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Abstract. In this paper, we study an algebraic structure, so-called poe-semigroups.
Since every ordered semigroup embeds in a poe-semigroup, this algebraic structure is
crucial for understanding ordered semigroups. The notion that plays a vital part in in-
vestigating poe-semigroups is ideal elements. It was known that (m,n)-ideal elements in
poe-semigroups are a generalization of bi-ideal elements. We introduce the notion of n-
interior ideal elements in poe-semigroups as a generalization of interior ideal elements.
We use some combinations of (m,n)-ideal elements and n-interior ideal elements to
characterize several classes of poe-semigroups. Moreover, we apply our results to hyper-
semigroups.
Keywords: Poe-semigroup, n-interior ideal element, Regularity

1. Introduction. Marty [36] introduced the concept of hyperalgebras in 1934. This con-
cept is a generalization of the classical algebras in the sense that the composition of any
two elements is a nonempty set instead of an element. The author considered group-like
hyperalgebras, so-called hypergroups. Following this introduction, various authors inves-
tigated some generalizations of groups at the hyperalgebras level, both theoretical and
practical implications (see [3, 7, 8, 37, 47]).

Bonansinga and Corsini [3] first studied the concept of hypersemigroups (semihyper-
groups or multisemigroups) in detail. Hypersemigroups have been researched in vari-
ous ways by several researchers. Green’s relations in hypersemigroups were studied by
Hasankhani in [10]. Characterization of hypersemigroups into classes using various kinds
of hyperideals and their generalizations have been investigated widely (see [6, 12, 23, 24]).
Lekkoksung [33] investigated intuitionistic fuzzification version of bi-hyperideals of hy-
persemigroups in 2012. Hila and Naka [13] studied the purity of hyperradical in semihy-
pergroups. The concept of basis in hypersemigroups was considered in [46] by Udom et
al.

DOI: 10.24507/ijicic.18.06.1941

1941



1942 S. LEKKOKSUNG, A. IAMPAN AND N. LEKKOKSUNG

A partially ordered semigroup (ordered semigroup or po-semigroup) is an algebraic
system initially mentioned by Birkhoff in [1, 2]. One obtains new algebraic systems if po-
semigroups satisfy some special properties. For example, a po-semigroup with the greatest
element e is called a poe-semigroup. A poe-semigroup, which is also a joint-semilattice,
is called a ∨e-semigroup. Moreover, a poe-semigroup, which is also a lattice, is called an
le-semigroup (see [1, 2, 9]).
Fundamental ideal elements of poe-semigroups: left and right ideal elements were studi-

ed by Birkhoff (see [2]). Kehayopulu [16] explored some interesting properties of left and
right ideal elements in some classes of ∨e-semigroups. The semiprime property of poe-
semigroups was introduced by the author. Various ideal elements and special classes of
poe-semigroups were introduced and studied by Kehayopulu in several directions (see
[14, 15, 16, 17]). Kehayopulu [18, 19] investigated and studied Green’s relations for poe-
semigroups. Petro and Pasku [40] pointed out that Green’s relations in poe-semigroups,
so-called Green-Kehayopulu relations, behave differently from the original, especially for
the H-class. The B- and J -class in poe-semigroups have been also studied in [39, 43]. Any
poe-semigroup is a po-semigroup, but certain researches have shown that any po-semigroup
can be embedded into a poe-semigroup (see [20, 28, 29, 30]).
In 2015, Kehayopulu [21] defined the associativity of hyperoperation differently from

the given by Marty in [36]. The author suggested that the associativity of hyperoper-
ation should be redefined for reasonability. Kehayopulu [22] firstly discovered a link
between poe-semigroups and semigroups after this study. The relationship between poe-
semigroups, hypersemigroups, and other hyperalgebraic systems was then investigated
(see [23, 24, 25, 26, 27]).
According to earlier research, poe-semigroups have specific characteristics that set them

apart from po-semigroups. The representation of po-semigroups demonstrates the impor-
tance of poe-semigroups. Moreover, because of the relevance of studying poe-semigroups,
particularly the relationship that poe-semigroups have with the study of hypersemigroups
and other algebraic systems, we will concentrate on poe-semigroups in this paper. One of
the essential concepts in the subject is the idea of ideal elements in poe-semigroups. Since
the research of Kehayopulu, several ideal elements conceptions have been proposed. This
study presents a new generalized notion of ideal elements in poe-semigroups. We define
the concept of n-interior ideal elements in poe-semigroups and describe several classes
of poe-semigroups by combining the ideas of n-interior ideal elements and (m,n)-ideal
elements in Section 2 and Section 3, respectively. In Section 4, we apply our results to
hypersemigroups. Then, several classes of hypersemigroups are characterized.

