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Abstract. Due to the constraints of traditional multi-sensor systems with multiple
sources and heterogeneity, the common fusion model is inefficient and error-prone, which
is difficult to meet the demand for multi-sensor data fusion. To cope with this problem,
this paper proposes a combined graph convolutional network (GCN) and long short-term
memory (LSTM) algorithm to construct a feature-level fusion model for sensor data.
The model uses GCN to extract features of multi-source heterogeneous data, which solves
the problem of difficult fusion of heterogeneous data caused by differences in data types,
and LSTM for feature extraction of time series, which solves the problem of gradient
disappearance. Finally, the proposed model is validated on an industrial-grade data set,
and the test results show the model’s effectiveness.
Keywords: Multi-sensor data fusion, Graph convolutional network, Long short-term
memory

1. Introduction. With the continuous progress in science and technology, our intelli-
gent world is surrounded by enormous amounts of sensor data that are highly desirable
for efficient caching, computing, networking, and security [1]. Although the amount of
data from various sensors is growing exponentially, not all data between sensors can be
interpreted or described uniformly [2]. Therefore, multi-sensor data fusion technology is
an emerging research area on data processing for the specific problem of using multiple
sensors in a system [3]. The basic principle of multi-sensor data fusion technology is like
the integrated processing of information in the human brain, making full use of multiple
sensor resources, through the rational domination and use of multiple sensors and their
observation information, combining redundant or complementary information from mul-
tiple sensors in space or time according to some criteria, in order to obtain a consistent
interpretation or description of the object under test [4,5].

Although a complete theoretical system and efficient fusion algorithms have not yet
been developed for multi-sensor data fusion, many mature and effective fusion models have
been proposed in many application areas according to their specific application contexts,
especially those combined with artificial intelligence algorithms. Gao et al. improved back
propagation (BP) neural network by particle swarm optimization (PSO) and improved the
accuracy of sensor data fusion [6]. Jiao et al. combined the Kalman filter-support vector
machine (KF-SVM) improved the accuracy of sensor data fusion and obtained better state
prediction [7]. Qi et al. used a long short-term memory (LSTM) module and a multilayer
recurrent neural network (RNN) to form a multi-sensor data fusion model that can achieve
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a higher recognition rate and faster inference speed [8]. Lima et al. stated that nonlinear
autoregressive networks with exogenous input (NARX) and multiple linear regression
(MLR) models were utilized to improve the accuracy of multi-sensor data fusion mass
flow prediction [9]. It can be expected that new concepts and techniques such as neural
networks and artificial intelligence will play an increasingly important role in multi-sensor
data fusion. However, the challenging problem of multi-sensor data fusion algorithms
is still far from complete. Taking the above paper as an example, most artificial neural
network models can only process conventional Euclidean structured data, and tend to
ignore the multi-source and temporal nature of the data during multi-sensor data fusion,
which leads to deviation of feature extraction results from the actual situation.
Recent years have seen numerous attempts in deep learning in artificial intelligence and

machine learning to vitalize the graph neural network (GNN) [10]. More and more practi-
cal processing tasks in real life can be abstracted into graph data structures, and the data
objects processed by GNN are non-Euclidean data structures with irregular structures.
Among them, graph convolutional network (GCN) [11] is an essential branch of GNN
with high neural network interpretation, which is often used to extract non-Euclidean
spatial features. The long short-term memory (LSTM) network is a variant of recurrent
neural network (RNN) [12], which is often used to extract temporal features and solve
the gradient disappearance and gradient explosion problems during the training of long
sequences. In models based on non-Euclidean spatial and temporal feature extraction, the
combination of GCN and LSTM can effectively improve the performance of data fusion
models in space and time. In a multi-sensor system, the environmental information pro-
vided by each information source has differences, and the fusion process of these disparate
information is actually a heterogeneous inference process [13].
This paper proposes an algorithm on GCN combined with LSTM, which takes multi-

source sensor data as input, extracts spatial features of multi-source sensor data using
GCN, performs feature extraction of time series by LSTM, and then achieves feature-level
fusion of multi-sensor data.
Section 2 discusses related work on data fusion models, such as the basic principles

of GCN and LSTM. Then, we propose the algorithm for combining GCN and LSTM
in Section 3, and simulation experiments are performed in Section 4. Finally, Section 5
summarizes the contributions of this study.

