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Abstract. In this paper, we introduce the concept of multiple attribute decision-making
(MADM) problems based on the sine trigonometric Fermatean normal fuzzy set (ST-
FNFS). The sine trigonometric Fermatean normal fuzzy sets are new generalizations
of Fermatean fuzzy sets. The present article has discussed a concept of some trigono-
metric functions such as sine trigonometric Fermatean normal fuzzy weighted averag-
ing (ST-FNFWA), sine trigonometric Fermatean normal fuzzy weighted geometric (ST-
FNFWG), sine trigonometric generalized Fermatean normal fuzzy weighted averaging
(ST-GFNFWA), and sine trigonometric generalized Fermatean normal fuzzy weighted
geometric (ST-GFNFWG). We obtained an algorithm that deals with the MADM prob-
lems based on these operators. We discuss the applicability of the Hamming distance,
which is further extended in real-life illustrative problems. Also, some intersecting prop-
erties of these sets under the different algebraic operations are to be elaborated in this
communication.
Keywords: Sine trigonometric Fermatean normal fuzzy weighted averaging, Sine trigo-
nometric Fermatean normal fuzzy weighted geometric, Sine trigonometric generalized
Fermatean normal fuzzy weighted averaging, Sine trigonometric generalized Fermatean
normal fuzzy weighted geometric

1. Introduction. Uncertainty can be seen everywhere in most real problems. Many un-
certain theories are proposed, including fuzzy set [1], intuitionistic fuzzy set [2], and
Pythagorean fuzzy set [3, 4], and Fermatean fuzzy set [5] are put forward. A fuzzy set is
a set with a grade of belongingness that comes between zero and one, and such grades are
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called the membership value of an element in that given set. Later, the notion of an in-
tuitionistic fuzzy set logic is launched by Atanassov and by the condition that the sum of
its membership grade and non-membership grade does not exceed 1 [2]. In some cases, we
may face one problem in the decision-making (DM) approach, the sum of the membership
grade and non-membership grade exceeds 1. Therefore, Yager [3] introduced the logic for
Pythagorean fuzzy set logic, which is a new generalization of IFS and characterized by the
condition that the square sum of its membership grade and non-membership grade does
not exceed 1. However, we may interact with a problem in DM events, where the square
sum of the degree of membership and non-membership of a particular attribute exceeds
unity. In 2020, Senapati and Yager proposed the notion of a Fermatean fuzzy set [5] by
the condition that the cubic sum of its degrees of membership and non-membership does
not exceed unity. Yang and Chang proposed the notion of interval-valued Pythagorean
normal fuzzy information aggregation operators for MADM [6]. Zhang and Xu proposed
the extension of Pythagorean fuzzy sets based on the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) to MCDM [7]. Hwang and Yoon discussed various
real-life applications of MADM [8]. Jana and Pal were studied by the concept of bipolar
intuitionistic fuzzy soft sets with applications [9]. Jana and Pal introduced the area for
robust single-valued neutrosophic soft aggregation operators based on MCDM [10] with
bipolar fuzzy soft in 2019 [11]. Jana et al. introduced the concept of Pythagorean fuzzy
Dombi aggregation operators [12]. In 2020, Jana et al. studied trapezoidal neutrosophic
aggregation operators and their application to the MADM process [13]. In 2021, Jana
and Pal interacted with the application for the MCDM process based on single-valued
neutrosophic Dombi power aggregation operators [14]. In recent work, Jana et al. studied
introduced the concept of an MCDM approach based on SVTrN Dombi aggregation func-
tions [15]. TOPSIS extends to interval-valued intuitionistic fuzzy soft set (IFSS) which
was discussed by Zulqarnain et al. in 2021. They also discussed a new type of correlation
coefficient under IFSS’s [16]. Samatha et al. discussed the notion of clustering Indonesian
patients with personality disorders using fuzzy C-means [17].
The purpose of this paper is to choose a problem as the selection of a college for

undergoing teaching education. The evaluation of teacher education is carried out ac-
cording to various standards of experts. In this research paper, we extend the concept of
the Fermatean fuzzy set. We obtained Fermatean fuzzy set information with aggregation
operators. The paper is organized into seven sections as follows. Section 1 is called an
introduction. In Section 2 brief description of the Fermatean fuzzy set is given. Section
3 discusses MADM based on Fermatean normal fuzzy number (FNFN) and its opera-
tions. Section 4 deals with Hamming distance approach for FNFN. Section 5 discusses
aggregation operators for FNFN. Section 6 deals with FNF information, an algorithm
with an illustrative example and comparison for the proposed and existing. Finally, a
conclusion is needed in Section 7. Throughout this article, we deal with the conditions

that 0 ≤
(
ςM(u)

)2
+
(
ςNM(u)

)2
> 1 but 0 ≤

(
ςM(u)

)3
+
(
ςNM(u)

)3 ≤ 1.

2. Background. In this section, we review some basic definitions.

Definition 2.1. A fuzzy set L in the universe U is of the form: L =
{
u,
⟨
ςML (u), ςNM

L (u)
⟩∣∣

u ∈ U
}
, where ςML (u) and ςNM

L (u) are called as degree of membership and non mem-

bership of L, respectively. The mapping ςML : U → [0, 1] and ςNM
L : U → [0, 1] and

0 ≤
(
ςML (u)

)3
+
(
ςNM
L (u)

)3 ≤ 1. Here L =
⟨
ςML , ςNM

L
⟩
is called a Fermatean fuzzy number

(FFN).
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Definition 2.2. For any FFNs, L =
⟨
ςM, ςNM⟩, L1 =

⟨
ςM1 , ςNM

1

⟩
and L2 =

⟨
ςM2 , ςNM

2

⟩
,

ςM, ςNM are called membership and non membership of L, respectively and Ξ is a positive
integer. Then the following statements are valid.