2. Preliminaries. A po-semigroup (partially ordered semigroup or ordered semigroup)
is an algebraic system ⟨S; ·,≤⟩ of type (2; 2) consisting of a nonempty set S, a binary
associative operation · on S and a partial relation ≤ on S such that for any x, y ∈ S

x ≤ y implies c · x ≤ c · y and x · c ≤ y · c (compatibility)

for all c ∈ S. For the simplicity, the product of any elements a and b of S under the
operation · is denoted by ab. For any n ∈ N and a ∈ S, the notation an stands for a · · · a
the n-product of a. For the convenience, a0b = b = ba0 for any a, b ∈ S.
Because any semigroup can be considered a po-semigroup, the concept of po-semigroups

is a generalization of semigroups. A poe-semigroup is a po-semigroup having the greatest
element e ∈ S, that is, a ≤ e for all a ∈ S. In a poe-semigroup ⟨S; ·,≤⟩, we observe that

(1) for any l, k ∈ N such that l ≤ k, we have that ek ≤ el;
(2) any element a ∈ S and m ∈ N r {1}, a ≤ am implies a ≤ akm−k+1 for all k ∈ N (see

[45]).
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A ∨e-semigroup is an algebra ⟨S; ·,∨⟩ of type (2, 2) such that

(1) ⟨S; ·⟩ is a semigroup;
(2) ⟨S;∨⟩ is a joint-semilattice with the greatest element e ∈ S;
(3) the operation · is distributive over ∨, that is, the identities a(b ∨ c) ≈ ab ∨ ac and

(a ∨ b)c ≈ ac ∨ bc hold.

An le-semigroup is an algebra ⟨S; ·,∨,∧⟩ of type (2, 2, 2) such that

(1) ⟨S; ·⟩ is a semigroup;
(2) ⟨S;∨,∧⟩ is a lattice with the greatest element e ∈ S;
(3) the operation · is distributive over ∨.

By the above definitions, we can see that any ∨e-semigroup ⟨S; ·,∨⟩ can be considered
as an algebraic system ⟨S; ·,≤⟩ by assigning a ≤ b if and only if a ∨ b = b. Similarly, any
le-semigroup ⟨S; ·,∨,∧⟩ can be regarded as an algebraic system ⟨S; ·,≤⟩ by defining a ≤ b
if and only if a ∨ b = b and a ∧ b = a. By the definition of ≤ given in this discussion, the
distributivity of the operation · over ∨ implies the compatibility property. Therefore, we
can consider any ∨e-semigroup and any le-semigroup as a poe-semigroup ⟨S; ·,≤⟩. The
readers can find more information about the stated algebraic systems in [1, 2, 9, 15, 16, 20].
From now on, we denote any poe-semigroup ⟨S; ·,≤⟩ system by S the bold letter of its
universe set.

Phochai and Changphas divided the regularities of po-semigroups into sixteen types in
[41]. Several authors characterized some classes of po-semigroups through various kinds of
ideals. For example, Cao [4] characterized regular ordered semigroups by left ideals, right
ideals, and quasi-ideals. In 2006, Lee and Lee [32] provided descriptions of intra-regular
ordered semigroups in terms of left (right) ideals and bi-ideals. We can reformulate these
regularities in terms of poe-semigroups as follows. A poe-semigroup S is said to be

(P1) if for all a ∈ S, we have a ≤ eae;
(P2) if for all a ∈ S, we have a ≤ ea;
(P3) if for all a ∈ S, we have a ≤ ae;
(P4) if for all a ∈ S, we have a ≤ eaeae;
(P5) if for all a ∈ S, we have a ≤ eaea;
(P6) if for all a ∈ S, we have a ≤ aeae;
(P7) if for all a ∈ S, we have a ≤ aea;
(P8) of degree n if for all a ∈ S, we have a ≤ eane for some n ∈ Nr {1};
(P9) of degree n if for all a ∈ S, we have a ≤ eanea for some n ∈ Nr {1};
(P10) of degree n if for all a ∈ S, we have a ≤ aeane for some n ∈ Nr {1};
(P11) of degree n if for all a ∈ S, we have a ≤ aeanea for some n ∈ Nr {1};
(P12) if for all a ∈ S, we have a ≤ ea2;
(P13) if for all a ∈ S, we have a ≤ a2e;
(P14) if for all a ∈ S, we have a ≤ a2ea2;
(P15) if for all a ∈ S, we have a ≤ aea2;
(P16) if for all a ∈ S, we have a ≤ a2ea.

We can see that any intra-regular poe-semigroup [16] is a poe-semigroup satisfying (P8)
of degree 2. Any (m,n)-regular poe-semigroup [17], where m,n = 1 is a poe-semigroup
satisfying (P7). Moreover, any (m,n)-regular poe-semigroup, where m,n > 1 is a poe-
semigroup satisfying (P14) and vice versa.