2. Related Work.

2.1. Multi-sensor data fusion based on artificial neural network. Neural networks
are highly fault-tolerant, self-learning, self-organizing and self-adaptive, capable of sim-
ulating complex nonlinear mappings. These characteristics of neural networks and their
powerful nonlinear processing capabilities precisely meet the requirements of multi-sensor
data fusion technology processing. In a multi-sensor system, the environmental informa-
tion provided by each information source has a certain degree of uncertainty, and the
fusion process of this uncertain information is actually an uncertainty inference process
[14,15]. Neural networks determine the classification criteria based on the similarity of
the samples accepted by the current system, and this determination method is mainly
expressed in the distribution of the weights of the network. At the same time, a learning
algorithm combining artificial neural networks and recurrent architecture can be used to
acquire knowledge and obtain uncertainty inference mechanisms [16]. Using the signal
processing capability and automatic inference function of neural networks, as shown in
Figure 1, multi-sensor data fusion is achieved.
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Figure 1. A framework for multi-sensor system fusion based on artificial
neural networks

2.2. GCN. GCN is a kind of convolutional neural network which is studied with graph
data, and its emergence provides new ideas for processing some non-Euclidean graph data
[17,18], for example, GCN can be applied to social network analysis, recommendation
systems, traffic flow prediction, etc. In a multi-sensor environment, the sensor data can
be regarded as non-Euclidean graph data, and GCN has good feature extraction capability
for non-Euclidean data structures. Therefore, we adopt GCN to handle spatial feature
extraction and mapping of sensor data.

The essential purpose of GCN is to use graph convolution to extract spatial features of
non-Euclidean structured graph data, and for graphs G = (V,E,A), the input signals X
and Y , the processing taken by GCN is shown in Equation (1).

f(X,A) = Y (1)

where V = {vi}
N
i=1 denotes the number of nodes in the graph; D̃ii =

∑

j Ãij denotes
the adjacency matrix of the graph; and the elements Aij in the matrix A denote the
connection between the nodes and the graph.

The forward propagation formula for the graph convolution is shown in Equation (2).

H(l+1) = σ
(

D̃−
1
2 ÃD̃−

1
2H lW l

)

(2)

where Ã = A + I, I is a matrix of size N × N ; D̃ii =
∑

j Ãij denotes the diagonal

matrix; H l ∈ RN×D denotes the output value of l layer, where H0 = X ; σ(·) denotes the
activation function; W l denotes the parameter value of l layer.

2.3. LSTM. LSTM networks were first proposed by Hochreiter and Schmidhuber in 1997
to solve the long-term dependency problem in RNNs [19]. As shown in Figure 2(a), al-
though each RNN unit will pass the information extracted by itself to the next unit,
information loss will occur when the length of the passing chain increases to a certain de-
gree, which is the problem of long-term dependence mentioned above, and this prompted
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(a) (b)

Figure 2. (a) Traditional RNN structure; (b) RNN’s variant LSTM struc-
ture, where the first part is the forgetting gate f , the second department is
the input gate i, and the third part is the output gate o

the emergence and popularity of LSTM. RNN has no cell state, while LSTM can remem-
ber information through cell state; RNN activation function can only use tanh function,
while LSTM introduces sigmoid function combined with tanh function, adds summation
operation, and reduces the possibility of gradient disappearance and gradient explosion;
RNN can only deal with short-term dependence problems, while LSTM can deal with both
short-term dependence problem and LSTM can deal with both short-term and long-term
dependence problems. Therefore, we adopt LSTM to handle temporal feature extraction
and mapping of sensor data. Specifically, as shown in Figure 2(b), the LSTM uses three
types of gating units, namely forgetting gates f , input gates i and output gates o [20].
The forgetting gate f is used to control what information is to be discarded from the

current cell state Ct. First, the hidden state information at moment t− 1 is input to the
sigmoid function together with the data at moment t. The output value is on the interval
[0, 1], where larger means more remembered and smaller means more should be forgotten.
Finally, the obtained value is multiplied with the cellular memory Ct−1 of the previous
moment as a way to limit the influence of the previous memory on the later. The state
update equation of the forgotten gate f is shown in Equation (3).

ft = σ (Wf [ht−1, xt] + bf ) (3)

