves a partition P on X.

Theorem 2.4. P (X,P) is a submonoid of P (X).

Proof: Clearly, P (X,P) is a subset of P (X) and the identity mapping on X belongs
to P (X,P). Let α, β ∈ P (X,P) and let x ∈ Xi for some i ∈ Λ. Then xα ∈ Xi and hence
xαβ ∈ Xi. So αβ ∈ P (X,P). Therefore, P (X,P) is a submonoid of P (X). �
We then define

PE(X,P) = {α ∈ P (X) | ∀(x, y) ∈ E, (xα, yα) ∈ E and Xiα ⊆ Xi for all i ∈ Λ},
which is an intersection of PE(X) and P (X,P). Since the identity mapping on X belongs
to PE(X) and P (X,P), PE(X,P) is non-empty and hence PE(X,P) is a subsemigroup
of PE(X) and P (X,P). Evidently, PE(X,P) is a submonoid of P (X).
Note that if the equivalence relation E is trivial, i.e., E = X × X or E = idX , then

PE(X,P) = P (X,P); and if P = {X}, then PE(X,P) = PE(X). Moreover, PE(X,P) =
P (X) if the equivalence relation E is trivial and the partition P = {X}. If all elements
in P are singleton sets, then PE(X,P) is the set of all restrictions of the identity function
on a set X to a subset A of X.

3. Main Results.

3.1. Left magnifying elements in PE(X,P). In this section, we provide the existence
and some properties of left magnifying elements in PE(X,P). The necessary and sufficient
conditions of functions in this monoid to be left magnifying elements are established.

Lemma 3.1. If α is a left magnifying element in PE(X,P), then α is an injection and
domα = X.

Proof: Assume that α is a left magnifying element in PE(X,P). Then there is a
proper subset M of PE(X,P) such that αM = PE(X,P). Since the identity map idX on
X belongs to PE(X,P), αβ = idX for some β ∈ M . This implies that α is injective and
domα = X. �
Nevertheless, the converse of Lemma 3.1 is not true in general since there is no proper

subset M of PE(X,P) such that idXM = PE(X,P).

Lemma 3.2. Let α be a left magnifying element in PE(X,P). For any x, y ∈ X, (xα, yα)∈
E implies (x, y) ∈ E.
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Proof: Assume that α is a left magnifying element in PE(X,P). Then there is a proper
subset M of PE(X,P) such that αM = PE(X,P). Then αβ = idX for some β ∈ M . Let
x, y ∈ X be such that (xα, yα) ∈ E. Therefore, (x, y) = (xidX , yidX) = (xαβ, yαβ) ∈ E
since β ∈ PE(X,P). �

Note that for any function α ∈ PE(X,P), for any j ∈ Λ, xα ∈ Xj implies x ∈ Xj as
well.

Lemma 3.3. If α ∈ PE(X,P) is bijective on X, then α is not a left magnifying element.

Proof: Assume that α ∈ PE(X,P) is bijective on X. So α−1 is also bijective on
X. Suppose that α is a left magnifying element. Then there exists a proper subset M
of PE(X,P) satisfying αM = PE(X,P). Clearly, αM = αPE(X,P). Therefore, M =
α−1αM = α−1αPE(X,P) = PE(X,P), which is a contradiction. �

By Lemmas 3.1, 3.2, and 3.3, we obtain the following corollary.

Corollary 3.1. If α is a left magnifying element in PE(X,P), then α is injective but not
surjective, domα = X and for any x, y ∈ X, (xα, yα) ∈ E implies (x, y) ∈ E.

Lemma 3.4. Let P = {Xi | i ∈ Λ} be a partition on a set X. If Xi ∈ P is finite for all
i ∈ Λ, then there exists no left magnifying element in PE(X,P).

Proof: Suppose to the contrary that there is a left magnifying element α in PE(X,P).

By assumption and Lemma 3.1, α|Xi
is bijective for all i ∈ Λ. Since Xα =

(∪
i∈Λ

Xi

)
α =∪

i∈Λ
Xiα =

∪
i∈Λ

Xi = X, α is surjective which is a contradiction. �

From Lemma 3.4, it is noticeable that if a left magnifying element exists in PE(X,P),
then Xi ∈ P is infinite for some i ∈ Λ. Nevertheless, the converse of this statement is not
true in general. It is illustrated by the following counterexample.

Example 3.1. Let X = Z and P = {Xi | i ∈ N ∪ {0}} be a partition on X where
X0 = {−(2n−1), 2n−1 | n ∈ N}∪{0} and Xi = {−2i, 2i} for all i ∈ N. Define a relation

E on X by E =
∞∪
j=1

(Aj × Aj), where A1 = {0,±1,±2} and Aj = {±(2j − 1),±2j} for

all positive integers j ≥ 2. Clearly, X0 ∈ P is infinite and E is an equivalence relation
on X. We can see that every injection on X in PE(X,P) is surjective on X. Then there
exists no left magnifying element in PE(X,P).