1) L1 � L2 =

(
3

√(
ςM1
)3

+
(
ςM2
)3 − (ςM1 )3 · (ςM2 )3, (ςNM

1 · ςNM
2

))
2) L1 � L2 =

((
ςM1 · ςM2

)
, 3

√(
ςNM
1

)3
+
(
ςNM
2

)3 − (ςNM
1

)3 · (ςNM
2

)3)
3) Ξ · L =

(
3

√
1−

(
1− (ςM)3

)Ξ
,
(
ςNM)Ξ)

4) LΞ =

((
ςM
)Ξ

,
3

√
1−

(
1− (ςNM)3

)Ξ)
Definition 2.3. Let L =

⟨
ςM, ςNM⟩ be FFN, its score function and accuracy function

are defined as S(L) = 1
2

((
ςM
)3 − (ςNM)3), H(L) = 1

2

((
ςM
)3

+
(
ςNM)3), respectively,

where S(L) ∈ [−1, 1] and H(L) ∈ [0, 1].

Definition 2.4.

1) Let R be a set of real number, the membership of fuzzy number M(x) = e−(
x−τ
ϑ )

2

,
(ϑ > 0) is called a normal fuzzy number (NFN) M = (τ, ϑ), where N is an NFN set.

2) Let M1 = (τ1, ϑ1) ∈ N and M2 = (τ2, ϑ2) ∈ N, and then the distance between M1 and

M2 can be defined as D(M1,M2) =
√
(τ1 − τ2)2 +

1
2
(ϑ1 − ϑ2)

2.

The sine trigonometric Fermatean normal fuzzy set model has become a useful and
remarkable generalized version of Fermatean fuzzy set.

3. New Operations for ST-FNFN.

Definition 3.1. Let (τ, ϑ) ∈ N, L =
⟨
(τ, ϑ); ςM, ςNM⟩ be a Fermatean normal fuzzy

number (FNFN), when its grades of membership, non-membership are defined as ςML =

ςML e−(
x−τ
ϑ )

3

and ςNM
L = 1 −

(
1− ςNM

L
)
e−(

x−τ
ϑ )

3

, x ∈ X respectively, where X is a non-

empty set and ςML , ςNM
L ∈ [0, 1] and 0 ≤

(
ςML (x)

)3
+
(
ςNM
L (x)

)3 ≤ 1.

Definition 3.2. Let (τ, ϑ) ∈ N, L =
⟨
(τ, ϑ); ςM, ςNM⟩ be an FNFN. Then we define an

ST-FNFN set as sinL =
{
sin
(
π/2 ·

(
ςML (u)

)3)
, 1− sin

(
π/2 ·

(
1− ςNM

L (u)
)3)}

. Clear-

ly, sinL is also FNFN, and also satisfied the following condition that the FNFN as, the
membership, non membership grade of FNFN, respectively, sin

(
π/2 · ςML (u)

)
: U → [0, 1]

such that 0 ≤ sin
(
π/2 · ςML (u)

)
≤ 1 and 1 − sin

(
π/2 ·

(
1− ςNM

L (u)
))

: U → [0, 1] such

that 0 ≤ 1− sin
(
π/2 ·

(
1− ςNM

L (u)
))

≤ 1. Therefore, sinL =
{
sin
(
π/2 ·

(
ςML (u)

)3)
, 1−

sin
(
π/2·

(
1−ςNM

L (u)
)3 )}

is an FNFN, where ςML = ςML e−(
x−τ
ϑ )

3

and ςNM
L = ςNM

L e−(
x−τ
ϑ )

3

.

Definition 3.3. Let (τ, ϑ) ∈ N, L =
⟨
(τ, ϑ); ςM, ςNM⟩ be an FNFN. Then sinL ={

sin
(
π/2 ·

(
ςML
)3)

, 1 − sin
(
π/2 ·

(
1− ςNM

L
)3)}

is called a sine trigonometric FNFN,

where ςML = ςML e−(
x−τ
ϑ )

3

and ςNM
L = ςNM

L e−(
x−τ
ϑ )

3

.

Definition 3.4. Any three ST-FNFNs L =
⟨
(τ, ϑ); ςM, ςNM⟩, L1 =

⟨
(τ1, ϑ1); ς

M
1 , ςNM

1

⟩
,

L2 =
⟨
(τ2, ϑ2); ς

M
2 , ςNM

2

⟩
and Ξ is a positive integer. Then
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1) sinL1 � sinL2

=


(τ1 + τ2, ϑ1 + ϑ2);

3Ξ

√
sin2

(
π/2 ·

(
ςM1
)3Ξ)

+ sin2
(
π/2 ·

(
ςM2
)3Ξ)− sin2

(
π/2 ·

(
ςM1
)3Ξ) · sin2 (π/2 · (ςM2 )3Ξ),

sin2
(
π/2 · ςNM

1

)
· sin2

(
π/2 · ςNM

2

)
,

2) sinL1 � sinL2

=

 (τ1 · τ2, ϑ1 · ϑ2) ; sin
2
(
π/2 · ςM1

)
· sin2

(
π/2 · ςM2

)
,

3Ξ

√
sin2

(
π/2·

(
ςNM
1

)3Ξ)
+sin2

(
π/2·

(
ςNM
2

)3Ξ)−sin2
(
π/2·

(
ςNM
1

)3Ξ)·sin2 (π/2·(ςNM
2

)3Ξ)
,

3) Ξ · sinL =

(
(Ξ · τ,Ξ · ϑ); 3Ξ

√
1−

(
1− sin2

(
π/2 · (ςM)3Ξ

))Ξ
,
(
sin2

(
π/2 · ςNM))Ξ),

4) (sinL)Ξ =

((
τΞ, ϑΞ

)
;
(
sin2

(
π/2 · ςM

))Ξ
, 3Ξ

√
1−

(
1− sin2

(
π/2 · (ςNM)3Ξ

))Ξ )
.

