
International Journal of Innovative
Computing, Information and Control ICIC International c©2022 ISSN 1349-4198
Volume 18, Number 2, April 2022 pp. 447–462

COMBINATIONS OF MICRO-MACRO STATES AND SUBGOALS
DISCOVERY IN HIERARCHICAL REINFORCEMENT LEARNING

FOR PATH FINDING

Gembong Edhi Setyawan1, Hideyuki Sawada1 and Pitoyo Hartono2

1Department of Applied Physics
School of Advanced Science and Engineering

Waseda University
3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
gembong@asagi.waseda.jp; sawada@waseda.jp

2School of Engineering
Chukyo University

101-2 Yagoto Honmachi, Showa-ku, Nagoya, Aichi 466-8666, Japan
hartono@sist.chukyo-u.ac.jp

Received September 2021; revised January 2022

Abstract. While Reinforcement Learning (RL) is one of the strongest unsupervised
learning algorithms, it often faces difficulties dealing with complex environments. These
difficulties correlate with the curse of dimensionality in which an excessively large num-
ber of states causes the process of RL prohibitively difficult. Hierarchical Reinforcement
Learning (HRL) is proposed to overcome the weaknesses of RL by hierarchically de-
composing a complex problem into more manageable sub-problems. This paper proposes
Micro-Macro States Combination (MMSC) as a new approach for HRL by formulating
the task into two layers. The lower layer depicts the task in their microstates, which
represent the original states, while the upper layer depicts macrostates, some collections
of a number of the microstates. The macrostates can be considered the higher abstrac-
tions of the original states that allow the RL to perceive the problem differently. Here, the
proposed MMSC is allowed to operate not only on the microstates but also on their higher-
level abstractions, and thus enabling the RL to flexibly change its perspective during the
problem solving, each time choosing a perspective that leads it to the solution faster. In
this paper, the algorithm for the Micro-Macro States combination is formulated and test-
ed on path-finding problems in grid worlds. Here, the novelty of the proposed algorithm
in hierarchically decomposing the given problems and in automatic goal-reaching in the
sub-problem is tested against traditional RL and other hierarchical RL, and quantitatively
analyzed.
Keywords: Reinforcement learning, Hierarchical reinforcement learning, Task decom-
position, Hierarchical abstraction

1. Introduction. In the past few years, Reinforcement Learnings (RL) [1] has been
drawing much attention for solving problems that are difficult to be solved using other
algorithms, for example, in [2-4]. The primary strength of RL is in its ability to directly in-
teract with the learning environments without requiring explicit teacher signals that often
are prohibitively difficult to obtain. However, traditional RL methods such as Temporal
Difference (TD) [5], Q-Learning [6], and SARSA [7] sometimes require a prohibitively
long time for learning complex tasks due to a high number of states and the rarity of
rewards. Furthermore, the integration of RL and Deep Neural Network (DNN), called
DRL [8-10], can achieve better performance compared to the traditional RL. Another way

DOI: 10.24507/ijicic.18.02.447

447

448 G. E. SETYAWAN, H. SAWADA AND P. HARTONO

to improve the performance of RL is through Hierarchical Reinforcement Learning (HRL)
that decomposes a complex problem into some more manageable smaller subtasks with
their subgoals [11]. So far, there are mainly three ways for introducing hierarchy into RL.
Hierarchy in Actions: Options [12] and MAXQ [13,14] are approaches based on ac-

tions’ hierarchy. Options and MAXQ were more optimal in accelerating agent learning
to achieve their goals than traditional RL. These two approaches have distinct character-
istics but commonly use state abstraction [15-19], temporal abstraction [12,20], and Semi
Markov Decision Processes (SMDP) [21] for solutions to their subtasks. Further, studies
on hierarchy in action were developed intensively with the objective of improving learning
performance by automatically creating or discovering state abstractions [22-24], temporal
abstractions [25-28], and subgoal on subtasks [23,26,29-35].
Hierarchy in Learning Agents: Several approaches that compose a hierarchy based

on agents’ control are Feudal Reinforcement Learning (FRL) [36], Feudal Networks (FuNs)
[37], and Discrete EVent System Specification (DEVS) [38]. In these approaches, the
upper layer agents give orders to the intermediate level agent. Subsequently, the interme-
diate-level agent gives orders to the lower-level agents that directly interact with the
environment. Additionally, [36-38] have a characteristic in constructing macrostates by
collecting adjacent microstates. Macrostates can be used to represent subtasks that are
viewed as a new Markov Decision Processes (MDP) environment that is smaller than the
actual environment [18,36].
Hierarchy in Environments: Hierarchical Abstract Machines (HAMs) [40] approach

arranges a hierarchy based on the environment. In the HAMs, tasks or subtasks were
called machines. Here, machines can interact with each other, in which the lower-level
machines are tasks in the microstates, while machines at higher levels of abstraction
represent subtasks. In HAMs, each machine will learn a policy to solve the subtasks and
execute information exchange between them. Further research based on hierarchies in
the environment was carried out by HAMQ-INT [41], Q-Learning for Reward Machines
(QRM) [42], and HAM clustering [43].
The rest of this paper proposes a method of HRL by considering a hierarchy in en-