As an immediate consequence of Lemma 3.4 we have the following result.

Corollary 3.2. If X is a finite set, then PE(X,P) has no left magnifying elements.

Lemma 3.5. Let P = {Xi | i ∈ Λ} be a partition on a set X such that Xi is infinite
for some i ∈ Λ. If α ∈ PE(X,P) is injective but not surjective, domα = X and for any
x, y ∈ X, (xα, yα) ∈ E implies (x, y) ∈ E, then α is a left magnifying element.

Proof: Assume that α ∈ PE(X,P) is injective but not surjective, domα = X and for
any x, y ∈ X, (xα, yα) ∈ E implies (x, y) ∈ E. Let M = {β ∈ PE(X,P) | dom β ⊆
ranα}. Clearly, M is a proper subset of PE(X,P). Claim that αM = PE(X,P). Let
γ ∈ PE(X,P). Choose yx ∈ domα such that yxα = x for each x ∈ (dom γ)α. Define
a function β ∈ P (X) by xβ = yxγ for all x ∈ (dom γ)α. To show that β ∈ M , let
a, b ∈ (dom γ)α be such that (a, b) ∈ E. By Lemma 3.2, there exist ya, yb ∈ domα such
that yaα = a, ybα = b and (ya, yb) ∈ E. Therefore, (aβ, bβ) = (yaγ, ybγ) ∈ E since
γ ∈ PE(X,P). Next, let x ∈ (dom γ)α be such that x ∈ Xi for some Xi ∈ P . Then
there exists yx ∈ domα such that yxα = x and yx ∈ Xi. Therefore, xβ = yxγ ∈ Xi since
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γ ∈ PE(X,P). Therefore, β ∈ PE(X,P). Clearly, dom β = (dom γ)α ⊆ ranα. Therefore,
β ∈ M . Let x ∈ dom γ. Then xαβ = yxαγ. Since yxαα = xα and α is injective, yxα = x.
Hence, xαβ = xγ. �
The following examples illuminate the ideas of the proof given in Lemma 3.5.

Example 3.2. Let X = N and P = {{1}, {2}, {3, 4, 5}, {6, 7, 8, 9, . . .}} be a partition on
X. Define a relation E on X by (x, y) ∈ E if and only if

⌊
x
3

⌋
=

⌊
y
3

⌋
. It is obvious that

E is an equivalence relation on X and X/E = {{1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10, 11}, . . .}.
We now see that {6, 7, 8, . . .} ∈ P is infinite. Let α be a function defined by

xα =

{
x if x ≤ 5,

x+ 3 if x > 5.

It is easy to see that α ∈ PE(X,P) is injective but not surjective, domα = X and for any
x, y ∈ X, (xα, yα) ∈ E implies (x, y) ∈ E. By Lemma 3.5, α is a left magnifying element.
Let M = {β ∈ PE(X,P) | dom β ⊆ ranα} and consider the element γ ∈ PE(X,P), which
is defined by

xγ =

{
x if x ≤ 4,

x− 3 if x > 8.

Then there exists an element β ∈ M such that αβ = γ. We illustrate the idea by consid-
ering 9, 10 ∈ dom γ. Hence, 12, 13 ∈ (dom γ)α such that y12 = 9 and y13 = 10. Therefore,
12β = y12γ = 9γ = 6 and 13β = y13γ = 10γ = 7. To get the desired result, define a
function β in PE(X,P) by

xβ =

{
x if x ≤ 4,

x− 6 if x > 11.

Clearly, β ∈ M and αβ = γ.

By Corollary 3.1 and Lemma 3.5, we obtain the following theorem.

Theorem 3.1. Let P = {Xi | i ∈ Λ} be a partition on a set X such that Xi is infinite
for some i ∈ Λ. A function α ∈ PE(X,P) is a left magnifying element if and only if α
is injective but not surjective, domα = X and for any x, y ∈ X, (xα, yα) ∈ E implies
(x, y) ∈ E.

Although Theorem 3.1 resembles our results in [15], the construction of the proof is
more complicated because it is influenced by preserving both an equivalence relation and
a partition. Even we obtained the result that if P = {Xi | i ∈ Λ}, a partition on a
set X having at least one infinite partition, then we can find the conditions for elements
to be a left magnifying element, but we may fail to find a such element satisfying those
conditions. However, in case there is exactly one element Xi ∈ P such that [x]E ⊆ Xi for
all x ∈ X, the existence of left magnifying elements is proved in the next theorem.

Theorem 3.2. Let P = {Xi | i ∈ Λ} be a partition and E be an equivalence relation on a
set X such that for each x ∈ X, there is exactly one Xi ∈ P such that [x]E ⊆ Xi. There
exists a left magnifying element in PE(X,P) if and only if there is Xj ∈ P such that Xj

is infinite.