An element a ∈ S of a poe-semigroup S is said to be

(1) a subidempotent element [2] of S if a2 ≤ a;
(2) an (m,n)-ideal element [17] of S if amean ≤ a, where m,n ∈ N0 := N ∪ {0}.
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The least (m,n)-ideal element of a ∨e-semigroup S greater than a ∈ S is denoted by
I(m,n)(a). Kehayopulu [17] illustrated that I(m,n)(a) = a ∨ amean.
In [45], the concept of n-interior ideals in po-semigroups was introduced. Tiprachot et

al. characterized all classes of po-semigroups using n-interior ideals. The readers may be
found in [44] for more interesting ideals in po-semigroups that are the prevailing trends.
In this paper, we define a similar notion introduced in [45] for poe-semigroups. We define
the concept of n-interior ideal elements, which plays an essential role in this research.

Definition 2.1. Let S be a poe-semigroup and n ∈ N. An element a ∈ S is an n-interior
ideal element of S if it is subidempotent and eane ≤ a.

Remark 2.1.

(1) For any m,n ∈ N such that m < n, any m-interior ideal element is an n-interior
ideal element. The converse is not true in general.

(2) We can observe that a poe-semigroup’s n-interior ideal element is an element, where-
as a po-semigroup’s n-interior ideal is a set. This insight exemplifies the distinction
between interior ideal elements and interior ideals.

For the convenience, we illustrate an example of n-interior ideal elements in Section 4.
The following result is not difficult to verify.

Proposition 2.1. Let S be a poe-semigroup. Then

(1) for any n-interior ideal elements a and b of S if a∧b exists, then a∧b is an n-interior
ideal element of S;

(2) for any k ∈ N, if a is an n-interior ideal element of S, then ak is also an n-interior
ideal element of S.

Let S be a ∨e-semigroup. We denote the least n-interior ideal element of S greater
than a ∈ S by In(a). Then we obtain the following

Lemma 2.1. Let S be a ∨e-semigroup and a ∈ S. Then

In(a) = a ∨ a2 ∨ · · · ∨ an+1 ∨ eane.

Proof: For our convenience in the proof, we suppose that x = a∨a2∨· · ·∨an+1∨eane.
Consider

x2 =
(
a ∨ a2 ∨ · · · ∨ an+1 ∨ eane

) (
a ∨ a2 ∨ · · · ∨ an+1 ∨ eane

)
=

[
a2 ∨ · · · ∨ an+1

]
∨
[
an+2 ∨ an+3 ∨ · · · ∨ a2n+2

]
∨ [(eane)x] ∨ [x(eane)]

≤
[
a2 ∨ · · · ∨ an+1

]
∨ [eane] ∨ [eane] ∨ [eane]

≤ a ∨ a2 ∨ · · · ∨ an+1 ∨ eane

= x.

This shows that x = a ∨ a2 ∨ · · · ∨ an+1 ∨ eane is a subidempotent element of S.
Now, we consider

exne = e
(
a ∨ a2 ∨ · · · ∨ an+1 ∨ eane

)n
e

= eane ∨ · · · ∨ ean(n+1)e ∨

[
i+j=n−1∨
i,j∈N0

exieanexje

]
= eane ≤ a ∨ a2 ∨ · · · ∨ an+1 ∨ eane

= x.
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Assume that t is an n-interior ideal element of S such that a ≤ t. Then

x = a ∨ a2 ∨ · · · ∨ an+1 ∨ eane ≤ t ∨ t2 ∨ · · · ∨ tn+1 ∨ etne = t.

Altogether, we obtain that a∨a2∨ · · · ∨an+1∨ eane is the least n-interior ideal element
of S greater than a. �

In the present paper, any (m,n)-ideal element is assumed to be subidempotent. There-
fore, similarly to Lemma 2.1, it is not difficult to illustrate that I(m,n)(a) = a ∨ a2 ∨ · · · ∨
am+n ∨ amean.

The representation of numerous classes of poe-semigroups was done in the next section
using various types of (m,n)-ideal elements and n-interior ideal elements. The description
of hypersemigroups is simply an example of the results shown in Section 3, as we will see
in Section 4.

3. Characterizations of poe-semigroups. This section provides characterizations of
poe-semigroups using some combinations of (m,n)-ideal elements and n-interior ideal
elements. Before we present our theorems, we note here that if a poe-semigroup S satisfies
(Pk) for all k ∈ {1, . . . , 16}, then we have e2 = e.

Firstly, the class (P1) is described by 1-interior ideal elements.

Theorem 3.1. Let S be a ∨e-semigroup. Then the following conditions are equivalent:

(1) S satisfies (P1);
(2) a ≤ eae for any 1-interior ideal element a of S.