vironments. In comparison to the hierarchy in HAMs [40] where each hierarchy refers
to a different environment, in this proposed method, the environment is hierarchically
structured based on tasks in their original state (microstate) and subtasks represented by
macrostates that are some collections of the microstate. A macrostate can be considered
a higher-level abstraction of the microstates that allows RL to perceive the given problem
from a different perspective. The ability to change perspective during the learning process
enables HRL to choose problem representations that flexibly lead to a faster solution.
Subtasks, represented by macrostates, also enable the proposed method to decompose
problems into more manageable subproblems, allowing RL to solve difficult problems in
a divide-and-conquer manner.
In this paper, the design of macrostates is similar to FRL [36] and DEVS [38], where

the macrostate is a collection of adjacent microstates. However, in FRL [36] and DEVS
[38], a microstate can only be part of one macrostate, while in the proposed method, a
microstate can be a part of several different macrostates. The sharing of some microstates
by several macrostates adds flexibility in forming the macrostates and enriches the diver-
sity of perspectives that the RL can view. It is also intuitive to include a microstate with
a high state-value into several macrostates to increase their state-value, thus improving
the RL’s likelihood to visit those macrostates during the learning process.

INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.2, 2022 449

In the proposed HRL, agents need to learn and determine the best combination of
microstates and macrostates to solve the given problem. Accordingly, the proposed al-
gorithm is named Micro-Macro State Combination (MMSC) hierarchical reinforcement
learning.

As in other HRL, in MMSC the learning agent first solves the subtask by reaching
the subgoal. Here, the discovery of a subgoal in a subtask is essential. In Options [12],
the subgoal is hand-designed, while in [22,23,26,29-34] the subgoals are automatically
discovered. In those previous studies, in principle, the subgoal is designated by detecting
the frequently visited states. In this study, the subgoal is automatically designed based on
the maximum state-action value (Q value) of the microstates included in that macrostate
at the current time. Another idea in the MMSC is to mix microstates and macrostates
during the learning process to enrich the agent’s choices and perspective.

The novelties of MMSC over the existing HRL methods are as follows: 1) allowing
microstates to overlap over some macrostates resulting in increase flexibility; 2) discovery
of subgoal automatically, thereby reducing additional hand-designed requirements; 3)
mixing microstates and some macrostates as the domain for agent, enriching the agent’s
perspective in solving the problem.

This paper is organized as follows. Section 2 describes the MMSC algorithm in detail,
while Section 3 is for explaining the experimental environment. Next, the results and
evaluations of the experiment are discussed in Section 4. Finally, Section 5 describes the
conclusions and future works for this study.

2. Micro-Macro States Combination Algorithm.

2.1. Framework. Figure 1 illustrates the framework of the MMSC algorithm. The pic-
ture shows a grid environment with the size of 3 × 4 where the task of the agent is for-
mulated into two layers. The lower layer depicts the task expressed by microstate, while

Figure 1. MMSC framework that illustrated the task decomposition into
two hierarchies: the lower and upper layers. Here ǫ denotes ǫ-greedy policy.

450 G. E. SETYAWAN, H. SAWADA AND P. HARTONO

the upper layer depicts the possible combinations of macrostates that represent subtasks
of the original task. Here, a microstate, m , is characterized by (x , y), their coordinate
in the problem space. The task of the agent in the picture is navigating from the start
(denoted by S) at (0, 2) to the goal (denoted by G) at (3, 0) in the shortest path. Here,
the set of all microstates is indicated by Ωm , i.e., m ∈ Ωm . The size of the macrostates in
this study is empirically determined to be 2×2, and hence each macrostate is a collection
of four microstates. A macrostate is symbolized by M , while the set of all macrostates is
denoted by ΩM , and hence M ∈ ΩM .
In the proposed MMSC, an agent can operate not only on the microstates but also on a

higher-level abstraction of the microstates in the form of macrostates. Here, a macrostate
constitutes a subtask. During the learning process, the agent learns the optimal combi-
nation of microstates and macrostates as a solution to solve the main task, and hence the
problem space upon which it operates is Ω = Ωm

⋃

ΩM . The proposed MMSC is briefly
presented in Algorithm 1. The MMSC is elaborated as follows, in which the number inside
() indicates the line number in Algorithm 1.

Algorithm 1. MMSC algorithm

1: Initialize Q(s, a)
2: for each episode do
3: Initialize s

4: for t = 0 to T do
5: Choose a conditioned on s using ǫ-greedy
6: Take action a, observe s′, r
7: m = s′

8: rt = r

9: if s′ ∈ M
m

n then
10: Choose s′ from {m ,M

m

n } using ǫ-greedy
11: observe s′

12: if s′ = M
m

n then
13: I = m

14: Define β based on Subsection 2.4
15: for τ = 0 to T do
16: Policy on macrostate (Subsection 2.3)
17: end for
18: GM =

∑

T

k=0
rτ+k

19: rt = GM

20: end if
21: end if
22: Qnew(s, a) = Qold(s, a) + α

(

Ra
s + γmaxa′ Q(s′, a′)−Qold(s, a)

)

23: s = s′

24: end for
25: end for

Time Steps Diagram: Figure 2 illustrates the time diagram of MMSC. The agent
interacts with the environment at each step at discrete time, t, by perceiving the state
of the environment, st ∈ Ω, which is tentatively represented by the microstate, m . For
t = 0, st is the microstate, m , where the agent starts (line 3). While, for t > 0, the agent
can change their perspective by selecting a macrostate, M , for st.

INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.2, 2022 451

Figure 2. Time step t on MMSC and time steps τ on macrostate

After selecting state, st, the agent chooses an action symbolized by at ∈ A where A is
the set of all primitive actions. Action decision is based on the agent’s objective of getting
the maximum reward (lines 5-6).