Proof: The necessity is obtained by Lemma 3.4. Conversely, suppose that there exists
Xj ∈ P such that Xj is infinite.
Case 1: There exists t ∈ X such that (Xj, t) is infinite. Then there is a proper subset

S of (Xj, t) such that |S| = |(Xj, t)| = |(Xj, t) \ S|. So there is a bijection γ from (Xj, t)



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.1, 2022 139

to S. Define a function α by

xα =

{
xγ if x ∈ (Xj, t),

x otherwise.

Clearly, α ∈ PE(X,P) and α is injective. Hence, ranα ⊆ X \ ((Xj, t) \ S) ̸= X. Then α
is injective but not surjective. Obviously, domα = X and for any x, y ∈ X, (xα, yα) ∈ E
implies (x, y) ∈ E. By Theorem 3.1, α is a left magnifying element.

Case 2: (Xj, t) is finite for all t ∈ X.
Case 2.1: There is a natural number n such that K = {(Xj, t) | t ∈ X and |(Xj, t)| =

n} is infinite. Then there exists a proper subset K ′ of K such that |K ′| = |K| = |K \K ′|.
There is a bijection λ from K to K ′. So |A| = |Aλ| = n for all A ∈ K. Hence, for all

A ∈ K, there exists a bijection ηA from A to Aλ. Let η =
∪
A∈K

ηA. Then η is a bijection

from
∪
A∈K

A to
∪

A∈K′

A. Define a function α by

xα =

xη if x ∈
∪
A∈K

A,

x otherwise.

Clearly, α ∈ PE(X,P) is injective. Since ranα = X \
∪

A∈K\K′

A ̸= X, α is not surjective.

Obviously, domα = X and for any x, y ∈ X, (xα, yα) ∈ E implies (x, y) ∈ E. By
Theorem 3.1, α is a left magnifying element.

Case 2.2: For all n ∈ N, the set K = {(Xj, t) | t ∈ X and |(Xj, t)| = n} is finite.
Then for each t ∈ X, there exists t′ ∈ X such that |(Xj, t)| < |(Xj, t

′)|. Let A = {(Xj, t) |
[t]E ⊆ Xj}. In this case, A is an infinite set. Let n1 = min

(Xj ,t)∈A
|(Xj, t)| and K1 = {(Xj, t) |

|(Xj, t)| = n1}. Choose (Xj, t1) ∈ K1. Let n2 = min
(Xj ,t)∈A1

|(Xj, t)| where A1 = A \ K1

and K2 = {(Xj, t) | |(Xj, t)| = n2}. Choose (Xj, t2) ∈ K2. Proceeding in this way, we
obtain the sets (Xj, t1), (Xj, t2), . . . , (Xj, tk), . . . and positive integers n1, n2, . . . , nk, . . .

such that nk = min
(Xj ,t)∈Ak

|(Xj, t)| where Ak = A \
∪k−1

l=1 Kl and (Xj, tk) ∈ Kk, where

Kk = {(Xj, t) | |(Xj, t)| = nk} for all k ≥ 2. Clearly, n1 < n2 < · · · < nk < · · · . Next, we
let B = {(Xj, tl) | l ≥ 1}. Then |(Xj, tl)| < |(Xj, tl+1)| for all l ≥ 1. Hence, there exists

an injection γl : (Xj, tl) → (Xj, tl+1). Let γ =
∪
l≥1

γl. Then γ is an injection on
∪
C∈B

C.

Next, define a function α by

xα =

xγ if x ∈
∪
C∈B

C,

x otherwise.

Clearly, α ∈ PE(X,P) and α is injective. Since ranα ⊆ X \ (Xj, t1) ̸= X, α is not
surjective. Obviously, domα = X and for any x, y ∈ X, (xα, yα) ∈ E implies (x, y) ∈ E.
By Theorem 3.1, α is a left magnifying element. �

3.2. Right magnifying elements in PE(X,P). In this section, we provide the ex-
istence and some properties of right magnifying elements in PE(X,P). The necessary
and sufficient conditions of functions in this monoid to be right magnifying elements are
established.
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Lemma 3.6. If α is a right magnifying element in PE(X,P), then α is surjective.

Proof: Assume that α is a right magnifying element in PE(X,P). Then there exists a
proper subset M of PE(X,P) satisfying Mα = PE(X,P). Clearly, the identity map idX
on X belongs to PE(X,P). So there exists β ∈ M such that βα = idX . This implies that
α is surjective. �
It is clear that for any surjection α ∈ PE(X,P), if x ∈ Xi, then there exists an element

a ∈ Xi such that aα = x. Consequently, any right magnifying element has this property
by Lemma 3.6.

Lemma 3.7. Let α be a right magnifying element in PE(X,P). For any (x, y) ∈ E, there
exists (a, b) ∈ E such that x = aα, y = bα.

Proof: Assume that α is a right magnifying element in PE(X,P). Then there exists
a proper subset M of PE(X,P) satisfying Mα = PE(X,P). Since idX ∈ PE(X,P),
βα = idX for some β ∈ M . Let x, y ∈ X be such that (x, y) ∈ E. Then xβα = x and
yβα = y. Since β ∈ PE(X,P), we have (xβ, yβ) ∈ E. Choose a = xβ and b = yβ. This
completes the proof. �
Lemma 3.8. If α ∈ PE(X,P) is bijective and domα = X, then α is not a right magni-
fying element.