We introduce a new distance for sine trigonometric Fermatean normal fuzzy numbers
and its properties.

4. Distance between ST-FNFNs. In this section, we discuss the concept of distance
between ST-FNFNs.

Definition 4.1. Let L1 =
⟨
(τ1, ϑ1); ς

M
1 , ςNM

1

⟩
and L2 =

⟨
(τ2, ϑ2); ς

M
2 , ςNM

2

⟩
be the any

two ST-FNFNs. Then
(i) Euclidean distance between L1 and L2 is defined as follows

DE (L1,L2)

= 1
3

3

√√√√√√√√√
(

1+sin2
(
π/2·(ςM1 )

3
)
−sin2

(
π/2·(ςNM

1 )
3
)

3
τ1 −

1+sin2
(
π/2·(ςM2 )

3
)
−sin2

(
π/2·(ςNM

2 )
3
)

3
τ2

)3

+1
3

(
1+sin2

(
π/2·(ςM1 )

3
)
−sin2

(
π/2·(ςNM

1 )
3
)

3
ϑ1 −

1+sin2
(
π/2·(ςM2 )

3
)
−sin2

(
π/2·(ςNM

2 )
3
)

3
ϑ2

)3

(ii) Hamming distance between L1 and L2 is defined as follows

DH (L1,L2)

= 1

3



∣∣∣∣∣ 1 + sin2
(
π/2 ·

(
ςM1
)3)− sin2

(
π/2 ·

(
ςNM
1

)3)
3

τ1 −
1 + sin2

(
π/2 ·

(
ςM2
)3)− sin2

(
π/2 ·

(
ςNM
2

)3)
3

τ2

∣∣∣∣∣
+
1

3

∣∣∣∣∣ 1 + sin2
(
π/2 ·

(
ςM1
)3)− sin2

(
π/2 ·

(
ςNM
1

)3)
3

ϑ1 −
1 + sin2

(
π/2 ·

(
ςM2
)3)− sin2

(
π/2 ·

(
ςNM
2

)3)
3

ϑ2

∣∣∣∣∣


Theorem 4.1. For any three ST-FNFNs, L1 =

⟨
(τ1, ϑ1); ς

M
1 , ςNM

1

⟩
, L2 =

⟨
(τ2, ϑ2); ς

M
2 ,

ςNM
2

⟩
and L3 =

⟨
(τ3, ϑ3); ς

M
3 , ςNM

3

⟩
. Then

1) DE (L1,L2) = 0 if and only if L1 = L2

2) DE(L1,L2) = DE(L2,L1)
3) DE(L1,L3) ≤ DE(L1,L2) +DE(L2,L3).

Proof: The proof follows from Definition 4.1(i).

Theorem 4.2. For any three ST-FNFNs, L1 =
⟨
(τ1, ϑ1); ς

M
1 , ςNM

1

⟩
, L2 =

⟨
(τ2, ϑ2); ς

M
2 ,

ςNM
2

⟩
and L3 =

⟨
(τ3, ϑ3); ς

M
3 , ςNM

3

⟩
. Then

1) DH (L1,L2) = 0 if and only if L1 = L2

2) DH (L1,L2) = DH (L2,L1)
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3) DH (L1,L3) ≤ DH (L1,L2) +DH (L2,L3).

Proof: The proof follows from Definition 4.1(ii).
We introduce the sine trigonometric Fermatean normal fuzzy aggregation operators.

5. ST-FNFN-Aggregation Operators.

5.1. ST-FNF weighted averaging (ST-FNFWA) operator.

Definition 5.1. Let Li =
⟨
(τi, ϑi); ς

M
i , ςNM

i

⟩
be the collection of ST-FNFNs, W =

(ϖ1, ϖ2, . . . , ϖn) be a weight of Li and ϖi ≥ 0,
⊎n

i=1ϖi = 1. Then the ST-FNFWA
operator can be defined as ST-FNFWA (L1,L2, . . . ,Ln) =

⊎n
i=1ϖi sinLi, (i = 1, 2, . . . , n).

Theorem 5.1. Let Li =
⟨
(τi, ϑi) ; ς

M
i , ςNM

i

⟩
be the collection of ST-FNFNs, and then

ST-FNFWA operator is defined as

ST-FNFWA (L1,L2, . . . ,Ln)

=

( n⊎
i=1

ϖiτi,
n⊎

i=1

ϖiϑi

)
; 3Ξ

√√√√1−
n⊗

i=1

(
1− sin2

(
π/2·

(
ςMi
)3Ξ))ϖi

,
n⊗

i=1

(
sin2

(
π/2 · ςNM

i

))ϖi

.
Proof: The proof follows from mathematical induction approach.
If n = 2, then ST-FNFWA(L1,L2) = ϖ1 · sinL1 �ϖ2 · sinL2, where

ϖ1 · sinL1 =

(
(ϖ1τ1, ϖ1ϑ1) ;

3Ξ

√
1−

(
1− sin2

(
π/2 · (ςM1 )

3Ξ
))ϖ1

,
(
sin2

(
π/2 · ςNM

1

))ϖ1

)
and

ϖ2 · sinL2 =

(
(ϖ2τ2, ϖ2ϑ2) ;

3Ξ

√
1−

(
1− sin2

(
π/2 · (ςM2 )

3Ξ
))ϖ2

,
(
sin2

(
π/2 · ςNM

2

))ϖ2

)
.