Then, in response to the action chosen by the agent, the environment gives a reward,
rt+1, and a subsequent state, st+1 (line 7). The next state, st+1, is temporarily represented
by microstate, m , before the agent performs the state selection described previously (line
8).

Based on the sequence of processes, the probability of moving to the next state, st+1, de-
pends only on the current state, st, and does not depend on the previous state. Therefore,
the state transition probability equation is expressed as follows:

Pa
ss′ = P[st+1 = s′|st = s, at = a] (1)

Based on the macrostate formation in Subsection 2.2, each microstate can be part of
a maximum of four macrostates of size 2 × 2. Hence, at time t, the agent can learn to
select a maximum of five different perspectives (1 microstate and 4 macrostates) as its
state. The macrostates that can be formed from a microstate, m , are denoted by M

m

n , in
which 0 ≤ n ≤ 3 denotes the index of that macrostates (line 9). The probability that
s ∈ {m ,M

m

n } is adopted as the state when the agent is at m at time t is (line 10)

Ps = P[st = s|m] (2)

The selection of the state at time t is based on the agent’s objective to obtain the maximum
reward:

Rs = E[rt+1|st = s] (3)

Here, rt+1 denotes the reward at time t+ 1, while E[rt+1|st = s] denotes the expectation.
Here, ǫ-greedy is used as a policy to select a state.

Total Reward, Policy, and Value Function: Transferring the state from st to st+1

allows the agent to receive the reward from an environment as follows:

Ra
ss′ = E[rt+1|st+1 = s′, st = s, at = a] (4)

The total reward, Gt, received by the agent from the environment is as follows:

Gt =
T
∑

k=1

rt+k (5)

Here, T is the terminal time step. The purpose of MMSC is to maximize the total amount
of rewards received by an agent from the initial state to the terminal state. Calculation of

452 G. E. SETYAWAN, H. SAWADA AND P. HARTONO

the total amount of rewards on MMSC requires an additional concept of discount factor,
0 ≤ γ ≤ 1. So with the discount factor, (5) becomes

Gt =

T
∑

k=1

γkrt+k (6)

Here, the value of the reward, r, at each step depends on the next state, st+1, perceived by
the agent. The designer only defines the reward value for the next state, the provisional
state, which is a microstate. Suppose a macrostate subsequently replaces the provision
microstate for st+1 (line 12). In that case, the value of the reward is based on the number
of steps made by the agent from the initial state, I, to the terminal condition, β, in the
macrostate. I and β are described in Subsection 2.4 for autonomous subgoal discovery
(lines 13-14). In addition to the diagram of the overall agent learning process time, Figure
2 also shows step-by-step procedures for the agent to complete the subtask. Completion
of the subtask depends on the agent’s policy to choose the action, aτ , which is explained
in Subsection 2.3 (line 16). Therefore, the agent does not learn when solving the subtask,
and the calculation of the reward value does not require a discount factor. Hence, if the
next state, st+1, perceived by the agent is a macrostate, the reward value, GM , can be
calculated as follows (line 18):

GM =

T
∑

k=0

rτ+k (7)

The value function estimates the expected reward when the agent is currently in state
st:

Vπ(s) = Eπ[Gt|st = s] (8)

Equation (8) is also known as the state value function, Vπ(s), which can be divided into
two parts, namely the immediate reward and the discounted value of the successor state
that is written as follows:

Vπ(s) = Eπ [Gt|st = s]

= Eπ

[

T
∑

k=1

γkrt+k|st = s

]

= Eπ[rt+1 + γGt+1|st = s]

= Eπ[rt+1|st = s] + Eπ[γVπ(st+1)|st = s] (9)

In addition to the state value function, there is a state-action value function, Qπ(s, a),
that is expressed as follows:

Qπ(s, a) = Eπ[Gt|st = s, at = a]

= Eπ[rt+1|st = s, at = a] + Eπ[γVπ(st+1)|st = s, at = a] (10)

Further the relation between Vπ(s) and Qπ(s, a) can be written as follows:

Vπ(s) =
∑

a∈A

π(a|s)Qπ(s, a) (11)

From (4) and (10), Qπ(s, a) becomes

Qπ(s, a) = R
a
s + γ

∑

s′∈S

Pa
ss′Vπ(s

′) (12)

INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.2, 2022 453

Pa
ss′Vπ(s

′) defines a state value function of s′ = st+1 which depends on the state transition
from s = st to s′ = st+1 based on the selected action a at time t. The Bellman equation
for Vπ(s) is

Vπ(s) =
∑

a∈A

π(a|s)

(

Ra
s + γ

∑

s′∈S

Pa
ss′Vπ(s

′)

)

(13)

The Bellman equation calculates the value of the current state depends only on the pos-
sible next states. Similarly, Qπ(s, a) can also be written using the Bellman equation
[1,21,44].