Proof: Assume that α ∈ PE(X,P) is bijective and domα = X. So α−1 is bijective
on X. Suppose that α is a right magnifying element. Then there is a proper subset M
of PE(X,P) satisfying Mα = PE(X,P). Clearly, Mα = PE(X,P)α. Therefore, M =
Mαα−1 = PE(X,P)αα−1 = PE(X,P), which is a contradiction. �
By Lemmas 3.6, 3.7, and 3.8, we obtain the following corollary.

Corollary 3.3. If α is a right magnifying element in PE(X,P) and domα = X, then
α is surjective but not injective and for any (x, y) ∈ E, there exists (a, b) ∈ E such that
x = aα, y = bα.

Lemma 3.9. Let P = {Xi | i ∈ Λ} be a partition on a set X. If Xi is finite for all i ∈ Λ,
then there exists no right magnifying element in PE(X,P).

Proof: Suppose to the contrary that there is a right magnifying element α ∈ PE(X,P).
By assumption and Lemma 3.6, α is surjective and hence domα = X since Xiα ⊆ Xi is
finite for all i ∈ Λ. So α|Xi

is surjective on Xi and hence α|Xi
is bijective on Xi. Since

Xα =

(∪
i∈Λ

Xi

)
α =

∪
i∈Λ

Xiα = X, α is injective on X which is a contradiction. �

From Lemma 3.9, it is noticeable that if a right magnifying element exists in PE(X,P),
then Xi is infinite for some i ∈ Λ. However, the converse of this statement is not true in
general. It is illustrated by the following counterexample.

Example 3.3. Let X = Z and P = {Xi | i ∈ N ∪ {0}} be a partition on X where
X0 = {0,−1,−2, . . .} and Xi = {2i − 1, 2i} for all i ∈ N. Define a relation E on X by
E =

∪∞
j=1(Aj × Aj) where A1 = {0,±1,±2} and Aj = {±(2j − 1),±2j} for all positive

integers j ≥ 2. It is easy to check that every surjection in PE(X,P) is bijective on X.
Hence, there exists no right magnifying element in PE(X,P).

Corollary 3.4. If X is a finite set, then PE(X,P) has no right magnifying elements.

Lemma 3.10. Let P = {Xi | i ∈ Λ} be a partition on a set X such that Xi is infinite
for some i ∈ Λ. If α ∈ PE(X,P) is surjective but not injective, domα = X and for
any (x, y) ∈ E, there exists (a, b) ∈ E such that x = aα and y = bα, then α is a right
magnifying element.
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Proof: Assume that α ∈ PE(X,P) is surjective but not injective, domα = X and for
any (x, y) ∈ E, there exists (a, b) ∈ E such that x = aα and y = bα. Let M = {β ∈
PE(X,P) | β is not surjective} and γ be a function in PE(X,P). Since α is surjective,
for each x ∈ dom γ such that xγ ∈ Xi for some Xi ∈ P , there exists yx ∈ Xi such
that yxα = xγ. Define β ∈ P (X) by xβ = yx for all x ∈ dom γ (if x1γ = x2γ, then
choose yx1 = yx2 and if (x1γ, x2γ) ∈ E, then choose (yx1 , yx2) ∈ E). To show that
β ∈ PE(X,P), let a, b ∈ X be such that (a, b) ∈ E. Since γ belongs to PE(X,P),
(aγ, bγ) ∈ E. By assumption, we can choose (ya, yb) ∈ E such that yaα = a and ybα = b.
Then (aβ, bβ) = (ya, yb) ∈ E. Clearly, β ∈ P (X,P). Therefore, β ∈ PE(X,P). By
assumption, there exist x, y ∈ X such that xα = yα. Thus, at least one of x and y does
not belong to ran β. So β ∈ M . For all x ∈ X, xβα = yxα = xγ. Therefore, α is a right
magnifying element. �
Example 3.4. Let X = N and P = {{1, 3, 5, . . .}, {2, 4, 6, . . .}} be a partition on X.
Define a relation E on X by (x, y) ∈ E if and only if

⌊
x
3

⌋
=

⌊
y
3

⌋
. It is obvious that E is

an equivalence relation on X and X/E = {{1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10, 11}, . . .}. We
now see that {1, 3, 5, . . .} ∈ P is infinite. Let α be a function defined by

xα =

{
x if x ≤ 8,

x− 6 if x > 8.

It is easy to see that α ∈ PE(X,P) is surjective but not injective, domα = X and for any
(x, y) ∈ E, there exists (a, b) ∈ E such that x = aα and y = bα. By Lemma 3.10, α is
a right magnifying element. Let M = {β ∈ PE(X,P) | β is not surjective} and consider
the element γ ∈ PE(X,P), which is defined by

xγ =

{
x if x ≤ 5,

x− 12 if x ≥ 15.