We hand over to Definition 3.4, and get

ϖ1 · sinL1 �ϖ2 · sinL2

=



(ϖ1τ1 +ϖ2τ2, ϖ1ϑ1 +ϖ2ϑ2) ;

3Ξ

√√√√√√
(
1−

(
1− sin2

(
π/2 ·

(
ςM1
)3Ξ))ϖ1

)
+
(
1−

(
1− sin2

(
π/2 ·

(
ςM2
)3Ξ))ϖ2

)
−
(
1−

(
1− sin2

(
π/2 ·

(
ςM1
)3Ξ))ϖ1

)
·
(
1−

(
1− sin2

(
π/2 ·

(
ςM2
)3Ξ))ϖ2

)
,(

sin2
(
π/2 · ςNM

1

))ϖ1 ·
(
sin2

(
π/2 · ςNM

2

))ϖ2



=



(
2⊎

i=1

ϖiτi,
2⊎

i=1

ϖiϑi

)
; 3Ξ

√√√√1−
2⊗

i=1

(
1− sin2

(
π/2 ·

(
ςMi
)3Ξ))ϖi

,

2⊗
i=1

(
sin2

(
π/2 · ςNM

i

))ϖi

 .

Also hold for n ≥ 3,

ST-FNFWA(L1,L2, . . . ,Lk)

=

( k⊎
i=1

ϖiτi,
k⊎

i=1

ϖiϑi

)
; 3Ξ

√√√√1−
k⊗

i=1

(
1− sin2

(
π/2·

(
ςMi
)3Ξ))ϖi

,
k⊗

i=1

(
sin2

(
π/2 · ςNM

i

))ϖi

.
If n = k + 1, then
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ST-FNFWA (L1,L2, . . . ,Lk,Lk+1)

=



(
k⊎

i=1

ϖiτi +ϖk+1τk+1,
k⊎

i=1

ϖiϑi +ϖk+1ϑk+1

)
;

3Ξ

√√√√√√√√√√
k⊎

i=1

(
1−

(
1− sin2

(
π/2 ·

(
ςMi
)3Ξ))ϖi

)
+
(
1−

(
1− sin2

(
π/2 ·

(
ςMk+1

)3Ξ))ϖk+1
)

−
k⊗

i=1

(
1−

(
1− sin2

(
π/2 ·

(
ςMi
)3Ξ))ϖi

)
·
(
1−

(
1− sin2

(
π/2 ·

(
ςMk+1

)3Ξ))ϖk+1
)
,

k⊗
i=1

(
sin2

(
π/2 · ςNM

i

))ϖi ·
(
sin2

(
π/2 · ςNM

k+1

))ϖk+1



=



(
k+1⊎
i=1

ϖiτi,
k+1⊎
i=1

ϖiϑi

)
;

3Ξ

√√√√ 1−
k⊗

i=1

(
1− sin2

(
π/2 ·

(
ςMi
)3Ξ))ϖi

·
(
1− sin2

(
π/2 ·

(
ςMk+1

)3Ξ))ϖk+1

,

k+1⊗
i=1

(
sin2

(
π/2 · ςNM

i

))ϖi



=



(
k+1⊎
i=1

ϖiτi,

k+1⊎
i=1

ϖiϑi

)
; 3Ξ

√√√√ 1−
k+1⊗
i=1

(
1− sin2

(
π/2 ·

(
ςMi
)3Ξ))ϖi

,

k+1⊗
i=1

(
sin2

(
π/2 · ςNM

i

))ϖi


It holds for any k.

Theorem 5.2. Let Li =
⟨
(τi, ϑi) ; sin

2
(
π/2 · ςMi

)
, sin2

(
π/2 · ςNM

i

)⟩
(i = 1, 2, . . . , n) be

the collection of ST-FNFNs and all are equal with sin2
(
π/2·

(
ςMi
)3Ξ)

=
(
sin2

(
π/2 · ςMi

))3Ξ
and Li = L, then ST-FNFWA(L1,L2, . . . ,Ln) = sinL.
Proof: Given that, (τi, ϑi) = (τ, ϑ),

(
sin2

(
π/2·

(
ςMi
)
, sin2

(
π/2·

(
ςNM
i

))))
=
(
sin2

(
π/2

· ςM
)
, sin2

(
π/2 · ςNM)), for i = 1, 2, . . . , n and

⊎n
i=1 ϖi = 1. We hand over to Definition

3.4, and get,

ST-FNFWA (L1,L2, . . . ,Ln)

=


(

n⊎
i=1

ϖiτi,
n⊎

i=1

ϖiϑi

)
; 3Ξ

√
1−

n⊗
i=1

(
1− sin2

(
π/2 ·

(
ςM
)3Ξ))ϖi

,

n⊗
i=1

(
sin2

(
π/2 · ςNM

i

))ϖi



=



(
τ

n⊎
i=1

ϖi, ϑ

n⊎
i=1

ϖi

)
; 3Ξ

√√√√√
1−

(
1− sin2

(
π/2 ·

(
ςM
)3Ξ))

n⊎
i=1

ϖi ,

(
sin2

(
π/2 · ςNM))

n⊎
i=1

ϖi


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=

(
(τ, ϑ); 3Ξ

√
1−

(
1− sin2

(
π/2 ·

(
ςM
)3Ξ))

, sin2
(
π/2 · ςNM))

=
(
(τ, ϑ); sin2

(
π/2 · ςM

)
, sin2

(
π/2 · ςNM) ) = sinL

5.2. ST-FNF weighted geometric (ST-FNFWG) operator.

Definition 5.2. Let Li =
⟨
(τi, ϑi); ς

M
i , ςNM

i

⟩
be the collection of ST-FNFNs, W =

(ϖ1, ϖ2, . . . , ϖn) be a weight of Li. Then the ST-FNFWG operator can be defined as
ST-FNFWG(L1,L2, . . . ,Ln) =

⊗n
i=1 (sinLi)

ϖi, (i = 1, 2, . . . , n).