The best performance of MDP is determined by the optimal value function and optimal
policy, in which the optimal value function is

V ∗ = max
π

Vπ(s) (14)

while the optimal policy is

Q∗ = max
π

Qπ(s, a) (15)

Temporal Difference: The temporal difference (TD), is an agent learning approach
for successively updating the state-action values, Q(s, a). The state-action value update
is based on the reward received and the next expected reward by the agent calculated as
follows:

TD(a, s) = Qnew(s, a)−Qold(s, a)

= Ra
s + γ

∑

s′∈S

Pa
ss′Q

∗(s′, a′)−Qold(s, a)

= Ra
s + γmax

a′
Q(s′, a′)−Qold(s, a) (16)

Here, a′ is defined as the action for which the maximum reward is attained. Equation
(16) provides a temporal difference in the value of Q, which can help capture changes that
occur in the environment. Then, the updated state-action value, Qnew(s, a) is written as
(line 22)

Qnew(s, a) = Qold(s, a) + αTD(a, s)

= Qold(s, a) + α
(

Ra
s + γmax

a′
Q(s′, a′)−Qold(s, a)

)

(17)

Here, 0 ≤ α ≤ 1 is the empirically set learning rate.

2.2. The formation and components of macrostate.
Macrostate Formation: The combination of macrostates in which a microstate is a

member is denoted by M
m

n . In Figure 1, where the agent is located at m = (1, 1), the
macrostates that can be formed are M

m

0 = {(1, 0), (1, 1), (2, 0), (2, 1)}, M
m

1 = {(1, 1), (1, 2),
(2, 1), (2, 2)}, M

m

2 = {(0, 0), (0, 1), (1, 0), (1, 1)}, and M
m

3 = {(0, 1), (0, 2), (1, 1), (1, 2)}.
Macrostate Components: A macrostate has three components: an initial state, I, a

terminal condition, β, and policies, πM . Here, the initial state s0 = I = m . The policy on
state selection to change agent perspective has been described in Subsection 2.1. After
the agent adopts one of the macrostates as its current state, the agent takes action based
on the policy, πM , until the agent reaches the terminal condition, β, that is the subgoal of
that macrostate. Here, πM policies are deterministic and hand-coded, while the subgoal
is automatically set.

454 G. E. SETYAWAN, H. SAWADA AND P. HARTONO

2.3. Policy on macrostate (πM). A microstate that represents an obstacle cannot be
included in a macrostate, and hence all the macrostates are obstacle-free. The obstacle-
free characteristic allows the agent to navigate around obstacles carefully and thus improve
the expected rewards. Algorithm 2 is a policy designed on macrostates in a 2-dimensional
environment to determine the actions selected by the agent. In the macrostate, the agent
task starts from the initial state, I, and ends at the terminal condition, β.

Algorithm 2. Policy on macrostate

1: x = I[0]− β[0]
2: y = I[1]− β[1]
3: if y < 0 then
4: action← down

5: else if y > 0 then
6: action← up

7: else if x < 0 then
8: action← right

9: else if x > 0 then
10: action← left

11: end if

2.4. Autonomous subgoal discovery. Subsection 2.1 explains that the state-action
value function determines how well the agent performs the action in the state, st, with
the policy, π. At each step t, the state-action value function, the Q function in the state,
st, is updated using Equation (17). Because the state, st, which is a subset of the whole
set of microstates and macrostates, the Q value of the chosen microstate or macrostate
will be updated during the learning process.
As an illustration, Figure 3 shows a problem in a 3× 4 grid world where the agent task

is formulated in two layers. The lower layer depicts a snapshot of the Q-values of the
microstates, while the upper layer depicts all the macrostates that can be formed from
these microstates.

Figure 3. Autonomous subgoal discovery. Label G indicates goal in the
agent’s task, while label β are terminal conditions.

INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.2, 2022 455

Furthermore, the subgoal in the subtask, represented by the terminal condition
β, is determined based on the maximum Q value of the microstates that constitute
a particular macrostate. For example, in Figure 3, one of the macrostates M

m

0 =
{(1, 0), (1, 1), (2, 0), (2, 1)} is the collection of microstates (1, 0), (1, 1), (2, 0), and (2, 1)
that each of microstates has Q value of 0.80, 0.35, 1, and 0.78. The Q value in microstate
(2, 0) has the largest value, so microstate (2, 0) is selected as the terminal condition, β,
which represents the subgoal in the subtask.

3. Experiments. This study was evaluated in the grid-world shown in Figure 4. Fig-
ures 4(a)-4(d) represent environments consisting of four rooms where all rooms include
two hallways but have different complexity in the obstacles distributions. The proposed
MMSC is tested against Q-Learning [9] and other HRL, Options [12].

Figure 4. (color online) The grid-world environments. The red border
indicates the subenvironments in Options.

In the original Options, the environment is divided into a number of subenvironments,
for example in Figure 4, the numbers of rooms. For assuring comparison’s fairness, here
Options are calibrated to have many more hand-designed subenvironments.

In these experiments, the task of the agent is to find the shortest path from the initial
state labeled S to the goal labeled G. During the learning process, the agent will return
to the initial state if the agent reaches the goal or hits a wall. Each environment has been
tested on different initial states: (2, 2), (2, 8), and (8, 2), but with the same goal at (8, 8).

Here, the four primitive actions of the agent are up, down, left, and right. In the exper-
iments, the discount factor (γ), learning rate (α), epsilon (ǫ), and rewards are empirically
determined. In the experiment, γ = 0.9 to ensure that future rewards are more important
than the past, α = 0.1 to ensure gradual exploitation of the environment. While the pa-
rameters are empirically chosen, they are fixed for various problems. The fixed parameter

456 G. E. SETYAWAN, H. SAWADA AND P. HARTONO

values regarding different problems indicate that the proposed method is not excessively
sensitive to the parameters’ choice, thus ensuring generality.
Furthermore, this experiment used ǫ = 0.999episodes. This formula is intended to do

more exploration at the beginning of the episode and exploitation at the end. Moreover,
the reward of −0.1 is given when the agent moves to a new state. While −1 when the
agent hits an obstacle, and +1 when the agent reaches the goal.

