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Abstract. We discuss the possibility Pythagorean neutrosophic vague soft set (PPyNS-
VSS). In addition, for the case of PPyNSVSS, we define some related operations such as
complement, union, intersection, AND, and OR, as well as commutative laws, De Mor-
gan’s laws, associative laws, and distributive laws of holds. Also, we discuss comparison
between the PPyNSVSS and the Pythagorean neutrosophic vague soft set (PyNSVSS)
for dealing with decision-making problems and finding a similarity measure. Practical
examples are provided to strengthen our results.
Keywords: PyNSVSS, PPyNSVSS, Vague soft set, Decision-making problem

1. Introduction. A fuzzy set (FS) is used to model the uncertainty using the member-
ship grade [1], intuitionistic fuzzy set [2]. A neutrosophic set (NSS) [3] and a Pythagorean
fuzzy set (PyFS) [4] are used to quantify uncertainty using the truth, indeterminacy, and
falsity membership grades. Zadeh [1] introduced FS, which suggests that decision-makers
solve uncertain problems by taking membership degree into account. The concept of an
intuitionistic fuzzy set (IFS) is introduced by Atanassov and is characterized by a degree
of membership and non-membership satisfying the condition that the sum of its mem-
bership degree and non-membership degree does not exceed one [2]. However, we may
encounter a problem in decision-making events where the sum of the degree of member-
ship and non-membership of a particular attribute exceeds one. So Yager [4] introduced
the concept of PyFS. It has been extended to intuitionistic fuzzy sets and is distinguished
by the requirement that the square sum of its degree of membership and non-membership
does not exceed one. A few years ago, the NSS was introduced by Smarandache [5]. The
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term “neutosophy” means knowledge of neutrality, and neutrality means the contrast be-
tween FS and IFS theory. It is a grade of truth, a grade of indeterminacy, and a grade of
falsity. The NSS is a set in which each universal element has a truth, indeterminacy, and
falsity grade that ranges between 0 and 1. The NSS is a generalization of the classical
set, FS, etc. Jansi et al. introduced the PyNSS with many applications elaborated [6].
The theory of soft sets was proposed by Molodtsov [7]. In comparison with other

uncertain theories, soft sets more accurately reflect the objectivity and complexity of
decision-making in actual situations. Moreover, the combination of soft sets with other
mathematical models is also a critical research area. For example, Maji et al. proposed the
concept of fuzzy soft set (FSS) [8] and intuitionistic fuzzy soft set (IFSS) [9]. These two
theories are applied to solving various decision-making problems. Alkhazaleh et al. [10]
defined the concept of possibility fuzzy soft sets (PFSS), where a possibility of each ele-
ment in the universe is attached with the parameterization of fuzzy sets while defining a
fuzzy soft set. Karaaslan discussed the notion of possibility in neutrosophic soft sets using
decision-making [11]. Palanikumar et al. discussed the notion of an possibility Pythagore-
an neutrosophic soft sets and its application of decision-making [12]. Palanikumar et al.
discussed various applications based on decision-making approach [13, 14, 15]. Broumi et
al. interacted with the concept of the neutrosophic soft set and its application [16]. An
application of single-valued NSS is based on medical diagnosis [17] and context analysis
[18]. Ejegwa [19] extended the distances for IFSs, such as Hamming and Euclidean with
normalized distances, and various similarities to PyFSs, and applied them to multi crite-
ria decision-making (MCDM) problems and the same to multi attribute decision-making
(MADM) problems. According to [20], Biswas et al. launched the vague set (VS). A VS is
defined by two functions, say truth-membership tv and false-membership fv, where tv(x)
denotes the lower bound on the grade of membership of x derived from the evidence for
x, and fv(x) denotes the upper bound on the grade of membership of x derived from the
evidence for x and tv(x) and fv(x) belonging to [0, 1], where the sum of its tv(x) and
fv(x) does not exceed 1. The VS is an extension of FS and IFS and some applications
established [21, 22, 23].
In recent years, Peng et al. [24] have extended the FSS to the Pythagorean fuzzy soft set.

This model solves a class of MADM consisting of the sum of the degree of membership
and non-membership values exceeding one, but the sum of the squares is equal to or
not exceeding one. In general, the possibility of belongingness of the elements should
be considered in multi attribute decision-making problems. However, Peng et al. [24]
failed to do it. As for the problem, the purpose of this paper is to extend the concept
of PPyNSVSS to parameterization of possibility Pythagorean neutrosophic vague set.
We obtain a PPyNSVSS model with algorithm. We shall further establish a similarity
measure method using this model and apply it to decision-making problems with suitable
examples.