Theorem 5.3. Let Li =
⟨
(τi, ϑi) ; ς

M
i , ςNM

i

⟩
be the collection of ST-FNFNs, and then

the ST-FNFWG operator can be defined as

ST-FNFWG (L1,L2, . . . ,Ln)

=

( n⊗
i=1

τϖi
i ,

n⊗
i=1

ϑϖi
i

)
;

n⊗
i=1

(
sin2

(
π/2·ςMi

))ϖi
, 3Ξ

√√√√1−
n⊗

i=1

(
1− sin2

(
π/2·

(
ςNM
i

)3Ξ))ϖi


Proof: The proof follows from Theorem 5.1.

Theorem 5.4. Let Li =
⟨
(τi, ϑi) ; ς

M
i , ςNM

i

⟩
, (i = 1, 2, . . . , n) be the collection of ST-

FNFNs and all are equal with sin2
(
π/2 ·

(
ςNM
i

)3Ξ)
=
(
sin2

(
π/2 · ςNM

i

))3Ξ
and Li = L,

then ST-FNFWG(L1,L2, . . . ,Ln) = sinL.

Proof: The proof follows from Theorem 5.2.

5.3. Generalized ST-FNFWA (ST-GFNFWA) operator.

Definition 5.3. Let Li=
⟨
(τi, ϑi) ; ς

M
i , ςNM

i

⟩
be the collection of ST-FNFNs, W =(ϖ1, ϖ2,

. . . , ϖn) be a weight of Li. Then ST-GFNFWA(L1,L2, . . . ,Ln) =
(⊎n

i=1ϖi (sinLi)
Ξ
)1/Ξ

(i = 1, 2, . . . , n) is called an ST-GFNFWA operator.

Theorem 5.5. Let Li =
⟨
(τi, ϑi) ; ς

M
i , ςNM

i

⟩
be the collection of ST-FNFNs. Then ST-

GFNFWA operator can be defined as

ST-GFNFWA(L1,L2, . . . ,Ln)

=



( n⊎
i=1

ϖiτ
Ξ
i

)1/Ξ

,

(
n⊎

i=1

ϖiϑ
Ξ
i

)1/Ξ
 ;

 3Ξ

√√√√ 1−
n⊗

i=1

(
1−

(
sin2

(
π/2 ·

(
ςMi
)3Ξ))Ξ)ϖi

1/Ξ

,

3Ξ

√√√√1−

(
1−

(
n⊗

i=1

(
3Ξ

√
1−

(
1−

(
sin2

(
π/2 · ςNM

i

))3Ξ)Ξ)ϖi
)3Ξ)1/Ξ

.

Proof: The proof follows from mathematical induction. First let us show that,
n⊎

i=1

ϖi (sinLi)
Ξ

=



((
n⊎

i=1

ϖiτ
Ξ
i

)
,

(
n⊎

i=1

ϖiϑ
Ξ
i

))
; 3Ξ

√
1−

n⊗
i=1

(
1−

(
sin2

(
π/2 ·

(
ςMi
)3Ξ))Ξ)ϖi

,

n⊗
i=1

(
3Ξ

√
1−

(
1−

(
sin2

(
π/2 · ςNM

i

))3Ξ)Ξ)ϖi

 .
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If n = 2, then we hand over to Definition 3.4, and get

ϖ1 (sinL1)�ϖ2 (sinL2)

=



(
ϖ1τΞ1 +ϖ2τΞ2 ,ϖ1ϑΞ

1 +ϖ2ϑΞ
2

)
,

3Ξ

√√√√√√√√√√√√

(
3Ξ

√√√√ 1−
(
1−
(
sin2

(
π/2·

(
ςM1

)3Ξ))Ξ
)ϖ1

)3Ξ

+

(
3Ξ

√√√√ 1−
(
1−
(
sin2

(
π/2·

(
ςM2

)3Ξ))Ξ
)ϖ1

)3Ξ

,

−
(

3Ξ

√√√√ 1−
(
1−

(
sin2

(
π/2 ·

(
ςM1

)3Ξ))Ξ
)ϖ1

)3Ξ

·
(

3Ξ

√√√√ 1−
(
1−

(
sin2

(
π/2 ·

(
ςM2

)3Ξ))Ξ
)ϖ1

)3Ξ

(
3Ξ

√
1−

(
1−

(
sin2

(
π/2 · ςNM

1

))3Ξ)Ξ)ϖ1

·
(

3Ξ

√
1−

(
1−

(
sin2

(
π/2 · ςNM

2

))3Ξ)Ξ)ϖ1



=


(

2⊎
i=1

ϖiτ
Ξ
i ,

2⊎
i=1

ϖiϑ
Ξ
i

)
, 3Ξ

√√√√1−
2⊗

i=1

(
1−

(
sin2

(
π/2 ·

(
ςM1

)3Ξ))Ξ
)ϖi

,

2⊗
i=1

(
3Ξ

√
1−

(
1−

(
sin2

(
π/2 · ςNM

i

))3Ξ)Ξ)ϖi



In general,



(
k⊎

i=1

ϖiτ
Ξ
i ,

k⊎
i=1

ϖiϑ
Ξ
i

)
; 3Ξ

√√√√1−
k⊗

i=1

(
1−

(
sin2

(
π/2 ·

(
ςM1
)3Ξ))Ξ)ϖi

,

k⊗
i=1

(
3Ξ

√
1−

(
1−

(
sin2

(
π/2 · ςNM

i

))3Ξ)Ξ)ϖi


.