4. Results and Evaluations. The efficiency of the proposed MMSC is evaluated re-
garding the number of steps until the goal is reached or an obstacle is hit, as well as the
success rate. Here, MMSC is compared against Q-Learning and the modified Options on
the learning environments shown in Figure 4. Figure 5 shows some of the experiment re-
sults on the environments in Figure 4(a), Figure 4(d), and Figure 4(f), from two different

2k 4k 6k 8k 10k
0

50

100

150

200

2k 4k 6k 8k 10k

30

20

10

0

2k 4k 6k 8k 10k
0

50

100

150

2k 4k 6k 8k 10k

20

10

0

2k 4k 6k 8k 10k
0

50

100

150

200

2k 4k 6k 8k 10k

20

10

0

2k 4k 6k 8k 10k
0

50

100

150

200

2k 4k 6k 8k 10k

20

10

0

2k 4k 6k 8k 10k
0

50

100

2k 4k 6k 8k 10k
20

10

0

100 2 5 1000 2 5 10k

0

50

100

100 2 5 1000 2 5 10k

30

20

10

0

MMSC Option Q-Learning

Episodes (Log) Episodes (Log)

Step Graph Reward Graph

A
v
e
ra

g
e
 S

te
p
 p

e
r

1
0
0
 E

p
is

o
d
e
s

A
v
e
ra

g
e

R
e
w

a
rd

p
e
r

1
0
0

E
p
is

o
d
e
s

Initial State (2, 2) in Fig. 4(a)

Initial State (2, 8) in Fig. 4(a)

Initial State (2, 2) in Fig. 4(d)

Initial State (2, 8) in Fig. 4(d)

Initial State (2, 2) in Fig. 4(f)

Initial State (2, 8) in Fig. 4(f)

Figure 5. The steps and rewards graph of MMSC, Options, and Q-Learning

INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.2, 2022 457

initial conditions. On the step graph, the average number of steps per 100 episodes is
displayed on the vertical axis while the episodes are on the horizontal axis. In the reward
graphs, the vertical axis is the average reward per 100 episodes, while the horizontal axis
represents the episodes. The number of steps in RL shows the number of decisions made
by the agent from the initial state to the goal. Here, the efficacy of learning algorithms is
indicated by a fewer number of steps.

Table 1 shows the average number of steps generated in episodes 9,000 to 10,000 during
the learning process in MMSC, Q-Learning, and Options across all problems. The number
of steps was averaged in the 9,000 to 10,000 episodes because the learning in those episodes
was stable. The success rate of the agent during the learning process is also shown in Table
1. Table 2 shows the efficiency of the agent to reach the goal based on the complexity
of the obstacles distributions and the distance from the initial state to the goal. Using
Q-Learning as the standard, the efficiency of MMSC and Options is calculated as follows:

η =

(

1−
T

TQL

)

× 100% (18)

Here, T is the total number of steps of MMSC or Options for which efficiency is to be
calculated, and TQL is the total number of steps of Q-Learning.

Table 1. The average number of steps and success rate in episodes 9,000
until 10,000

Environments
Initial
state

Algorithms
MMSC Q-Learning Options

Number
of steps

Success
rate

Number
of steps

Success
rate

Number
of steps

Success
rate

Figure 4(a)
(2, 2) 7.44 89.99% 12.67 81.23% 11.25 67.97%
(2, 8) 4.31 97.45% 8.53 92.00% 5.29 86.30%
(8, 2) 5.16 90.91% 6.36 90.84% 5.35 82.40%

Figure 4(b)
(2, 2) 8.50 95.20% 12.78 98.36% 10.22 61.49%
(2, 8) 6.51 99.60% 8.49 99.59% 7.23 76.92%
(8, 2) 6.45 98.21% 8.49 98.66% 8.10 74.08%

Figure 4(c)
(2, 2) 9.57 94.86% 12.62 95.10% 10.60 52.63%
(2, 8) 7.37 97.22% 8.46 97.54% 7.06 71.21%
(8, 2) 7.40 96.86% 8.43 96.66% 7.96 73.76%

Figure 4(d)
(2, 2) 12.75 98.10% 12.75 98.10% 12.54 45.49%
(2, 8) 8.46 99.64% 8.52 99.17% 8.20 67.29%
(8, 2) 8.37 99.30% 8.41 99.50% 8.10 72.6%

Figure 4(e)
(2, 2) 7.29 96.60% 12.69 96.37% 9.63 77.79%
(2, 8) 5.21 98.77% 8.49 99.20% 5.29 87.09%
(8, 2) 4.29 98.30% 6.48 98.68% 3.23 95.09%

Figure 4(f)
(2, 2) 5.78 91.22% 12.69 92.60% 6.49 94.92%
(2, 8) 4.12 95.74% 6.47 98.25% 4.24 95.21%
(8, 2) 4.09 95.75% 6.50 98.27% 3.23 96.02%

From the step graph, it can be observed that all the algorithms succeeded in minimizing
the number of steps, thus maximizing the efficiency in reaching the goal along with the
progress of their learning. It can also be observed that MMSC and Q-Learning need more
steps than Options to explore the environments in the early episodes. The fewer steps of
Options in the early episodes do not necessarily mean that the agent successfully reaches
the goal but also includes conditions when it hits obstacles in the environment. From