Proof: (1) ⇒ (2). This direction is obvious.
(2) ⇒ (1). Let a ∈ S. By our assumption, we have

a ≤ I1(a) ≤ e I1(a)e = e
(
a ∨ a2 ∨ eae

)
e ≤ eae.

This shows that S satisfies (P1). �
We can use (0, 1)-ideal elements to characterize the class (P2) as follows.

Theorem 3.2. Let S be a ∨e-semigroup. Then the following conditions are equivalent:

1. S satisfies (P2);
2. a ≤ ea for any (0, 1)-ideal element a of S.

Proof: (1) ⇒ (2). This direction is obvious.
(2) ⇒ (1). Let a ∈ S. By our assumption, we have

a ≤ I(0,1)(a) ≤ e I(0,1)(a) = e(a ∨ ea) = ea.

This shows that S satisfies (P2). �
The following theorem can be proved similar to Theorem 3.2.

Theorem 3.3. Let S be a ∨e-semigroup. Then the following conditions are equivalent:

(1) S satisfies (P3);
(2) a ≤ ea for any (1, 0)-ideal element a of S.

The combination between (1, 1)-ideals elements and 1-interior ideal elements is used to
describe the class (P4).

Theorem 3.4. Let S be an le-semigroup. Then the following conditions are equivalent:

(1) S satisfies (P4);
(2) a ∧ b ≤ aba for any 1-interior ideal element a and (1, 1)-ideal element b of S.
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Proof: (1) ⇒ (2). Let a and b be a 1-interior ideal element and a (1, 1)-ideal element
of S, respectively. Since S satisfies (P4), we have a = eae. Then,

a ∧ b ≤ e(a ∧ b)e(a ∧ b)e

≤ e(a ∧ b)e[e(a ∧ b)e(a ∧ b)e]e

≤ e(a)e[e(b)e(a)e]e

= (eaee)b(eaee)

= aba.

(2) ⇒ (1). Let a ∈ S. By our assumption, we have

a ≤ I1(a) I(1,1)(a) I1(a)

=
(
a ∨ a2 ∨ eae

) (
a ∨ a2 ∨ aea

) (
a ∨ a2 ∨ eae

)
=

[
a3 ∨ a4 ∨ a5 ∨ a6

]
∨
[
(eae) I(1,1)(a) I(1)(a)

]
∨
[
I(1)(a)(aea) I(1)(a)

]
∨
[
I(1)(a) I(1,1)(a)(eae)

]
≤ eaeae.

This shows that S satisfies (P4). �
The concept of (1, 1)-ideal elements and 1-interior ideal elements can also be applied

to characterizing the class (P5).

Theorem 3.5. Let S be an le-semigroup. Then the following conditions are equivalent:

(1) S satisfies (P5);
(2) a ∧ b ≤ ab for any 1-interior ideal element a and (1, 1)-ideal element b of S.

Proof: (1) ⇒ (2). Let a and b be a 1-interior ideal element and a (1, 1)-ideal element
of S, respectively. Since S satisfies (P5), we have a = eae. Then,

a ∧ b ≤ e(a ∧ b)e(a ∧ b) ≤ eaeb = ab.

(2) ⇒ (1). Let a ∈ S. By our assumption, we have

a ≤ I1(a) I(1,1)(a)

=
(
a ∨ a2 ∨ eae

) (
a ∨ a2 ∨ aea

)
=

[
a2 ∨ a3 ∨ a4

]
∨
[
(eae) I(1,1)(a)

]
∨ [I1(a)(aea)]

≤ eaea.

This shows that S satisfies (P5). �
We can characterize an le-semigroup satisfying (P6) similar to Theorem 3.5.

Theorem 3.6. Let S be an le-semigroup. Then the following conditions are equivalent:

(1) S satisfies (P6);
(2) a ∧ b ≤ ab for any (1, 1)-ideal element a and 1-interior ideal element b of S.

The following equivalence is obtained with the help of (1, 0)-ideal elements, (0, 1)-ideal
elements, and 1-interior ideal elements.

Theorem 3.7. Let S be an le-semigroup. Then the following conditions are equivalent:

(1) S satisfies (P7);
(2) a ∧ b ∧ c ≤ abc for any (1, 0)-ideal element a, 1-interior ideal element b and (0, 1)-

ideal element c of S.
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Proof: (1) ⇒ (2). Let a, b and c be a (1, 0)-ideal element, an n-interior ideal element
and a (0, 1)-ideal element of S. Since S satisfies (P7), we have a = ae and c = ec. Then,

a ∧ b ∧ c ≤ (a ∧ b ∧ c)e(a ∧ b ∧ c)

≤ [(a ∧ b ∧ c)e(a ∧ b ∧ c)] e [(a ∧ b ∧ c)e(a ∧ b ∧ c)]

≤ (a ∧ b ∧ c)e(a ∧ b ∧ c)e(a ∧ b ∧ c)

≤ aebec

= abc.