Then there exists an element β ∈ M such that βα = γ. We illustrate the idea by consid-
ering 3, 4, 15, 16 ∈ dom γ. We can see that 3γ = 15γ = 3 and 4γ = 16γ = 4. Now we
have 2 possibilities for each y3 and y4, i.e., y3 = 3 or 9 and y4 = 4 or 10. If we follow the
proof of Lemma 3.10, then we choose y3 = y15 = 9. Since (3γ, 4γ) ∈ E, we must choose
y4 = y16 = 10. To get the desired result, define a function β in PE(X,P) by 3β = 15β = 9,
4β = 16β = 10, 5β = 17β = 11 and

xβ =

{
x if x ≤ 2,

x− 6 if x ≥ 18.

Clearly, β ∈ M and βα = γ.

Lemma 3.11. Let P = {Xi | i ∈ Λ} be a partition on a set X such that Xi is infinite for
some i ∈ Λ and TE(X,P) = {α ∈ PE(X,P) | domα = X}. If α ∈ PE(X,P) \ TE(X,P)
is surjective and for any (x, y) ∈ E, there exists (a, b) ∈ E such that x = aα and y = bα,
then α is a right magnifying element.

Proof: Let α ∈ PE(X,P) \ TE(X,P) be surjective and for any (x, y) ∈ E, there exists
(a, b) ∈ E such that x = aα and y = bα. Let M = {β ∈ PE(X,P) | β is not surjective}.
To show that Mα = PE(X,P), let γ be a function in PE(X,P). Since α is surjective,
for each xγ ∈ ran γ, we can choose yxγ ∈ X such that yxγα = xγ. Then we define a
function β by xβ = yxγ for all x ∈ dom γ. Clearly, β ∈ P (X). Let a, b ∈ dom γ be such
that (a, b) ∈ E. Then (aγ, bγ) ∈ E since γ ∈ PE(X,P). By assumption, there exists
(aβ, bβ) = (yaγ, ybγ) ∈ E such that yaγα = aγ and ybγα = bγ. Let a ∈ dom γ be such
that a ∈ Xi. Hence, aγ ∈ Xi. Then there exists yaγ ∈ Xi such that yaγα = aγ. So
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aβ = yaγ ∈ Xi. Since ran β ⊆ domα ̸= X, β is not surjective. Thus, β ∈ M . For all
x ∈ X, xβα = yxγα = xγ. Therefore, α is a right magnifying element. �
Example 3.5. Let X = N and P = {{1, 3, 5, . . .}, {2, 4, 6, . . .}} be a partition on X.
Define a relation E on X by (x, y) ∈ E if and only if

⌊
x
3

⌋
=

⌊
y
3

⌋
. It is obvious that E is

an equivalence relation on X and X/E = {{1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10, 11}, . . .}. We
now see that {1, 3, 5, . . .} ∈ P is infinite. Let α be a function defined by

xα =

{
x if x ≤ 5,

x− 6 if x ≥ 9.

It is easy to see that α ∈ PE(X,P) is surjective, domα ̸= X, and for any (x, y) ∈ E,
there exists (a, b) ∈ E such that x = aα and y = bα. Let M = {β ∈ PE(X,P) | β is not
surjective} and consider the element γ ∈ PE(X,P), which is defined by xγ = x for all
odd positive integers. By Lemma 3.11, α is a right magnifying element and there exists
an element β ∈ M such that βα = γ. To get the desired result, define a function β in
PE(X,P) by 1β = 1 and xβ = x + 6 for all odd positive integers x ≥ 3. Clearly, β ∈ M
and βα = γ.

The next example shows that α is a right magnifying element such that domα ̸= X
and α is bijective.

Example 3.6. Let X = N and P = {X1, X2} be a partition on X where X1 = {1, 3, 5, . . .}
and X2 = {2, 4, 6, . . .}. Define a relation E on X by (x, y) ∈ E if and only if

⌊
x
3

⌋
=

⌊
y
3

⌋
.

It is obvious that E is an equivalence relation on X and X/E = {{1, 2}, {3, 4, 5}, {6, 7, 8},
{9, 10, 11}, . . .}. We now see that X1 ∈ P is infinite. Let α be a function defined by 3α = 1,
4α = 2 and

xα =

{
x if |(X1, x)| = 1,

x− 6 if |(X1, x)| = 2,

for all x > 5. It is easy to see that α ∈ PE(X,P) is bijective, domα ̸= X, and for
any (x, y) ∈ E, there exists (a, b) ∈ E such that x = aα and y = bα. Let M = {β ∈
PE(X,P) | β is not surjective} and consider the element γ ∈ PE(X,P), which is defined
by xγ = x if x ≤ 5 and xγ = x − 6 if x ≥ 12. By Lemma 3.11, α is a right magnifying
element and there exists an element β ∈ M such that βα = γ. To get the desired result,
define a function β in PE(X,P) by xβ = x+ 2 if x = 1, 2, xβ = x+ 6 if x = 3, 4, 5 and

xβ =

{
x if |(X1, x)| = 2,

x− 6 if |(X1, x)| = 1,

for all x > 11. Clearly, β ∈ M and βα = γ.