The input gate i controls how much of the current network input xt will be retained
in the cell state Ct. First, the memory Ct−1 at moment t − 1 is operated by the same
memory measurement rule as the forgetting gate f , which serves to truncate and filter past
memories. Then, the result is added to Ct−1 by doing the operation with the combined
input adjusted by the tanh function. Finally, the total capacity of the memory is extended
so that the memory can be constantly updated. The rules for updating the state of the
input gates are shown in Equations (4)-(6).

it = σ(Wi[ht−1, xt] + bi) (4)

C̃t = tanh(Wc[ht−1, xt] + bc) (5)

Ct = ft × Ct−1 + it × C̃t (6)

Output gate o controls how much information can be output for the current cell state
Ct. First, the information passed by the input gate is adjusted with the tanh function.
Then, the hidden state at the previous moment t − 1 is multiplied with the integrated
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data input at this moment t. The product operation is done. Finally, the computed data
is output and transferred to the next LSTM unit. The state update rules for the output
gate are shown in Equations (7) and (8).

ot = σ(Wo[ht−1, xt] + bo) (7)

ht = ot × tanh(Ct) (8)

where σ denotes the activation function that generates a vector between [0, 1] based on

the input; C̃t denotes the candidate cell information; Wf , Wi, Wo, Wc denote the weight
coefficient matrix in the LSTM cell state update process; bf , bi, bo, bc denote the bias
matrix in the state update process.

3. A GCN-LSTM Model for Multi-Sensor Data Fusion.

3.1. Basic ideas. The multi-sensor data fusion process is abstracted as a graph model, as
shown in Figure 3, in which, the individual sensor information is abstracted as nodes and
the connection information between individual sensors is abstracted as the edges of the
graph model. The features within each sensor are used as the feature vectors of each node,
and the sensor connectivity information is embedded in the connectivity relationships of
the graph structure. At the same time, the states of nodes in the graph model depend on
their own states and the influence of other states [21].

Figure 3. GCN-LSTM based multi-sensor system fusion framework

Based on the above analysis, we propose a model that fuses the spatially structured
data and temporal structure of sensor data. The model is based on window moments
and uses GCNs to extract spatial features between the input sensor data. Then, the GCN
outputs of all window moments are combined into sequences, and the LSTM is used
to evolve the GCN parameters to capture the dynamics of the sensor data sequences.
Finally, the valid information in the input data is effectively extracted through a series
of forgetting, remembering, updating, and direction propagation weight updating of the
data sequences.

We extract and map the temporal and spatial features between sensor data by combin-
ing GCN and LSTM, and perform feature-level fusion to obtain consistent interpretation
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and description of each sensor data to achieve multi-sensor data fusion, as shown in Figure
3.

3.2. GCN-based spatial feature extraction and mapping. In the deep learning
model, CNN can extract Euclidean space features well and can be applied to the fusion of
ordinary data. However, the composition of multi-sensors belongs to non-Euclidean space,
and its data belongs to non-Euclidean data. Therefore, we use GCN neural network to
extract spatial features between data from window moment sensor data and map to get
the actual features, so as to get the fusion features of multi-sensors at window moment.
GCN contains multiple convolutional layers, each of which contains multiple convolu-

tional kernels, each of which in turn contains multiple channels [22]. We assume that the
convolutional layer of the lth layer is G(l), the convolutional kernel ith on that layer is

G
(l)
i , and the channel jth on that kernel is G

(l)
i,j. G

(l), G
(l)
i and G

(l)
i,j are shown in Equations

(9)-(11).

G(l) =
[

G
(l)
i

]

αl

(9)

G
(l)
i =

[

G
(l)
i,j

]

βl

(10)

G
(l)
i,j =

µ
∑

ω=0

θ
(l)
i,j,ωL

ω (11)

where µ is the number of polynomials; θ
(l)
i,j,ω is the ωth term coefficients of the jth channel,

which represents the weight influenced by the neighbor nodes of ω-order; αl is the number
of convolutional kernels in the lth convolutional layer; βl is the number of convolutional
kernel channels in the lth convolutional layer; Lω is the Laplace matrix of order ω.
To quantify the cumulative effect of sensor data subject to different weight adjacen-

cy matrices G
(l)
i,j , weighted combinations θ

(l)
i,j,z and Lω in GCN. We use the sensor data

original features h
(0)
c as input to the GCN, multiply the channel G

(l)
i,j of each G

(l)
i with

the corresponding original feature h
(0)
c , sum the result of the multiplication and input

the activation function, and finally obtain the higher-order spatial features h
(1)
c . After

iterative convolution, more abstract higher-order spatial features are output, as shown in
Equation (12).

h(l)
c = σ

(

G(l) · h(l−1)
c

)

(12)

where h
(l)
c is the spatial feature of layer l; σ(·) is the activation function.