Now,
k⊎

i=1

ϖi (sinLi)
Ξ +ϖk+1 (sinLk+1)

Ξ

= ϖ1 (sinL1)
Ξ �ϖ2 (sinL2)

Ξ � · · ·�ϖk (sinLk)
Ξ �ϖk+1 (sinLk+1)

Ξ

=



(
k⊎

i=1

ϖiτ
Ξ
i +ϖk+1τ

Ξ
k+1,

k⊎
i=1

ϖiϑ
Ξ
i +ϖk+1ϑ

Ξ
k+1

)
;

3Ξ

√√√√√√√√√√√√

(
3Ξ

√√√√ 1−
k⊗

i=1

(
1−
(
sin2

(
π/2·

(
ςMi

)3Ξ))Ξ
)ϖi

)3Ξ

+

(
3Ξ

√√√√ 1−
(
1−
(
sin2

(
π/2·

(
ςMk+1

)3Ξ))Ξ
)ϖ1

)3Ξ

,

−
(

3Ξ

√√√√ 1−
k⊗

i=1

(
1−
(
sin2

(
π/2·

(
ςMi

)3Ξ))Ξ
)ϖi

)3Ξ

·
(

3Ξ

√√√√ 1−
(
1−

(
sin2

(
π/2 ·

(
ςMk+1

)3Ξ))Ξ
)ϖ1

)3Ξ

k⊗
i=1

(
3Ξ

√
1−

(
1−

(
sin2

(
π/2 · ςNM

i

))3Ξ)Ξ)ϖi

·

 3Ξ

√
1−

(
1−

(
sin2

(
π/2 · ςNM

k+1

))3Ξ)Ξ
ϖ1



=


(

k+1⊎
i=1

ϖiτ
Ξ
i ,

k+1⊎
i=1

ϖiϑ
Ξ
i

)
; 3Ξ

√√√√1−
k+1⊗
i=1

(
1−

(
sin2

(
π/2 ·

(
ςM1

)3Ξ))Ξ
)ϖi

,

k+1⊗
i=1

(
3Ξ

√
1−

(
1−

(
sin2

(
π/2 · ςNM

i

))3Ξ)Ξ)ϖi


and

k+1⊎
i=1

(
ϖi (sinLi)

Ξ
)1/Ξ
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=



(k+1⊎
i=1

ϖiτ
Ξ
i

)1/Ξ

,

(
k+1⊎
i=1

ϖiϑ
Ξ
i

)1/Ξ
 ;

3Ξ

√√√√ 1−
k+1⊗
i=1

(
1−

(
sin2

(
π/2 ·

(
ςMi
)3Ξ)Ξ)ϖi

)1/Ξ

,

3Ξ

√√√√1−

(
1−

(
n⊗

i=1

(
3Ξ

√
1−

(
1−

(
sin2

(
π/2 · ςNM

i

))3Ξ)Ξ)ϖi
)3Ξ)1/Ξ


.

It holds for any k.

Remark 5.1. If Ξ = 1, then ST-GFNFWA operator is reduced to the ST-FNFWA oper-
ator.

Theorem 5.6. Let Li =
⟨
(τi, ϑi) ; ς

M
i , ςNM

i

⟩
, (i = 1, 2, . . . , n) be the collection of ST-

FNFNs and all are equal with Li = L, then ST-GFNFWA(L1,L2, . . . ,Ln) = sinL.

Proof: The proof follows from Theorem 5.2.

5.4. Generalized ST-FNFWG (ST-GFNFWG) operator.

Definition 5.4. Let Li=
⟨
(τi, ϑi) ; ς

M
i , ςNM

i

⟩
be the collection of ST-FNFNs, W =

(
ϖ1, ϖ2,

. . . , ϖn

)
be a weight of Li. Then ST-GFNFWG (L1,L2, . . . ,Ln) =

1
Ξ
(
⊗n

i=1 (Ξ sinLi)
ϖi),

(i = 1, 2, . . . , n) is called an ST-GFNFWG operator.

Theorem 5.7. Let Li =
⟨
(τi, ϑi) ; ς

M
i , ςNM

i

⟩
be the collection of ST-FNFNs. Then ST-

GFNFWG operator can be defined as

ST-GFNFWG (L1,L2, . . . ,Ln)

=



(
1
Ξ

n⊗
i=1

(Ξτi)
ϖi ,

1

Ξ

n⊗
i=1

(Ξϑi)
ϖi

)
;

3Ξ

√√√√1−

(
1−

(
n⊗

i=1

(
3Ξ

√
1−

(
1−

(
sin2 (π/2 · ςMi )

)3Ξ)Ξ)ϖi
)3Ξ)1/Ξ

(
3Ξ

√
1−

n⊗
i=1

(
1−

(
sin2

(
π/2 ·

(
ςNM
i

)3Ξ))Ξ)ϖi
)1/Ξ


Proof: The proof follows from Theorem 5.5.

Remark 5.2. If Ξ = 1, then ST-GFNFWG operator is reduced to the ST-FNFWG oper-
ator.

Theorem 5.8. Let Li =
⟨
(τi, ϑi) ; ς

M
i , ςNM

i

⟩
, (i = 1, 2, . . . , n) be the collection of ST-

FNFNs and all are equal with Li = L, then ST-GFNFWG(L1,L2, . . . ,Ln) = sinL.