By Lemmas 3.8 and 3.11 and Corollary 3.3, we obtain the following theorem.

Theorem 3.3. Let E be an equivalence relation on a set X and P = {Xi | i ∈ Λ} be
a partition on X such that Xi is infinite for some i ∈ Λ. A function α ∈ PE(X,P) is
a right magnifying element if and only if α is surjective, for any (x, y) ∈ E, there exists
(a, b) ∈ E such that x = aα and y = bα and either

1) domα ̸= X or
2) domα = X and α is not injective.

Although Theorem 3.3 resembles our results in [15], the construction of the proof is
more complicated because it is influenced by preserving both an equivalence relation and
a partition. Even we obtained the result that if P = {Xi | i ∈ Λ}, a partition on a set
X having at least one infinite partition, then we can find the conditions for elements to
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be a right magnifying element, but we may fail to find a such element satisfying those
conditions. However, in case there is exactly one element Xi ∈ P such that [x]E ⊆ Xi for
all x ∈ X, the existence of right magnifying elements is proved in the next theorem.

Theorem 3.4. Let P = {Xi | i ∈ Λ} be a partition and E be an equivalence relation on a
set X such that for each x ∈ X, there is exactly one Xi ∈ P such that [x]E ⊆ Xi. There
exists a right magnifying element in PE(X,P) if and only if there is Xj ∈ P such that Xj

is infinite.

Proof: The necessity is obtained by Lemma 3.9. On the other hand, suppose that
there exists Xj ∈ P such that Xj is infinite.

Case 1: There exists t ∈ X such that (Xj, t) is infinite. Then there is a proper subset
A of (Xj, t) such that |A| = |(Xj, t)| = |(Xj, t)\A|. So there is a bijective function γ from
A to (Xj, t). Define a function α ∈ PE(X,P) by

xα =

{
xγ if x ∈ A,

x if x ∈ X \ (Xj, t).

Clearly, domα ̸= X, α is surjective and for any (x, y) ∈ E, there exists (a, b) ∈ E such
that x = aα and y = bα. By Theorem 3.3, α is a right magnifying element.

Case 2: (Xj, t) is finite for all t ∈ X.
Case 2.1: There is a natural number n such that K = {(Xj, t) | t ∈ X and |(Xj, t)| =

n} is infinite. Then there exists a proper subset K ′ of K such that |K ′| = |K| = |K \K ′|.
There is a bijective function λ from K ′ to K. So |A| = |Aλ| = n for all A ∈ K ′. Hence,

for all A ∈ K ′, there exists a bijective function γA from A to Aλ. Let γ =
∪

A∈K′

γA. Then

γ is a bijection from
∪

A∈K′

A to
∪
A∈K

A. Define a function α ∈ PE(X,P) by

xα =


xγ if x ∈

∪
A∈K′

A,

x if x ̸∈
∪
A∈K

A.

Clearly, domα ̸= X and α is surjective and for any (x, y) ∈ E, there exists (a, b) ∈ E
such that x = aα and y = bα. By Theorem 3.3, α is a right magnifying element.

Case 2.2: For all n ∈ N, the set K = {(Xj, t) | t ∈ X and |(Xj, t)| = n} is finite.
Then for each t ∈ X, there exists t′ ∈ X such that |(Xj, t)| < |(Xj, t

′)|. Let C = {(Xj, t) |
[t]E ⊆ Xj}. In this case, C is an infinite set. Let n1 = min

(Xj ,t)∈C
|(Xj, t)| and K1 = {(Xj, t) |

|(Xj, t)| = n1}. Choose (Xj, t1) ∈ K1. Let n2 = min
(Xj ,t)∈C1

|(Xj, t)| where C1 = C \ K1

and K2 = {(Xj, t) | |(Xj, t)| = n2}. Choose (Xj, t2) ∈ K2. Proceeding in this way, we
obtain the sets (Xj, t1), (Xj, t2), . . . , (Xj, tk), . . . and positive integers n1, n2, . . . , nk, . . .

such that nk = min
(Xj ,t)∈Ck

|(Xj, t)| where Ck = C \
∪k−1

l=1 Kl and (Xi, tk) ∈ Kk, where Kk =

{(Xj, t) | |(Xj, t)| = nk} for all k ≥ 2. Clearly, n1 < n2 < · · · < nk < · · · . Next, we let
A = {(Xj, ti) | i ≥ 1}. Then |(Xj, ti)| < |(Xj, ti+1)| for all i ≥ 1. Hence, there exists a

surjection γi : (Xj, ti) → (Xj, ti−1) for all i ≥ 2. Let γ =
∪
i≥2

γi. Then γ is a surjection

from
∪
B∈A

B \ (Xj, t1) to
∪
B∈A

B. Next, define a function α ∈ PE(X,P) by
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xα =


xγ if x ∈

∪
B∈A

B \ (Xj, t1),

x if x ∈ X \
∪
B∈A

B.