In particular, to reduce the number of spatial feature mappings for sensor data and to
improve the parameter training speed, we use a pooling layer to extract the convolved

spatial features h
(l)
c , as shown in Equation (13).

hc = ϕ
(

h(l)
c

)

(13)

where hc is the pooled spatial feature; ϕ(·) is the pooling function.
Through the feedforward neural network, the GCN fully connected layer fully connects

the pooled spatial features and maps them to obtain the mapping output h
(l)
fc , as shown

in Equation (14).

h
(l)
fc = σ

(

Wfch
(l−1)
fc + b

(l)
fc

)

(14)

where h
(l)
fc is the output of layer l fully connected layer, when l = 0, h

(l)
fc is the input of

layer l fully connected layer; W
(l)
fc and b

(l)
fc are the weights and bias terms of layer l fully

connected layer, respectively.
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After the l-layer fully connected layer, the mapping output A, i.e., the spatial fusion
features of the sensor data at the window moment. In summary, the spatial feature ex-
traction and mapping process based on GCN is shown in Figure 4.

Figure 4. GCN-based spatial feature extraction and mapping

3.3. LSTM-based temporal feature extraction and mapping. In deep learning
models, RNN is the classical method to extract time series. However, the usual RNN will
make the gradient vanishing problem more and more serious, and the efficiency of temporal
feature extraction will be greatly reduced. Therefore, we use LSTM to extract temporal
features of sensor data, which can effectively solve the gradient vanishing problem and
improve the efficiency of temporal feature extraction [23].

Based on Equations (3), (4), and (7), to distinguish from the convolution layer of GCN,

we assume that the forgetting gate, input gate, and output gate of unit t are f̃ (t), ĩ(t) and
õ(t), respectively, the computational Equations (15)-(17).

f̃ (t) = σ
(

Wf̃ g

[

h
(t−1)

f̃
, h(t)

n

]

+ bf̃ g

)

(15)

ĩ(t) = σ
(

Wĩg

[

h
(t−1)

f̃
, h(t)

n

]

+ b̃ig

)

(16)

õ(t) = σ
(

Wõg

[

h
(t−1)

f̃
, h(t)

n

]

+ bõg

)

(17)

where h
(t−1)

f̃
is the significant temporal feature at time step t− 1; h

(t)
n is the original tem-

poral feature at time step t; W and b are the weights and bias terms of the corresponding
gates.

Specifically, we use the forgetting gate f̃ (t) to combine the sensor temporal feature

h
(t−1)

f̃
at the moment t − 1 with the original sensor feature h

(t)
n at the moment t. The

cellular memory of the LSTM is controlled by the forgetting gate f̃ (t) for temporal feature
deletion, and the candidate temporal feature of the LSTM is controlled by the input gate
ĩ(t) for replenishment, so as to obtain the temporal feature at the moment t, which is
calculated as shown in Equations (18) and (19).

T (t) = f̃ (t) · T (t−1) + ĩ(t) · T̃ (t) (18)
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T̃ (t) = σ
(

Wa

[

h
(t−1)

f̃
, h(t)

n

]

+ ba

)

(19)

where T (t) is the temporal feature at time t; T̃ (t) is the candidate temporal feature at time
t; Wa and ba are the weights and bias terms of the candidate temporal feature selection,
respectively.
After the truncation and screening of the sensor temporal data features, the output of

the important time features at the current moment is controlled by the output gate õ(t).
The time feature T (t) at the current t moment is input into the activation function and
then outputted, and the calculation formula is shown in Equation (20).

h
(t)
õ = õ · σ

(

T (t)
)

(20)

where h
(t)
õ is the sensor t temporal feature of the final output of output gate õ.

The output important time features of the current time step will be input to the next
unit to participate in the time feature extraction of the next time step, and after repeated
operations until the last unit completes the time feature extraction [24].