458 G. E. SETYAWAN, H. SAWADA AND P. HARTONO

Table 2. The average of efficiency

Category Environments
Efficiency

MMSC Options

Complexity of the obstacles distributions

Figure 4(a) 38.64% 20.57%
Figure 4(b) 27.89% 14.15%
Figure 4(c) 17.52% 13.18%
Figure 4(d) 0.34% 2.83%
Figure 4(e) 39.30% 34.38%
Figure 4(f) 71.43% 45.60%

Path length from initial state to the goal
(2, 2) 32.64% 20.30%
(2, 8) 26.51% 23.79%
(8, 2) 19.95% 19.48%

Table 1, the average success rates of MMSC, Q-Learning, and Options in achieving the
goal is 96%, 96%, and 77%, which means that Options most often hit obstacles during
the learning process.
In Figure 4(a) and Figure 4(f), MMSC and Options as HRL methods have fewer steps

than Q-Learning in the later episodes meaning that HRL performed better than Q-

Learning. Using Q-Learning as a standard, the average, increase in efficiency of MMSC
and Options are 28% and 21%, respectively as indicated in Table 2. However, in Figure
4(d), MMSC and Options have almost the same number of steps as Q-Learning. The
results indicate that MMSC and Options as HRL methods have the same performance
as Q-Learning if the environment has more obstacles. It can also be observed in Table 2
that MMSC and Options have an average improved efficiency of less than 3% in Figure
4(d), while in the other environments it is above 13%. Many obstacles in the environment
cause MMSC and Options to fail to set a macrostate or “option” resulting in a similar
performance to Q-Learning.
In addition, the difference between MMSC and Options can be identified clearly at the

initial state (2, 2) in Figure 4(a) and Figure 4(f). MMSC seems to have fewer steps than
Options, so MMSC performs better than Options in the environment. Table 2 shows that
the efficiency of MMSC against Q-Learning increases when the initial state is further away
from the goal. Because in MMSC, the agent perceives more macrostates to be learned
than the number of “option” in Options. However, in the initial state (2, 8), the numbers
of steps owned by MMSC and Options are almost the same because the distance between
the initial state and the goal is closer, causing the macrostates learned by the agent to
decrease.
The purpose of the agent learning through RL is to obtain the maximum reward. It

can be observed from Figure 5 that the agent rapidly reached the maximum reward. In
Figure 4(a) and Figure 4(d), Options shows that the agent learns longer than MMSC and
Q-Learning to reach the goal. However, in Figure 4(f), MMSC, Q-Learning, and Options

have almost the same learning time to reach the goal. Table 1 shows that the presence
of obstacles will also significantly reduce the success rate of Options compared to MMSC
and Q-Learning.
Figure 6 shows histograms of Q value to illustrate the optimal policies of the agent to

achieve the goal. The Q value for each microstate is calculated based on the average Q

value between the microstates and the macrostates associated with those microstates. An
optimal policy can be visualized by following the lighter-colored state from the start to
the goal.

INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.2, 2022 459

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Init ial State (2,2)

0 1 2 3 4 5 6 7 8 9 10

Init ial State (8,2)

0 1 2 3 4 5 6 7 8 9 10

Init ial State (2,8)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 6. (color online) Histogram of Q values show the paths resulting
from agent learning in three different environments. Initial states (2, 2),
(8, 2), and (2, 8) use the environment in Figures 4(a), 4(d), and 4(f) respec-
tively.

5. Conclusions. In this paper, the proposed MMSC algorithm offers a new mechanism
for HRL in which the task is formulated into two layers of abstraction. The lower layer
depicts tasks in their original state represented by microstates, while the upper layer
depicts macrostates as representations of subtasks. In this paper, a macrostate is hand-
designed with a size of 2×2 and is a collection of four neighboring microstates. Here, the
subgoal is represented by the terminal condition in the macrostate. Subgoal discovery is
achieved automatically based on the maximum Q value among the microstates that make
up the macrostate. The efficiency of the number of steps and the agent’s success rate
in achieving goals during the learning process is influenced by the number of obstacles
in the environment and the distance from the initial state to the goal. In MMSC, the
combination of microstates and macrostates increases the agent’s perspective in learning
the environment.

In MMSC, the addition of macrostates into the state selection does not aggravate the
curse of dimensionality. The macrostates are constrained around the microstate currently
visited by the learning agent and hence do not expand the dimensionality of the problem
in an unconstrained manner. The addition of the macrostates offers new choices for the
agent to exploit some constrained areas, in which some high-value states attract more
attention. Furthermore, the hand-designed policy in macrostate allows the inclusion of
heuristics and humans apriori knowledge into RL, contributing to increasing the learning
efficiency as apparent from the experimental results.

For future research, several aspects need to be investigated: 1) adaptive size of macro-
states based on the complexity of the environment; 2) generation of the deeper hierarchy
of abstraction; and 3) implementations to real-world problems, including robotics appli-
cations.

Acknowledgment. This work was supported by JSPS Grants-in-Aid for Scientific Re-
search on Innovative Areas (Research in a proposed research area) 18H05473 and 18H058
95.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd Edition, The MIT
Press Cambridge, Massachusetts, London, England, 1998.