Clearly, domα ̸= X, α is surjective and for any (x, y) ∈ E, there exists (a, b) ∈ E such
that x = aα and y = bα. By Theorem 3.3, α is a right magnifying element. �

4. Conclusion. Let E be an equivalence relation on a nonempty set X and P = {Xi |
i ∈ Λ} be a partition on X. If Xi is finite for all i ∈ Λ, then neither left magnifying
element nor right magnifying element exists in PE(X,P). Assume that Xi is infinite for
some i ∈ Λ. Each of the following statements holds true.

(1) A function α ∈ PE(X,P) is a left magnifying element if and only if α is injective but
not surjective, domα = X, and for any x, y ∈ X, (xα, yα) ∈ E implies (x, y) ∈ E.

(2) A function α ∈ PE(X,P) is a right magnifying element if and only if α is surjective,
for any (x, y) ∈ E, there exists (a, b) ∈ E such that x = aα and y = bα and either
(a) domα ̸= X or
(b) domα = X and α is not injective.

(3) There are magnifying elements in PE(X,P) if and only if there is Xi ∈ P such that
Xi is infinite, provided that there is exactly one Xi ∈ P such that [x]E ⊆ Xi for all
x ∈ X.

Because of the influence of the simultaneous preserving an equivalence relation and a
partition, the existence of magnifying elements in the last statement has the incremental
part over the literature. It relies on the condition that there is exactly one Xi ∈ P such
that [x]E ⊆ Xi for all x ∈ X. And above all, its ideas can be applied in the more complex
problems which actually occur in the world. For example, one job needs these algorithms
a1, a2, a3, a4, . . .. The employee must weigh each algorithm that they want to do under
the following conditions.
(I) a1 needs a leadership skill.
(II) a2, a3, a4 need a writing skill.
(III) a5, a6, a7, . . . need an interpersonal skill.
(IV) Everyone does not need to weigh for every algorithm.
(V) If somebody want to weigh a1 and a2, then he must weigh a1 as 1 and a2 as 2.
(VI) If somebody want to weigh a3 and a4, then he must weigh a2 and a3 as 3 or 4.
(VII) Each algorithm must have only one weight. However, some algorithms can have

the same weight.
(VIII) The algorithms a5, a6, a7, . . . must have weight over 5, and it cannot be weighed

1, 2, 3 and 4.
From this situation, we can establish the set of algorithm X = {a1, a2, a3, . . .} corre-

sponding to a set of natural numbers. By the conditions (I)-(III), all of algorithms a2,
a3, a4 use the same skill. This implies that if someone can do the algorithm a2, then he
can do the algorithm a3. So it can be substituted for each other. Similarly, a5, a6, a7, . . .
also use the same skill and hence it can be substituted for each other. Thus, we can set
an equivalence relation E on a set X,E = {{a1}, {a2, a3, a4}, {a5, a6, a7, . . .}}. Moreover,
we set a partition P on a set X, P = {{a1, a2}, {a3, a4}, {a5, a6, a7, . . .}}. From each
condition, PE(X,P) is formed. By the conclusion (3), there are magnifying elements in
PE(X,P). For example, A weighs each algorithm as follows:
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Algorithms Weight Arrangement of abilities
a1 1 a1
a2 2 a2
a3 4 a4
a4 3 a3
a5 6 a6
a6 5 a5
a7 7 a7
a8 8 a8
a9 10 a10
a10 9 a9
...

...
...

If we let α be a capable function of A which transforms each algorithm into an arrange-
ment of abilities, then α is a left magnifying element by the conclusion (1). Therefore, A
has the opportunity to be appointed as a leader in case the chain of command is from the
leader to the employee. Similarly, if the process of work is from employee to an approving
of the leader, then we may look for the right magnifying elements. For example, B is not
good at doing a5 and a6. So he does not weigh a5 and a6 as follows:

Algorithms Weight Arrangement of abilities
a1 1 a1
a2 2 a2
a3 4 a4
a4 3 a3
a5 - -
a6 - -
a7 5 a5
a8 5 a5
a9 6 a6
a10 7 a7
...

...
...

If we let β be a capable function of B which transforms each algorithm into an ar-
rangement of abilities, then β cannot be a left magnifying element since domα ̸= X.
By the conclusion (2), we have β as a right magnifying element. Therefore, B has the
opportunity to be appointed as a leader in this process.

Acknowledgments. This work was supported by the Faculty of Science Research Fund,
Prince of Songkla University (Contract No. 264006).

REFERENCES

[1] E. S. Ljapin, Semigroups, Translations of Mathematical Monographs, vol.3, American Mathematical
Society, Providence, RI, USA, 1963.

[2] F. Catino and F. Migliorini, Magnifying elements in semigroups, Semigroup Forum, vol.44, pp.314-
319, DOI: 10.1007/BF02574350, 1992.