The LSTM maps the significant features of the last time step h
(δ)
õ , and obtains the

output of the mapping of the temporal features, i.e., the sensor data after feature fusion,
as shown in Equation (21).

h = σ
(

Wh
(δ)
õ + b

)

(21)

where h is the output of the mapping; W and b are the weights and bias terms of the
mapping, respectively.
In summary, the spatial feature extraction and mapping process based on LSTM is

shown in Figure 5.

Figure 5. LSTM-based spatial feature extraction and mapping

3.4. Model training. The training process of the GCN-LSTM model for multi-sensor
data fusion is shown in Figure 6. First, we divide the sensor data into a training set
and a test set. Then, we input the training set into the GCN to extract the spatial
features and mapping between sensor data, and extract the temporal features and mapping
between sensor data in the LSTM to integrate the features of GCN-LSTM fusion to
generate prediction data. Then, we iteratively train and judge whether the model training
is completed, if not, we return to GCN and LSTM to continuously adjust the model
structure, and if completed, we output the obtained model. Finally, we input the test
set of sensors into the GCN-LSTM model to determine whether the accuracy meets the
expectation, and if it is not completed, we still return to GCN and LSTM to keep adjusting
the model structure, and if it is completed, we input the final model results.
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Figure 6. Model training process

4. Simulation Experiments and Analysis.

4.1. Data set. The data set for the simulation experiments is the real data collected
from the Intel lab using 54 sensors during a month period, as shown in Figure 7. The
sensed data in the lab included several features such as temperature, humidity, and light
intensity [25]. The nodes of this sensor are based on a distributed architecture and have
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Figure 7. Intel labs sensor node distribution

a good basis for the clustering identification of IoT sensor devices [26]. Therefore, the
collected multi-sensor data set is not only used for theoretical studies but also has strong
practicality in industry and is used for more convincing experiments on sensor data fusion.

4.2. Experimental setup.

4.2.1. Evaluation criteria. In order to more intuitively express the deviation between the
output results and the real results, we chose the mean absolute error (MAE), root mean
square error (RMSE), and goodness-of-fit R2 metrics to assess and evaluate the GCN-
LSTM model [27]. MAE and RMSE are good metrics of model performance to minimize
the loss function and to make the units of the results consistent with the data set and
better described. R2 is used to observe the degree of fit of the model predictions and has
a good representation of the predicted data brought by the fused features. The equations
for MAE, RMSE and R2 are shown in Equations (22)-(24).

MAE =
1

N

N
∑

n=1

|yn − ŷn| (22)

RMSE =

√

√

√

√

1

N

N
∑

n=1

(yn − ŷn)
2 (23)

R2 = 1−

∑N

n=1 (yn − ŷn)
2

∑N

n=1 (yn − ȳ)2
(24)

where N denotes the amount of data in the test set; yn and ŷn denote the true value of
the nth instance and with the test, respectively; ȳ denotes the average value of y. Both
MAE and RMSE reflect the deviation of the predicted value from the true value, with
smaller values indicating better model prediction. Larger R2 means better model fit.

4.2.2. Baselines. To verify the effectiveness of GCN-LSTM for sensor data fusion, GCN-
LSTM is compared with the following baselines. The baselines can be divided into three
categories: general machine learning models (SVM), models based on temporal feature
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extraction (GRU), and models based on temporal and non-Euclidean feature extraction
(T-GCN, GCN-Seq2Seq).

SVM [28]: The existing data is analyzed to get the law that is not available in principle,
and this law is used to make predictions for future data.

GRU [29]: A variation of LSTM, which synthesizes the forgetting gate and the input
gate into a single update gate, and the rest is used to predict the future data through
temporal features just like LSTM.

T-GCN [30]: Using GCN to obtain the spatial dependencies of the graph and GRU
to learn the temporal dependencies of the nodes to predict future data by spatial and
temporal features.

GCN-Seq2Seq [31]: Add two decoders to GCN and use the feature propagation func-
tion of the decoder to make predictions on future data.

4.2.3. Parameter settings. In terms of parameter settings, we pre-train the GCN-LSTM
model to tune the parameters in order to better improve the accuracy of the model.

For the dimensional aspects of the model, the input dimensions of GCN are selected
among {5, 10, 15, 20}, the hidden dimensions of GCN are selected among {8, 16, 32, 64},
the output dimensions of GCN are selected among {8, 16, 32, 64}, and the input dimen-
sions of LSTM are selected among {8, 16, 32, 64}, and the results are shown in Figures
8(a)-8(d), respectively.