(2) ⇒ (1). Let a ∈ S. By our assumption, we have

a ≤ I(1,0)(a) I1(a) I(0,1)(a)

=
[
a3 ∨ a4

]
∨
[
(ae) I1(a) I(0,1)(a)

]
∨
[
I(1,0)(a)(eae) I(0,1)(a)

]
∨
[
I(1,0)(a) I1(a)(ea)

]
≤ (aea) ∨ (aea) ∨ (aea) ∨ (aea)

= aea.

This shows that S satisfies (P7). �
The notion of n-interior ideal elements represents the following class of poe-semigroups.

Theorem 3.8. Let S be an le-semigroup and n ∈ Nr{1}. Then the following conditions
are equivalent:

(1) S satisfies (P8) of degree n;
(2) a ∧ b ≤ ab for any n-interior ideal elements a and b of S.

Proof: (1) ⇒ (2). Let a and b be n-interior ideal elements of S. Since S satisfies (P8)
of degree n, we have a = eane and b = ebne. Then,

a ∧ b ≤ e(a ∧ b)ne

≤ e [e(a ∧ b)ne]n e

= e [e(a ∧ b)ne] [e(a ∧ b)ne] [e(a ∧ b)ne]n−2 e

≤ [e(a ∧ b)ne] [e(a ∧ b)ne]

≤ (eane)(ebne)

= ab.

(2) ⇒ (1). Let a ∈ S. By our assumption, we have

a ≤ In(a) In(a)

=
(
a ∨ a2 ∨ · · · ∨ an+1 ∨ eane

) (
a ∨ a2 ∨ · · · ∨ an+1 ∨ eane

)
=

[
a2 ∨ · · · ∨ an+1

]
∨
[
an+2 ∨ an+3 ∨ · · · ∨ a2n+2

]
∨ [(eane) In(a)] ∨ [In(a)(ea

ne)]

≤ eane ∨ eane ∨ eane ∨ eane

= eane.

This shows that S satisfies (P8) of degree n. �
The notion of n-interior ideal elements together with (0, 1)-ideal elements can be used

to illustrate the class (P9) as shown below.

Theorem 3.9. Let S be an le-semigroup and n ∈ Nr{1}. Then the following conditions
are equivalent:

(1) S satisfies (P9) of degree n;
(2) a ∧ b ≤ ab for any n-interior ideal element a and (0, 1)-ideal element b of S.
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Proof: (1) ⇒ (2). Let a and b be an n-interior ideal element and a (0, 1)-ideal element
of S, respectively. Since S satisfies (P9) of degree n, we have a = eane. Then,

a ∧ b ≤ e(a ∧ b)ne(a ∧ b) ≤ eaneb = eaneeb ≤ ab.

(2) ⇒ (1). Let a ∈ S. By our assumption, we have

a ≤ In(a) I(0,1)(a)

=
(
a ∨ a2 ∨ · · · ∨ an+1 ∨ eane

)
(a ∨ ea)

=
[
a2 ∨ · · · ∨ an+2

]
∨
[
(eane) I(0,1)(a)

]
∨ [In(a)(ea)]

≤ eanea.

This shows that S satisfies (P9) of degree n. �
Similarly, we obtain the following theorem.

Theorem 3.10. Let S be an le-semigroup and n ∈ Nr{1}. Then the following conditions
are equivalent:

(1) S satisfies (P10) of degree n;
(2) a ∧ b ≤ ab for any (1, 0)-ideal element a and n-ideal element b of S.

The class (P11) is described by the three varieties of (m,n)-ideal elements shown as
follows.

Theorem 3.11. Let S be an le-semigroup and n ∈ Nr{1}. Then the following conditions
are equivalent:

(1) S satisfies (P11) of degree n;
(2) a∧b∧c ≤ abc for any (1, 0)-ideal element a, n-ideal element b and (0, 1)-ideal element

c of S.

Proof: (1) ⇒ (2). Let a, b and c be a (1, 0)-ideal element, an n-interior ideal element
and a (0, 1)-ideal element of S, respectively. Since S satisfies (P11) of degree n, we have
b = ebne. Then,

a ∧ b ∧ c ≤ (a ∧ b ∧ c)e(a ∧ b ∧ c)ne(a ∧ b ∧ c) ≤ a(ebne)c = abc.

(2) ⇒ (1). Let a ∈ S. By our assumption, we have

a ≤ I(1,0)(a) In(a) I(0,1)(a)

= (a ∨ ae)
(
a ∨ a2 ∨ · · · ∨ an+1 ∨ eane

)
(a ∨ ea)

=
[
a3 ∨ · · · ∨ an+3

]
∨
[
(ea) I1(a) I(0,1)(a)

]
∨
[
I(1,0)(a) (ea

ne) I(0,1)(a)
]
∨[I(1,0)(a) I1(a)(ea)]

≤ aeanea.