Proof: The proof follows from Theorem 5.2.
We discuss the MADM approach for ST-FNF and the ST-FNF algorithm with real-life

application.
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6. ST-FNFMADM Approach. Let E = {E1, E2, . . . , En} represent the set of n-alterna-
tives, E = {e1, e2, . . . , em} represent set of m-attributes, w = {ϖ1, ϖ2, . . . , ϖm} be the
weights of attributes, for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Eij =

⟨
(τij, ϑij) ; ς

M
ij , ςNM

ij

⟩
is

an ST-FNFN of alternative Ei in attribute ej. Since ς
M
ij , ςNM

ij ∈ [0, 1] and 0 ≤
(
ςMij (u)

)3
+(

ςNM
ij (u)

)3 ≤ 1. Here n-alternative sets and m-attribute sets give n×m decision matrix
denoted by D = (Eij)n×m.

6.1. Algorithm for ST-FNF.
Step-1: Input the decision values for each alternative.
Step-2: Determine the normalized decision values for each alternative. The decision

matrix D = (Eij)n×m is normalized into D =
(
Êij
)
n×m

; where Êij =
⟨(

τij, ϑij

)
; ςMij , ςNM

ij

⟩
and τij =

τij
maxi(τij)

, ϑij =
ϑij

maxi(ϑij)
· ϑij

τij
, ςMij = ςMij , ςNM

ij = ςNM
ij .

Step-3: Aggregate the values of each alternative. On the basis of ST-FNF aggrega-

tion operators, attribute ej in Ei, Êij =
⟨(

τij, ϑij

)
; ςMij , ςNM

ij

⟩
is aggregated into Êi =⟨(

τi, ϑi

)
; ςMi , ςNM

i

⟩
.

Step-4: Compute the positive and negative ideal values of each alternative, where

positive ideal value Ê+ =
⟨(
max1≤i≤n (τij) ,min1≤i≤n

(
ϑij

))
; 1, 0

⟩
and negative ideal value

Ê− =
⟨(
min1≤i≤n (τij) ,max1≤i≤n

(
ϑij

))
; 0, 1

⟩
.

Step-5: Compute the Hamming distances between each alternative with two ideal

values, where D+
i = DH

(
Êi and Ê+

)
; D−

i = DH

(
Êi, Ê−

)
.

Step-6: Find the relative closeness values and find the ranking of alternatives D∗
i =

D−
i

D+
i +D−

i

.

Step-7: Output yield for the optimal value is maxD∗
i , and hence decision is to choose

as the optimal solution to the problem.

6.2. Real-life applications. In the selection of a college for undergoing teaching edu-
cation, the evaluation of teacher education is carried out according to various standards
of experts. There are various primary studies that have been conducted that have in-
vestigated the reasons why parents select a particular college that they think best suits
their college students needs and parental aspirations. We identify a factor regarded as
parental decision making: academic factor, which is divided into five identified elements:
campus environment, overall cost, academic quality, student/faculty relationship, and
career development. Our goal is to select the optimal one out of a great number of al-
ternatives based on the assessment of experts against the criteria. A parent intends to
choose the best college education. Here we intend to choose ten colleges that are nomi-
nated. The score of the college education evaluated by the experts is represented by E =
{e1: campus environment, e2: overall cost, e3: academic quality, e4: career development}
and their corresponding weights are w = {0.35, 0.3, 0.25, 0.1}.
Step 1: According to the decision information as shown below as constructed.

e1 e2 e3
E1 ⟨(0.8, 0.45); 0.66, 0.88⟩ ⟨(0.65, 0.6); 0.85, 0.65⟩ ⟨(0.6, 0.55); 0.64, 0.79⟩
E2 ⟨(0.65, 0.6); 0.8, 0.65⟩ ⟨(0.6, 0.5); 0.84, 0.7⟩ ⟨(0.55, 0.45); 0.71, 0.85⟩
E3 ⟨(0.7, 0.5); 0.73, 0.69⟩ ⟨(0.7, 0.65); 0.91, 0.5⟩ ⟨(0.75, 0.55); 0.7, 0.85⟩
E4 ⟨(0.45, 0.3); 0.7, 0.85⟩ ⟨(0.75, 0.5); 0.78, 0.64⟩ ⟨(0.7, 0.65); 0.64, 0.78⟩
E5 ⟨(0.5, 0.45); 0.78, 0.7⟩ ⟨(0.7, 0.6); 0.77, 0.72⟩ ⟨(0.65, 0.5); 0.7, 0.86⟩
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e4
E1 ⟨(0.55, 0.5); 0.85, 0.64⟩
E2 ⟨(0.8, 0.6); 0.91, 0.5⟩
E3 ⟨(0.75, 0.7); 0.85, 0.65⟩
E4 ⟨(0.7, 0.6); 0.84, 0.64⟩
E5 ⟨(0.6, 0.55); 0.7, 0.85⟩

Step 2: Normalized decision matrix constructed as follows.

e1 e2 e3 e4
E1 ⟨(1, 0.4219); ⟨(0.8667, 0.8521); ⟨(0.8, 0.7756); ⟨(0.6875, 0.6494);

0.66, 0.88⟩ 0.85, 0.65⟩ 0.64, 0.79⟩ 0.85, 0.64⟩
E2 ⟨(0.8125, 0.9231); ⟨(0.8, 0.641); ⟨(0.7333, 0.5664); ⟨(1, 0.6429);