(a) Input dimension of GCN (b) Hidden dimension of GCN

(c) Output dimension of GCN (d) Input dimension of LSTM

Figure 8. Dimensional settings of the model
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As can be seen from Figure 8, the MAE and RMSE are similar in terms of the choice
of dimensionality, which may be due to the fact that dimensionality has little effect on
the dispersion when the overall deviation is not large. The change in dimensionality has
a greater effect on R2, which may be due to the fact that the change in dimensionality
leads to a larger change in the overall variance of the features.
For the other parameters of the model, the number of training layers of the mod-

el is chosen among {5, 10, 15, 20}, the learning factor of the activation function is cho-
sen among {0.1, 0.01, 0.005, 0.001}, the ratio of retention in dropout is chosen among
{0.1, 0.25, 0.5, 0.75}, and the number of epochs is initially set to 1000. The results are
shown in Figures 9(a)-9(d), respectively.

(a) Number of training layers of the model (b) Learning rate of the activation function

(c) Dropout retention rate (d) Training epochs of the model

Figure 9. Other parameters of the model

From Figure 9, it can be seen that the variation of MAE and RMSE is relatively large
in the selection of parameters for the internal structure of the model, which may be due
to the fact that the variation of the internal structure directly affects the embedding
of the features and thus the size of the metrics. The variation of the metrics of R2 is
relatively small, which may be due to the high overall fit of the model, thus ignoring the
influence brought by the internal parameters of the model. In terms of overall training,
each indicator leveled off after 540 epochs of the model.
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According to Figure 8 and Figure 9, the parameters are chosen when MAE and RMSE
are small, and R2 is large. Also, the number of training epochs is chosen to be 540 to
reduce the computational cost. The configuration of each parameter is shown in Table 1.

Table 1. Other parameters of the model

Parameter name Parameter meaning Parameter value
gcn in Input dimension of GCN 5
gcn hid Hidden dimension of GCN 16
gcn out Output dimension of GCN 16
lstm in Input dimension of LSTM 32

l Number of training layers 10
α Learning rate within the activation function 0.01
β Dropout retention rate 0.5
n Training epochs 540

4.3. Experimental results and comparison.

4.3.1. Overall performance. The overall simulation experiments are performed on 54 sen-
sor node data from Intel labs, and the simulation data is extracted from each sensor node,
which contains 3000 consecutive data sequences. To ensure the feasibility and fairness of
the experimental comparison, the data sequences are divided into training and test sets
in a ratio of 3 : 1. We use the past 250 historical adoption data as the input to the model
and output 1 prediction per target. Since the first 250 sampled data from each node
are used to train the GCN-LSTM model, we only perform statistical analysis of the data
after 250 sampled points. We fused the sampled data through the GCN-LSTM model
used for sensor data fusion and performed sensor node data prediction to determine the
overall performance capability of the model. Specifically, we randomly selected four times
with the same interval to predict all the sampled sensor data by the GCN-LSTM model,
calculated the error between the real data collected by the nodes and evaluated the over-
all performance of the GCN-LSTM model using MAE, RMSE and R2 metrics, and the
results are shown in Figure 10. From the results of the overall test, it can be obtained
that the MAE of GCN-LSTM is lower than 5, RMSE is lower than 6, and R2 is higher
than 60% on both the training and test sets, which indicates that the model is effective
and performs well for data fusion on the whole sensor system.

4.3.2. Individual performance. The overall performance of the GCN-LSTM model repre-
sents the average of the errors of all nodes within the predicted sensor system, but there
are differences in the individual performance of each sensor node, i.e., the errors between
the real data collected by each node and the fused predicted data differ, and the indi-
vidual performance of the GCN-LSTM needs to be analyzed by the errors of each node.
Therefore, we collected node 9 temperature sensor data and node 10 temperature sensor
data in Intel labs, fused the data features and continuously predicted the future data by
the GCN-LSTM model, and also calculated the error between the predicted data and the
real data of the sensors, and the results are shown in Figure 11 and Figure 12. From the
prediction results, it can be seen that the predicted data curve of GCN-LSTM basically
fits with the actual data curve. The time series itself has strong time correlation, and the
prediction mechanism of this model has been able to achieve a high accuracy rate, which
is very suitable for data fusion of multi-sensor systems.
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(a) MAE (b) RMSE