2. Preliminaries. We will go over the ideas of neutrosophic set in this section to make
the presentation as full as possible and to make the next talks more convenient.

Definition 2.1. [16] A neutrosophic set A in the universe U is of the following form:
A =

{(
u, εTA(u), ε

I
A(u), ε

F
A(u)

)∣∣u ∈ U
}
, where εTA(u), ε

I
A(u), ε

F
A(u) represent the degree of

truth-membership, degree of indeterminacy membership and degree of falsity-membership
of A, respectively. The mapping εTA, ε

I
A, ε

F
A : U → [0, 1] and 0 ≼ sup εTA(u) + sup εIA(u) +

sup εFA(u) ≼ 3.

Definition 2.2. [6] A Pythagorean neutrosophic set (PyNSS) A in U is of the form:
A =

{(
u, εTA(u), ε

I
A(u), ε

F
A(u)

)∣∣u ∈ U
}
, where εTA(u), ε

I
A(u), ε

F
A(u) represent the degree of
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truth-membership, degree of indeterminacy membership and degree of falsity-membership

of A, respectively. The mapping εTA, ε
I
A, ε

F
A : U → [0, 1] and 0 ≼

(
εTA(u)

)2
+

(
εIA(u)

)2
+(

εFA(u)
)2 ≼ 2. A =

⟨
εTA, ε

I
A, ε

F
A

⟩
is called a Pythagorean neutrosophic number (PyNSN).

Definition 2.3. [16, 6] Let κ1 =
⟨
εTκ1

, εIκ1
, εFκ1

⟩
, κ2 =

⟨
εTκ2

, εIκ2
, εFκ2

⟩
and κ3 =

⟨
εTκ3

, εIκ3
, εFκ3

⟩
be the three PyNSNs over (U , E). Then
(i) κ1

c =
⟨
εFκ1

, εIκ1
, εTκ1

⟩
,

(ii) κ2

∨
κ3 =

⟨
max

(
εTκ2

, εTκ3

)
,min

(
εIκ2

, εIκ3

)
,min

(
εFκ2

, εFκ3

)⟩
,

(iii) κ2

∧
κ3 =

⟨
min

(
εTκ2

, εTκ3

)
,max

(
εIκ2

, εIκ3

)
,max

(
εFκ2

, εFκ3

)⟩
,

(iv) κ2 ≽ κ3 if and only if εTκ2
≽ εTκ3

and εIκ2
≼ εIκ3

and εFκ2
≼ εFκ3

,

(v) κ2 = κ3 if and only if εTκ2
= εTκ3

and εIκ2
= εIκ3

and εFκ2
= εFκ3

.

Definition 2.4. [24] Let U be the universe and E be the set of parameters. The pair(
Ȯ, A

)
is called a Pythagorean fuzzy soft set (PyFSS) on U if A ⊑ E and Ȯ : A →

P Ȯ(U ), where P Ȯ(U ) is the set of all Pythagorean fuzzy subsets of U .

Definition 2.5. [10] Let U be the universe and E be the set of parameters. The pair

(U , E) is a soft universe. Consider the mapping Ȯ : E → Ȯ(U ) and ε is a fuzzy subset

of E, i.e., ε : E → Ȯ(U ). Let Ȯε : E → Ȯ(U ) × Ȯ(U ) be a function defined as

Ȯε(e) =
(
Ȯ(e)(u), ε(e)(u)

)
, ∀u ∈ U . Then Ȯε is called a possibility fuzzy soft set (PFSS)

on (U , E).

Definition 2.6. [20] (i) A vague set L in U is a pair
(
TL, ȮL

)
, where TL : U → [0, 1],

ȮL : U → [0, 1] are mappings such that TL(u) + ȮL(u) ≼ 1, ∀u ∈ U . The functions TL

and ȮL are called true membership function and false membership function, respectively.

(ii) The interval
[
TL(u), 1− ȮL(u)

]
is called the vague value of u in L and it is denoted

by VL(u), i.e., VL(u) =
[
TL(u), 1− ȮL(u)

]
.

Definition 2.7. [20] (i) A vague set L is contained in the other vague set M , L ⊆ M if

and only if VL(u) ≼ VM(u), i.e., TL(u) ≼ TM(u) and 1− ȮL(u) ≼ 1− ȮM(u), ∀u ∈ U .
(ii) The union of two vague sets L and M , as N = L ∪ M , TN = max {TL,TM} and

1− ȮN = max
{
1− ȮL, 1− ȮM

}
= 1−min

{
ȮL, ȮM

}
.