0.8, 0.65⟩ 0.84, 0.7⟩ 0.71, 0.85⟩ 0.91, 0.5⟩
E3 ⟨(0.875, 0.5952); ⟨(0.9333, 0.9286); ⟨(1, 0.6205); ⟨(0.9375, 0.9333);

0.73, 0.69⟩ 0.91, 0.5⟩ 0.7, 0.85⟩ 0.85, 0.65⟩
E4 ⟨(0.5625, 0.3333); ⟨(1, 0.5128); ⟨(0.9333, 0.9286); ⟨(0.875, 0.7347);

0.7, 0.85⟩ 0.78, 0.64⟩ 0.64, 0.78⟩ 0.84, 0.64⟩
E5 ⟨(0.625, 0.675); ⟨(0.9333, 0.7912); ⟨(0.8667, 0.5917); ⟨(0.75, 0.7202);

0.78, 0.7⟩ 0.77, 0.72⟩ 0.7, 0.86⟩ 0.7, 0.85⟩

Step 3: Aggregating the information with ST-FNFWA operator of each alternative
can be founded as follows.

ST-FNFWA operator (Ξ = 1)

Ê1 ⟨(0.8788, 0.6621); 0.9821, 0.6317⟩
Ê2 ⟨(0.8077, 0.7213); 0.8442, 0.297⟩
Ê3 ⟨(0.93, 0.7354); 0.8847, 0.637⟩
Ê4 ⟨(0.8177, 0.5761); 0.9741, 0.7752⟩
Ê5 ⟨(0.7904, 0.6936); 0.8559, 0.2539⟩

Step 4: Determine the positive and negative ideal values of the alternatives as Ê+ =

⟨(0.93, 0.5761), 1, 0⟩ and Ê−⟨(0.7904, 0.7354), 0, 1⟩.
Step 5: The Hamming distance between each alternative as follows:
The positive ideal values are D+

1 = 0.0863, D+
2 = 0.2801, D+

3 = 0.045, D+
4 = 0.0872

and D+
5 = 0.25. The negative ideal values are D−

1 = 0.1376, D−
2 = 0.0562, D−

3 = 0.179,
D−

4 = 0.3111 and D−
5 = 0.026.

Step 6: Calculate the relative closeness values of each alternative as D∗
1 = 0.6144,

D∗
2 = 0.1671, D∗

3 = 0.7992, D∗
4 = 0.7811 and D∗

5 = 0.0944.
Step 7: Ranking of alternatives is E3 ≥ E4 ≥ E1 ≥ E2 ≥ E5.
It is observed that the third college education is the best for students in effective manner.

Finally parents select the third college because of the following reasons.

1) Campus environment is found to be the best among the remaining colleges.
2) Overall cost is better than the any other colleges.
3) Academic quality is evaluated to be falling in line with the expectation of parents.
4) Career development is the best than any other college.
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6.3. Applicability for the proposed and existing methods. In this subsection, dis-
cuss the comparison between the existing models and proposed models, which demon-
strates its applicability and advantages. Use ST-FNFWA, ST-FNFWG, ST-GFNFWA,
and ST-GFNFWG approaches based on Hamming distance. The various distances are as
shown below.

Ξ = 1 ST-FNFWA ST-FNFWG ST-GFNFWA ST-GFNFWG

TOPSIS Hamming E3 ≥ E2 ≥ E1 E3 ≥ E2 ≥ E1 E3 ≥ E2 ≥ E1 E3 ≥ E2 ≥ E1
distance [6] E5 ≥ E4 E5 ≥ E4 E5 ≥ E4 E5 ≥ E4

TOPSIS Hamming E3 ≥ E4 ≥ E1 E3 ≥ E4 ≥ E5 E3 ≥ E4 ≥ E1 E3 ≥ E4 ≥ E5
distance (proposed) E2 ≥ E5 E1 ≥ E2 E2 ≥ E5 E1 ≥ E2

Figure 1. Hamming distance based on the existing and proposed methods

Suppose that Ξ = 2 values from ST-FNFWA method.

Figure 2. Hamming distance based on ST-FNFWA method

We note that the alternative ranking is based on the ST-FNFWA operator. If Ξ = 1,
then ranking of alternative is E3 ≥ E4 ≥ E1 ≥ E2 ≥ E5; If Ξ = 2, then ranking of alternative
in a new order is E4 ≥ E3 ≥ E1 ≥ E5 ≥ E2. As a result, the best alternative is to change E3
into E4. Similarly, the alternative ranking is found based on ST-FNFWG, ST-GFNFWA,
and ST-GFNFWG operators with Ξ.
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7. Conclusion. In this article, we construct a Hamming distance for ST-FNFNs. The
applicability of the Hamming distance measure is established in a real-life example.
We have proposed the improved sine trigonometric aggregation operation rules for ST-
FNFWA, ST-FNFWG, ST-GFNFWA, and ST-GFNFWG. The application of the ST-
FNFS MADM can help people make the correct decision out of available alternatives
in indeterminate and inconsistent information environments. We have applied the ST-
FNFWA, ST-FNFWG, ST-GFNFWA, and ST-GFNFWG operators to MADM based on
Ξ. The distinct ranking of alternatives can be obtained with ST-FNFWA, ST-FNFWG,
ST-GFNFWA, and ST-GFNFWG operators based on Ξ. Lastly, the above analysis shows
that the generalized values of Ξ have the most impressive ranking of alternatives. The
decision-makers may set the values of Ξ according to the actual situation for the best
reasonable ranking and then make appropriate decisions. As a result, the decision-maker
may make a decision based on Ξ to arrive at the result. This is an emerging field of study,
and the authors are confident that the discussions in this article will be helpful to future
researchers interested in this area of research.
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