This shows that S satisfies (P11) of degree n. �
The following result applies the (0, 2)-ideal elements in characterizing the class (P12).

Theorem 3.12. Let S be a ∨e-semigroup. Then the following conditions are equivalent:

(1) S satisfies (P12);
(2) a ≤ ea2 for any (0, 2)-ideal element a of S.

Proof: (1) ⇒ (2). This direction is obvious.
(2) ⇒ (1). Let a ∈ S. By our assumption, we have

a ≤ I(0,2)(a)

≤ e I(0,2)(a) I(0,2)(a)

= e
([
a2 ∨ a3 ∨ a4

]
∨
[
(ea2) I(0,2)(a)

]
∨
[
I(0,2)(a)(ea

2)
])
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≤ e(ea2)

≤ ea2.

This shows that S satisfies (P12). �
By the above theorem, we obtain Theorem 3.13 by applying similar arguments.

Theorem 3.13. Let S be a ∨e-semigroup. Then the following conditions are equivalent:

(1) S satisfies (P13);
(2) a ≤ a2e for any (2, 0)-ideal element a of S.

Combining (2, 0)-ideal elements and (0, 2)-ideal elements, we obtain the following char-
acterization.

Theorem 3.14. Let S be an le-semigroup. Then the following conditions are equivalent:

(1) S satisfies (P14);
(2) a ∧ b ≤ ab for any (2, 0)-ideal element a and (0, 2)-ideal element b of S.

Proof: (1) ⇒ (2). Let a and b be a (2, 0)-ideal element and a (0, 2)-ideal element of S,
respectively. Since S satisfies (P14), we have a = a2e and b = eb2. Then,

a ∧ b ≤ (a ∧ b)2e(a ∧ b)2 ≤ a2eb2 = (a2e)(eb2) = ab.

(2) ⇒ (1). Let a ∈ S. By our assumption, we have

a ≤ I(2,0)(a) I(0,2)(a)

=
(
a ∨ a2 ∨ a2e

) (
a ∨ a2 ∨ ea2

)
=

[
a2 ∨ a3 ∨ a4

]
∨
[(
a2e

)
I(0,2)(a)

]
∨
[
I(2,0)(a)

(
ea2

)]
≤ a2ea2.

This shows that S satisfies (P14). �
The class (P15) can be described using (1, 0)-ideal elements and (0, 2)-ideal elements

as follows.

Theorem 3.15. Let S be an le-semigroup. Then the following conditions are equivalent:

(1) S satisfies (P15);
(2) a ∧ b ≤ ab for any (1, 0)-ideal element a and (0, 2)-ideal element b of S.

Proof: (1) ⇒ (2). Let a and b be a (1, 0)-ideal element and a (0, 2)-ideal element of S,
respectively. Since S satisfies (P15), we have a = ae and b = eb2. Then,

a ∧ b ≤ (a ∧ b)e(a ∧ b)2 ≤ aeb2 = (ae)
(
eb2

)
= ab.

(2) ⇒ (1). Let a ∈ S. By our assumption, we have

a ≤ I(1,0)(a) I(0,2)(a)

= (a ∨ ae)
(
a ∨ a2 ∨ ea2

)
=

[
a2 ∨ a3

]
∨ [(ae) I(0,2)(a)] ∨

[
I(1,0)(a)

(
ea2

)]
≤ aea2.

This shows that S satisfies (P15). �
Similarly to Theorem 3.15, we obtain the following result.

Theorem 3.16. Let S be an le-semigroup. Then the following conditions are equivalent:

(1) S satisfies (P16);
(2) a ∧ b ≤ ab for any (2, 0)-ideal element a and (0, 1)-ideal element b of S.
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4. Applications of the Characterizations. In our last section, we present connec-
tions between poe-semigroups and hypersemigroups. Firstly, we recall some terminologies
of hypersemigroups. Hypersemigroups are sometimes referred to as semihypergroups or
multisemigroups in some literature (see [3, 31]).
A (binary) hyperoperation ◦ on a nonempty set H is a mapping ◦ : H ×H → P∗(H),

where P∗(H) is the set of all subsets of H without empty set. A hypergroupoid is a
structure ⟨H; ◦⟩ comprising a nonempty set H and a hyperoperation defined on it. For
any hypergroupoid ⟨H; ◦⟩, the hyperoperation ◦ induces a mapping ∗ : P∗(H)×P∗(H) →
P∗(H) defined by

A ∗B :=
∪

a∈A,b∈B

(a ◦ b) (1)

for all A,B ∈ P∗(H) (see [21]).
A hypergroupoid ⟨H; ◦⟩ is said to be a hypersemigroup if

{a} ∗ (b ◦ c) = (a ◦ b) ∗ {c},
equivalently,

{a} ∗ ({b} ∗ {c}) = ({a} ∗ {b}) ∗ {c}
for any a, b, c ∈ H (see [24, Proposition 4]).