(c) R2

Figure 10. Overall performance

(a) Predicted results (b) Error situation

Figure 11. Node 9 temperature prediction results and error situation

4.3.3. Model comparison. To compare the GCN-LSTM model with other models, we con-
structed a collection of comparison models using the baseline shown in 4.2.2, which in-
cludes four models, SVM, GRU, T-GCN, and GCN-Seq2Seq. The overall performance of
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(a) Predicted results (b) Error situation

Figure 12. Node 10 temperature prediction results and error situation

Table 2. Comparison of the overall performance of different models

Model
name

MAE RMSE R2
/

%
17:00 18:00 19:00 20:00 17:00 18:00 19:00 20:00 17:00 18:00 19:00 20:00

SVM 6.73 6.20 5.37 4.37 8.09 7.98 6.44 7.02 33.98 38.30 30.97 33.82
GRU 6.41 5.89 4.61 4.73 6.84 6.58 6.74 7.52 54.19 60.22 66.74 60.72

T-GCN 5.12 5.37 4.57 4.32 6.78 6.36 6.66 7.44 55.95 64.71 67.97 59.34
GCN-
Seq2Seq

5.71 5.34 5.32 4.88 6.94 6.00 5.57 6.23 56.43 63.81 68.16 60.65

GCN-
LSTM

4.17 4.44 3.98 4.25 5.33 5.61 5.27 5.13 71.88 74.24 89.43 63.58

each model on the training set was evaluated using three evaluation metrics, MAE, RMSE,
and R2, each based on the mean value of the error between the node value predicted by
model fusion and the actual node value of the sensor. The specific results are shown in
Table 2, where the bolded results are the optimal solutions and the underlined results are
the suboptimal solutions. From Table 2, it can be obtained that the SVM model has the
worst three metrics, which is due to the fact that there is no general machine learning
model that does not predict for the features of the sensor data, resulting in poor results;
the GRU model, although the effect is better than the general machine learning model,
does not achieve particularly good results, which is due to the fact that such models only
consider the temporal features and ignore the spatial features among the sensor data; the
T-GCN model and GCN-Seq2Seq model have been significantly better than the first two,
which is due to their ability to extract temporal and spatial features and fit the features of
the sensor data well; the GCN-LSTM model we used achieves the optimal solution in all
three metrics, which is due to the model’s ability to target temporal and spatial feature
extraction, effectively reducing the prediction error and obtaining better sequence results.

To investigate the individual performance of each model on the test set, we still col-
lected temperature data from sensor node 9 and sensor node 10, and set the same time
interval as the overall performance of each model to evaluate the individual performance
of each model on the test set using the MAE metric. Specifically, we used the same 3000
consecutive sequences on both sensor nodes, and the value of MAE was recorded every
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(a) 17:00 (b) 18:00

(c) 19:00 (d) 20:00

Figure 13. Performance of each model at node 9

500 sequence points to compare the performance capability of each model, as shown in
Figure 13 and Figure 14.
From Figure 13 and Figure 14, it can be seen that in terms of individual performance,

the MAE value of the SVM model is the highest and the MAE value of the GRU model is
the second highest, which is because both of them do not extract features well for sensor
data; the MAE values of the T-GCN model and the GCN-Seq2Seq model are high and
low, which may be due to the fact that both of them have different temporal extraction
ability and spatial extraction ability for sensor data; the MAE value of the GCN-LSTM
is the lowest, which proves that the individual performance ability is also excellent, which
is attributed to the temporal and spatial extraction ability for sensor data.

5. Conclusions. In this study, a hybrid algorithm based on GCN and LSTM is pro-
posed to establish a model for multi-sensor data fusion. Among them, the graph neural
network is applied to extracting non-Euclidean spatial features, which solves the problem
of difficult fusion of heterogeneous data caused by the difference of data types; the feature
extraction of time series by LSTM solves the problem of gradient disappearance. The
experimental results show that the proposed GCN-LSTM fusion algorithm has better ac-
curacy and performance than other algorithms in predicting the future data direction of
nodes in the environment of multi-sensor nodes.
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(a) 17:00 (b) 18:00

(c) 19:00 (d) 20:00

Figure 14. Performance of each model at node 10
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