(iii) The intersection of two vague sets L and M as N = L ∩ M , TN = min {TL,TM}
and 1− ȮN = min

{
1− ȮL, 1− ȮM

}
= 1−max

{
ȮL, ȮM

}
.

Definition 2.8. [20] A vague set L of a set U , ∀u ∈ U with

(i) TL(u) = 0 and ȮL(u) = 1 is called zero vague set of U ,

(ii) TL(u) = 1 and ȮL(u) = 0 is called unit vague set of U .

3. Possibility Pythagorean Neutrosophic Vague Soft Set. In this section, we in-
troduced the basic concept of possibility Pythagorean neutrosophic vague soft set and
some of its algebraic operations.

Definition 3.1. Let U be the universe and E be the set of parameters. The pair (U , E)
is called a soft universe. Suppose that Ȯ : E → P Ȯ(U ), and p is a possibility neu-

trosophic set of E, i.e., p : E → P Ȯ(U ), where P Ȯ(U ) denotes the collection of all
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possibility Pythagorean neutrosophic vague set of U . If Ȯp : E → P Ȯ(U ) × P Ȯ(U ) is

a function defined as Ȯp(e) =
(
Ȯ(e)(u), p(e)(u)

)
, u ∈ U , then Ȯp is a PPyNVSS on

(U , E). For each parameter e, Ȯp(e) =
{⟨

u,
([

εT
−

Ȯ
(e)(u), 1− εF

−

Ȯ
(e)(u)

]
,
[
εI

−

Ȯ
(e)(u) ,

εI
+

Ȯ
(e)(u)

]
,
[
εF

−

Ȯ
(e)(u), 1− εT

−

Ȯ
(e)(u)

])
,
(
εTp (e)(u), ε

I
p(e)(u), ε

F
p (e)(u)

)⟩
, u ∈ U

}
.

Example 3.1. Let R = {R1, R2, R3} be the set of three robotics of a decision-maker to
E = {e1 = speed, e2 = precision, e3 = completion of work} being a set of parameters.

Suppose that Ȯp : E → P Ȯ(U )× P Ȯ(U ) is given by

Ȯp(e1) =


u1

⟨([0.7,0.75],[0.8,0.85],[0.25,0.3]),(0.85,0.75,0.65)⟩

u2

⟨([0.6,0.65],[0.5,0.7],[0.35,0.4]),(0.55,0.45,0.15)⟩

u3

⟨([0.4,0.5],[0.6,0.8],[0.5,0.6]),(0.65,0.45,0.25)⟩ ;

Ȯp(e2) =


u1

⟨([0.4,0.8],[0.8,0.9],[0.2,0.6]),(0.75,0.55,0.45)⟩

u2

⟨([0.5,0.7],[0.6,0.7],[0.3,0.5]),(0.55,0.35,0.25)⟩

u3

⟨([0.5,0.8],[0.8,0.85],[0.2,0.5]),(0.85,0.65,0.55)⟩ .

Definition 3.2. Let U be a non-empty set of the universe and E be a set of parame-

ters. Suppose that Ȯp and Öq are two PPyNVSSs on (U , E). Now Öq is a possibility

Pythagorean neutrosophic vague soft subset of Ȯp (denoted by Öq ⊑ Ȯp) if and only if

(i) Ö(e)(u) ⊑ Ȯ(e)(u) if εT
−

Ȯ
(e)(u) ≽ εT

−

Ö
(e)(u), 1− εF

−

Ȯ
(e)(u) ≽ 1− εF

−

Ö
(e)(u), εI

−

Ȯ
(e)(u)

≽ εI
−

Ö
(e)(u), εI

+

Ȯ
(e)(u) ≽ εI

+

Ö
(e)(u) and εF

−

Ȯ
(e)(u) ≼ εF

−

Ö
(e)(u), 1 − εT

−

Ȯ
(e)(u) ≼ 1 −

εT
−

Ö
(e)(u),

(ii) q(e)(u) ⊑ p(e)(u) if εTp (e)(u) ≽ εTq (e)(u), ε
I
p(e)(u) ≽ εIq(e)(u), ε

F
p (e)(u) ≼ εFq (e)(u),

∀e ∈ E and ∀u ∈ U .

Definition 3.3. Let U be the universe and E be the set of parameters. Suppose that Ȯp

and Öq are the PPyNVSSs on (U , E). Now Ȯp and Öq are equal (denoted by Ȯp = Öq)

if and only if Ȯp ⊑ Öq and Ȯp ⊒ Öq.