Remark 4.1. We can see that we cannot define the associative property in hypersemigroup
using only the hyperoperation ◦. In fact, if we define the associativity of hypergroupoid by
a ◦ (b ◦ b) = (a ◦ b) ◦ c, then we can ask for the meanings of a ◦ (b ◦ c) and (a ◦ b) ◦ c. That
is, a ◦ (b ◦ c) means that the “element” a hyperoperates with the “set” (b ◦ c). This does
not make sense in the definition of the hyperoperation ◦.

Kehayopulu was illustrated the interconnections between hypersemigroup ⟨H; ◦⟩ and
the algebraic structure ⟨P∗(H); ∗,⊆⟩ induced by the operation ◦.

Theorem 4.1. [25] If ⟨H; ◦⟩ is a hypersemigroup, then ⟨P∗(H); ∗,⊆⟩ is an lH-semigroup.
In this case, for any A,B ∈ P∗(H), the least upper bound of A and B is A∪B, and the
greatest lower bound of A and B is A ∩B.

However, there is an error in Theorem 4.1 as given by the following question: what
is the greatest lower bound of any singleton sets? By this question, we need a little
modification. For any hypersemigroup ⟨H; ◦⟩, the hyperoperation ◦ can be extended to a
binary operation ◦̂ defined on P(H) the set of all subsets of H by

A ◦̂B :=


∪

a∈A,b∈B
(a ◦ b) if A,B ̸= ∅,

∅ if A = ∅ or B = ∅,

for all A,B ∈ P(H). By this setting, we obtain an algebraic system ⟨P(H); ◦̂,⊆⟩. Since
∅ is the zero element of ⟨P(H); ◦̂,⊆⟩ and the operation ◦̂ is defined in terms of ∗, by
Theorem 4.1, we conclude that ⟨P(H); ◦̂,⊆⟩ is a ∨H-semigroup. Moreover, the greatest
lower bound of any two elements of P(H) exists. Therefore, we obtain the following result.

Theorem 4.2. Let ⟨H; ◦⟩ be a hypersemigroup. Then ⟨P(H); ◦̂,⊆⟩ is an lH-semigroup.

From now on, we denote any hypersemigroup ⟨H; ◦⟩ by H the bold letter of its universe

set. Furthermore, we write Ĥ as a notation of the algebraic structure ⟨P(H); ◦̂,⊆⟩ induced
by the hypersemigroup H.
For any hypersemigroup H and A,B ∈ P(H), we write AB instead of A ◦̂B. In

particular, if A = {a}, where a ∈ H, we write {a}B and B{a} by aB and Ba, respectively.
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Moreover, we let A0B = B = BA0. By Theorem 4.2, we have that for any A ∈ P(H) and
for n ∈ N the notion

A ◦̂ · · · ◦̂A︸ ︷︷ ︸
n terms

is meaningful, and we denote it by An.
The concept of (m,n)-hyperideals was first introduced in ordered hypersemigroups

by Mahboob et al. (see [34]). However, by Remark 4.1, we can define this concept in
hypersemigroups and redefine it as more consequential.

Definition 4.1. A nonempty subset A of a hypersemigroup H is called

(1) an (m,n)-hyperideal, where m,n ∈ N0, of H if A is an (m,n)-ideal element of Ĥ;
(2) an n-interior hyperideal, where n ∈ N0, of H if A is an n-interior ideal element of

Ĥ.

We can see that any left hyperideal is a (0, 1)-ideal and any right hyperideal is a (1, 0)-
hyperideal. Therefore, the notion of (m,n)-hyperideals is a generalization of that of left
and right hyperideal (see [10]). Any interior hyperideal [11] is a 1-interior hyperideal. By
Definition 4.1, the following observation can be obtained immediately.

Corollary 4.1. Let H be a hypersemigroup, A is a nonempty subset of H and m,n ∈ N.
Then the following statements are equivalent:

(1) A is an (m,n)-hyperideal (resp., n-interior hyperideal) of H;

(2) A is an (m,n)-ideal element (resp., n-interior ideal element) of Ĥ.