[3] K. D. Magill Jr., Magnifying elements of transformation semigroups, Semigroup Forum, vol.48,
pp.119-126, DOI: 10.1007/BF02573659, 1994.

[4] P. Prakitsri, Left and right magnifying elements in certain linear transformation semigroups, Thai
Journal of Mathematics, vol.18(SI), pp.285-291, 2020.



146 M. PETAPIRAK, R. CHINRAM, T. KAEWNOI AND A. IAMPAN

[5] P. Luangchaisri, T. Changphas and C. Phanlert, Left (right) magnifying elements of a partial trans-
formation semigroup, Asian-European Journal of Mathematics, vol.13, Article Number: 2050016,
DOI: 10.1142/S1793557120500163, 2020.

[6] J. Araujo and J. Konieczny, Semigroups of transformations preserving an equivalence relation and
a cross section, Communications in Algebra, vol.32, pp.1917-1935, DOI: 10.1081/AGB-120029913,
2004.

[7] H. Pei, Regularity and Green’s relations for semigroups of transformation that preserving an equiv-
alence, Communications in Algebra, vol.33, pp.109-118, DOI: 10.1081/AGB-200040921, 2005.

[8] H. Pei and D. Zou, Green’s equivalences on semigroups of transformations preserving order and an
equivalence relation, Semigroup Forum, vol.71, pp.241-251, DOI: 10.1007/s00233-005-0514-0, 2005.

[9] H. Pei and W. Deng, A note on Green’s relations in the semigroups T (X, ρ), Semigroup Forum,
vol.79, pp.210-213, DOI: 10.1007/s00233-009-9151-3, 2009.

[10] H. Pei and W. Deng, Naturally ordered semigroups of partial transformations preserving an equiv-
alence relation, Communications in Algebra, vol.41, pp.3308-3324, DOI: 10.1080/00927872.2012.
684083, 2013.

[11] P. Purisang and J. Rakbud, Regularity of transformation semigroups defined by a partition, Com-
munications of the Korean Mathematical Society, vol.31, pp.217-227, DOI: 10.4134/CKMS.2016.31.
2.217, 2016.

[12] R. Chinram and T. Gaketem, Essential (m,n)-ideal and essential fuzzy (m,n)-ideals in a semigroup,
ICIC Express Letters, vol.15, no.10, pp.1037-1044, DOI: 10.24507/icicel.15.10.1037, 2021.

[13] R. Chinram, P. Petchkaew and S. Baupradist, Left and right magnifying elements in generalized
semigroups of transformations by using partitions of a set, European Journal of Pure and Applied
Mathematics, vol.11, pp.580-588, DOI: 10.29020/nybg.ejpam.v11i3.3260, 2018.

[14] T. Kaewnoi, M. Petapirak and R. Chinram, Magnifiers in some generalization of the full transfor-
mation semigroups, Mathematics, vol.8, Article Number: 473, DOI: 10.3390/math8040473, 2020.

[15] T. Kaewnoi, M. Petapirak and R. Chinram, On magnifying elements in E-preserving partial trans-
formation semigroups, Mathematics, vol.6, Article Number: 160, DOI: 10.3390/math6090160, 2018.

Author Biography

Montakarn Petapirak is currently an Assistant Professor at Faculty of Science,
Prince of Songkla University, Thailand. She received her Ph.D. in Mathematics
from University of Duisburg-Essen, Germany, in 2014. Since then, she has lectured
at Prince of Songkla University. Her mathematical interests include group theory
and generalizations, and theory of functional equations.

Ronnason Chinram received his M.Sc. and Ph.D. from Chulalongkorn University,
Thailand. Since 1997, he has been with Prince of Songkla University, Thailand
and now he is an Associate Professor in Mathematics. Moreover, he is the Head
of Division of Computational Science and the Head of Algebra and Applications
Research Unit. Now, he has more than 90 research publications in international
well reputed journals. His research interests focus on semigroup theory, algebraic
systems, fuzzy mathematics and decision-making problems.

Thananya Kaewnoi is currently a doctoral researcher at Faculty of Science, Prince
of Songkla University, Thailand. She received her first class honors in Bachelor’s
degree of Mathematics in 2018 and Master’s degree of Mathematics in 2020 from
Prince of Songkla University. Her Master’s project, a study of magnifying elements
in the generalized transformation semigroups, obtained an excellent grade. Her areas
of interests are algebraic semigroup theory and algebraic graph theory.



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.1, 2022 147

Aiyared Iampan is an Associate Professor at Department of Mathematics, School
of Science, University of Phayao, Thailand. He received his B.S., M.S., and Ph.D.
degrees in Mathematics from Naresuan University, Thailand. His areas of interest in-
clude algebraic theory of semigroups, ternary semigroups, and Γ-semigroups, lattices
and ordered algebraic structures, fuzzy algebraic structures, and logical algebras. He
was the founder of the Group for Young Algebraists in University of Phayao in 2012
and one of the co-founders of the Fuzzy Algebras and Decision-Making Problems
Research Unit in University of Phayao in 2021.