460 G. E. SETYAWAN, H. SAWADA AND P. HARTONO

[2] Z. Li, J. Liu, Z. Huang, Y. Peng, H. Pu and L. Ding, Adaptive impedance control of human-robot
cooperation using reinforcement learning, IEEE Trans. Industrial Electronics, vol.64, no.10, pp.8013-
8022, DOI: 10.1109/TIE.2017.2694391, 2017.

[3] D. L. Leottau, J. Ruiz-del-Solar and R. Babuška, Decentralized reinforcement learning of robot
behaviors, Artificial Intelligence, vol.256, pp.130-159, 2018.

[4] L. Guo, S. A. A. Rizvi and Z. Lin, Optimal control of a two-wheeled self-balancing robot by rein-
forcement learning, International Journal Robust Nonlinear Control, vol.31, pp.1885-1904, 2021.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M.
Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg and D. Hassabis, Human-level control through deep reinforcement
learning, Nature, vol.518, pp.529-533, 2015.

[6] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I.
Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel and D. Hassabis, Mastering the
game of Go with deep neural networks and tree search, Nature, vol.529, pp.484-489, 2016.

[7] R. Watanuki, T. Horiuchi and T. Aodai, Vision-based behavior acquisition by deep reinforcement
learning in multi-robot environment, ICIC Express Letters, Part B: Applications, vol.11, no.3,
pp.237-244, 2020.

[8] R. S. Sutton, Learning to predict by the methods of temporal differences, Machine Learning, vol.3,
no.1, pp.9-44, 1988.

[9] C. J. C. H. Watkins and P. Dayan, Q-Learning, Machine Learning, vol.8, pp.279-292, 1992.
[10] G. A. Rummery and M. Niranjan, On-Line Q-Learning Using Connectionist Systems, Cambridge

University Engineering Department, 1994.
[11] Y. Lu, X. Xu, X. Zhang, L. Qian and X. Zhou, Hierarchical reinforcement learning for autonomous

decision making and motion planning of intelligent vehicles, IEEE Access, vol.8, pp.209776-209789,
2020.

[12] R. S. Sutton, D. Precup and S. Singh, Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning, Artificial Intelligence, vol.112, no.1, pp.181-211, 1998.

[13] T. G. Dietterich, The MAXQ method for hierarchical reinforcement learning, The 15th International
Conference on Machine Learning, pp.118-126, 1998.

[14] T. G. Dietterich, An overview of MAXQ hierarchical reinforcement learning, in Abstraction, Refor-
mulation, and Approximation. SARA 2000. Lecture Notes in Computer Science, B. Y. Choueiry and
T. Walsh (eds.), Berlin, Heidelberg, Springer, 2000.

[15] L. Li, T. J. Walsh and M. L. Littman, Towards a unified theory of state abstraction for MDPs, The
9th International Symposium on Artificial Intelligence and Mathematics (ISAIM), pp.531-539, 2006.

[16] M. Ponsen, M. E. Taylor and K. Tuyls, Abstraction and generalization in reinforcement learning: A
summary and framework, in Adaptive and Learning Agents. ALA 2009. Lecture Notes in Computer
Science, M. E. Taylor and K. Tuyls (eds.), Berlin, Heidelberg, Springer, 2010.

[17] J. Menashe and P. Stone, State abstraction synthesis for discrete models of continuous domains,
Data Efficient Reinforcement Learning Workshop at AAAI Spring Symposium, Stanford, CA, USA,
pp.331-337, 2018.

[18] D. Abel, D. Arumugam, L. Lehnert and M. L. Littman, State abstractions for lifelong reinforcement
learning, Proc. of the 35th International Conference on Machine Learning, pp.10-19, 2018.

[19] D. Misra, M. Henaff, A. Krishnamurthy and J. Langford, Kinematic state abstraction and prov-
ably efficient rich-observation reinforcement learning, Proc. of the 37th International Conference on
Machine Learning (ICML), pp.6917-6927, 2020.

[20] D. Precup, R. S. Sutton and S. Satinder, Theoretical results on reinforcement learning with tempo-
rally abstract options, in Machine Learning: ECML-98. ECML 1998. Lecture Notes in Computer
Science (Lecture Notes in Artificial Intelligence), C. Nédellec and C. Rouveirol (eds.), Berlin, Hei-
delberg, Springer, 1998.

[21] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, John
Wiley & Sons, Inc., New Jersey, 1994.

[22] T. G. Dietterich, Hierarchical reinforcement learning with the MAXQ value function decomposition,
Journal of Artificial Intelligence Research, vol.13, no.3, pp.227-303, 2000.

[23] D. Jardim, L. Nunes and S. Oliveira, Hierarchical reinforcement learning: Learning sub-goals and
state-abstraction, Proc. of the 6th Iberian Conference on Information Systems and Technologies
(CISTI2011), pp.1-4, 2011.

INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.2, 2022 461

[24] C. Allen, N. Parikh, O. Gottesman and G. Konidaris, Learning Markov state abstractions for deep
reinforcement learning, NeurIPS Workshop on Deep Reinforcement Learning, 2020.

[25] D. Precup and R. S. Sutton, Multi-time models for temporally abstract planning, Advances in Neural
Information Processing Systems, pp.1050-1056, 1998.

[26] Ö. Şimşek and A. G. Barto, Using relative novelty to identify useful temporal abstractions in rein-
forcement learning, ACM International Conference Proceeding Series, vol.69, pp.751-758, 2004.

[27] P. L. Bacon, J. Harb and D. Precup, The option-critic architecture, Proc. of the 31st AAAI Confer-
ence on Artificial Intelligence, pp.1726-1734, 2017.