Example 4.1. Let ⟨S; ·,≤⟩ be an ordered semigroup defined by Example 3.2 in [45]. The
operation · and an order relation ≤ can be illustrated as follows,

· a b c d e f
a a a a a a a
b a a a a a b
c a a a a a b
d a a a a a d
e a d d a a d
f a d d d e f

and ≤ := ∆S ∪ {(d, a)}, where ∆S := {(x, x) : x ∈ S}. By Ends lemma, we obtain that
S := ⟨S, ◦⟩ is a semihypergroup. Here ◦ is a hyperoperation defined by a ◦ b := (a · b]≤,
where (a · b]≤ := {x ∈ S : a · b ≤ x} for all a, b ∈ S (see [5, 38]). By our discussion,

we obtain an lS-semigroup Ŝ := ⟨P(S); ◦̂,⊆⟩. Then, we can calculate that {a, b} is a 2-

interior ideal element of Ŝ, but it is not an interior ideal element of Ŝ. This demonstrates
that the notion of n-interior ideal elements is a generalization of 1-interior ideal elements.

Some classes of hypersemigroups: regular and intra-regular first appeared in [42] in
terms of hyperoperation ◦. By Remark 4.1, we can redefine these classes in terms of ◦̂ as
follows. A hypersemigroup H satisfies

(H1) if for all a ∈ H, we have a ∈ HaH,
(H2) if for all a ∈ H, we have a ∈ Ha,
(H3) if for all a ∈ H, we have a ∈ aH,
(H4) if for all a ∈ H, we have a ∈ HaHaH,
(H5) if for all a ∈ H, we have a ∈ HaHa,
(H6) if for all a ∈ H, we have a ∈ aHaH,
(H7) if for all a ∈ H, we have a ∈ aHa,
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(H8) of degree n if for all a ∈ H, we have a ∈ HanH for some n ∈ Nr {1},
(H9) of degree n if for all a ∈ H, we have a ∈ HanHa for some n ∈ Nr {1},
(H10) of degree n if for all a ∈ H, we have a ∈ aHanH for some n ∈ Nr {1},
(H11) of degree n if for all a ∈ H, we have a ∈ aHanHa for some n ∈ Nr {1},
(H12) if for all a ∈ H, we have a ∈ Ha2,
(H13) if for all a ∈ H, we have a ∈ a2H,
(H14) if for all a ∈ H, we have a ∈ a2Ha2,
(H15) if for all a ∈ H, we have a ∈ aHa2,
(H16) if for all a ∈ H, we have a ∈ a2Ha.

Any regular hypersemigroup [35] is a hypersemigroup satisfying (H7). A hypersemi-
group satisfying (H8) of degree 2 is an intra-regular hypersemigroup [35].
We obtain the following consequence immediately by simple observation.

Corollary 4.2. Let H be a hypersemigroup and k ∈ {1, . . . , 16}. Then the following
statements are equivalent:

(1) H satisfies (Hk);

(2) Ĥ satisfies (Pk).

The following corollary provides an example of how our main results describe the class-
es of hypersemigroups. Only the characterization of hypersemigroups satisfying (H8) is
presented. Other classes can be demonstrated in the same way.

Corollary 4.3. Let H be a hypersemigroup and n ∈ N. Then the following statements
are equivalent:

(1) H satisfies (H8) of degree n;
(2) A ∩B ⊆ AB for any n-interior hyperideals A and B of H.

Proof: (1) ⇒ (2). Let A and B be n-interior hyperideals of H. By Definition 4.1, A

and B are n-interior ideal elements of Ĥ. Since H satisfies (H8), by Corollary 4.2, we

have that Ĥ satisfies (P8). By Theorem 3.8, we obtain the claim.

(2) ⇒ (1). Let A and B be n-interior ideal elements of Ĥ. By Definition 4.1, A and

B are n-interior hyperideal of H. By our presumption and Theorem 3.8, we have that Ĥ
satisfies (P8). By Corollary 4.2, we obtain that H satisfies (H8). �

5. Conclusions. In this paper, we define the notion of n-interior ideals in poe-semigroups.
We characterize poe-semigroups in terms of (m,n)-ideal elements and n-interior ideal ele-
ments. The characterizations can be applied to hypersemigroups. As a result, hypersemi-
group new characterizations are also achieved. Our results impact not just hypersemi-
groups but also other algebraic structures such as semigroups, ordered hypersemigroups,
fuzzy semigroups and fuzzy ordered semigroups (see [27, 30]). These illustrate the im-
portance of studying po-semigroups with the greatest element. We remark that although
many results in hypersemigroups and other algebraic systems may be seen through po-
semigroups with the greatest element, hypersemigroups and other algebraic systems are
nevertheless useful in real-world applications.
We end this paper with the following problems.

1) Are there any properties of hypersemigroups that can be studied in terms of poe-
semigroups? Is it possible to study the radical ideal elements and the pure ideal ele-
ments?

2) Is it possible if hypersemirings can be investigated in this direction? In fact, can we
define poe-semirings?
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3) Can we use the fuzzification settings to investigate po-semigroups with the greatest
element?

Acknowledgment. The authors would like to express their thanks to the referee for
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