[28] Biedenkapp, R. Rajan, F. Hutter and M. Lindauer, TempoRL: Learning when to act, Proc. of the
38th International Conference on Machine Learning, pp.914-924, 2021.

[29] B. L. Digney, Learning hierarchical control structures for multiple tasks and changing environments,
Proc. of the 5th International Conference on Simulation of Adaptive Behavior on from Animals to
Animats, pp.321-330, 1998.

[30] E. A. Mcgovern and A. G. Barto, Automatic discovery of subgoals in reinforcement learning using
diverse density, Proc. of the 18th International Conference on Machine Learning, 2001.

[31] B. Hengst, Discovering hierarchy in reinforcement learning with HEXQ, Proc. of the 19th Interna-
tional Conference on Machine Learning (ICML), pp.243-250, 2002.

[32] Menache, S. Mannor and N. Shimkin, Q-Cut – Dynamic discovery of sub-goals in reinforcement
learning, in Machine Learning: ECML 2002. ECML 2002. Lecture Notes in Computer Science, T.
Elomaa, H. Mannila and H. Toivonen (eds.), Berlin, Heidelberg, Springer, 2002.

[33] S. Mannor, I. Menache, A. Hoze and U. Klein, Dynamic abstraction in reinforcement learning via
clustering, Proc. of the 21st International Conference on Machine Learning (ICML), New York,
USA, 2004.

[34] Ö. Şimşek, A. P. Wolfe and A. G. Barto, Identifying useful subgoals in reinforcement learning by local
graph partitioning, ACM International Conference Proceeding Series, vol.119, pp.817-824, 2005.

[35] D. Xiao, Y. T. Li and C. Shi, Autonomic discovery of subgoals in hierarchical reinforcement learning,
Journal of China Universities of Posts and Telecommunications, vol.21, no.5, pp.94-104, 2014.

[36] P. Dayan and G. Hinton, Feudal reinforcement learning, Advances in Neural Information Processing
Systems, pp.271-278, 1993.

[37] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver and K. Kavukcuoglu,
FeUdal networks for hierarchical reinforcement learning, Proc. of the 34th International Conference
on Machine Learning (ICML), vol.7, pp.5409-5418, 2017.

[38] C. Kesler, L. Capocchi and J.-F. Santucci, Hierarchical Markov decision process based on DEVS
formalism, Proc. of the 2017 Winter Simulation Conference, pp.1001-1012, 2017.

[39] R. E. Bellman, Markovian decision processes, Journal of Mathematics and Mechanics, vol.6, no.5,
pp.679-684, 1957.

[40] R. Parr and S. Russell, Reinforcement learning with hierarchies of machines, Advances in Neural
Information Processing Systems, Cambridge, MA, pp.1043-1049, 1998.

[41] A. Bai and S. Russell, Efficient reinforcement learning with hierarchies of machines by leveraging
internal transitions, IJCAI International Joint Conference on Artificial Intelligence, pp.1418-1424,
2017.

[42] R. T. Icarte, T. Q. Klassen, R. Valenzano and S. A. McIlraith, Using reward machines for high-
level task specification and decomposition in reinforcement learning, Proc. of the 35th International
Conference on Machine Learning (ICML), pp.3347-3358, 2018.

[43] S. Alexey and A. I. Panov, Hierarchical reinforcement learning with clustering abstract machines,
RCAI: Russian Conference on Artificial Intelligence, pp.30-43, 2019.

[44] R. E. Bellman, Dynamic Programming, Princeton University Press, 1957.

462 G. E. SETYAWAN, H. SAWADA AND P. HARTONO

Author Biography

Gembong Edhi Setyawan received the B.Eng. degree from the Department of
Electrical Engineering of Brawijaya University and the M.Eng. degree from the De-
partment of Electrical Engineering of Sepuluh Nopember Institute of Technology
in Indonesia. He is now pursuing a Ph.D. at the Department of Pure and Applied
Physics of Waseda University in Tokyo, Japan. Since 2012, he has been a lecturer
at the Department of Computer Engineering of Brawijaya University in Indonesia.
His primary research interests are reinforcement learning theory and applications,
as well as intelligent robotic control.

Hideyuki Sawada is a Professor in the Department of Applied Physics, Faculty
of Science and Engineering, Waseda University. He received the B.E., M.E. and
Ph.D. degrees in applied physics from Waseda University in 1990, 1992 and 1999,
respectively. In 1999, he joined the Department of Intelligent Mechanical Systems
Engineering, Faculty of Engineering, Kagawa University, as an Associate Professor,
and became a Professor in 2010. His current research interests include robotics,
sound and image processing, machine learning, human interfaces, and tactile sensing
and display.

Pitoyo Hartono received the B.Eng., M.Eng., and D.Eng. degrees from the De-
partment of Pure and Applied Physics, Waseda University, Tokyo, Japan, in 1993,
1995, and 2002, respectively. He was a Software Engineer with Hitachi Ltd., from
1995 to 1998. From 2001 to 2005, he was a Research Associate and a Visiting Lectur-
er with Waseda University. He was an Associate Professor with Future University
Hakodate, Hakodate City, Japan, from 2005 to 2010. Since 2010, he has been a
Professor with the School of Engineering, Chukyo University, Nagoya, Japan. His
research interests include the theory and application of neural networks, explainable
AI, intelligent robotics, and man-machine interface.