Definition 3.4. Let U be the universe and E be the set of parameters. Let Ȯp be a PPyN-

VSS on (U , E). The complement of Ȯp is defined by Ȯ
c

p =
⟨
Ȯc(e)(u), pc(e)(u)

⟩
, where

Ȯc(e)(u) =
⟨[

1−
(
1− εF

−

Ȯ
(e)(u)

)
, 1− εT

−

Ȯ
(e)(u)

]
,
[
1− εI

+

Ȯ
(e)(u), 1− εI

−

Ȯ
(e)(u)

]
,
[
1−(

1− εT
−

Ȯ
(e)(u)

)
, 1− εF

−

Ȯ
(e)(u)

]⟩
, pc(e)(u) =

⟨
1− εTp (e)(u), 1− εIp(e)(u), 1− εFp (e)(u)

⟩
.

Clearly,
(
Ȯ

c

p

)c

= Ȯp.

Definition 3.5. Let U be the universe and E be the set of parameters. Let Ȯp and Öq

be the PPyNVSSs on (U , E). The union and intersection of Ȯp and Öq over (U , E) are
denoted by Ȯp

∨
Öq and Ȯp

∧
Öq respectively and are defined by Jj : E → P Ȯ(U ) ×

P Ȯ(U ), Ii : E → P Ȯ(U )× P Ȯ(U ) such that Jj(e)(u) =
⟨
J(e)(u), j(e)(u)

⟩
, Ii(e)(u) =
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I(e)(u), i(e)(u)

⟩
, where J(e)(u) = Ȯ(e)(u)

∨
Ö(e)(u), j(e)(u) = p(e)(u)

∨
q(e)(u),

I(e)(u) = Ȯ(e)(u)
∧

Ö(e)(u) and i(e)(u) = p(e)(u)
∧

q(e)(u), ∀u ∈ U .

Example 3.2. Let Ȯp and Öq be the two PPyNVSSs on (U , E) defined by

Ȯp(e1) =


u1

⟨([0.5,0.75],[0.7,0.8],[0.25,0.5]),(0.45,0.35,0.75)⟩

u2

⟨([0.5,0.85],[0.6,0.85],[0.15,0.5]),(0.65,0.75,0.55)⟩

u3

⟨([0.7,0.85],[0.7,0.9],[0.15,0.3]),(0.85,0.45,0.35)⟩ ;

Ȯp(e2) =


u1

⟨([0.6,0.9],[0.7,0.85],[0.1,0.4]),(0.75,0.55,0.65)⟩

u2

⟨([0.6,0.8],[0.6,0.8],[0.2,0.4]),(0.65,0.95,0.85)⟩

u3

⟨([0.4,0.75],[0.5,0.75],[0.25,0.6]),(0.55,0.45,0.35)⟩ ;

Öq(e1) =


u1

⟨([0.45,0.7],[0.65,0.75],[0.3,0.55]),(0.25,0.65,0.85)⟩

u2

⟨([0.4,0.8],[0.65,0.8],[0.2,0.6]),(0.35,0.75,0.45)⟩

u3

⟨([0.4,0.65],[0.75,0.85],[0.35,0.6]),(0.75,0.55,0.85)⟩ ;

Öq(e2) =


u1

⟨([0.65,0.8],[0.6,0.85],[0.2,0.35]),(0.85,0.45,0.65)⟩

u2

⟨([0.65,0.85],[0.65,0.85],[0.15,0.35]),(0.75,0.65,0.35)⟩

u3

⟨([0.5,0.8],[0.55,0.7],[0.2,0.5]),(0.35,0.55,0.45)⟩ .

Ȯp

∨
Öq is determined by

Ȯp

∨
Öq(e1) =


u1

⟨([0.5,0.75],[0.65,0.75],[0.25,0.5]),(0.45,0.35,0.75)⟩

u2

⟨([0.5,0.85],[0.6,0.8],[0.15,0.5]),(0.65,0.75,0.45)⟩

u3

⟨([0.7,0.85],[0.7,0.85],[0.15,0.3]),(0.85,0.45,0.35)⟩ ;

Ȯp

∨
Öq(e2) =


u1

⟨([0.65,0.9],[0.6,0.85],[0.1,0.35]),(0.85,0.45,0.65)⟩

u2

⟨([0.65,0.85],[0.6,0.8],[0.15,0.35]),(0.75,0.65,0.35)⟩

u3

⟨([0.5,0.8],[0.5,0.7],[0.2,0.5]),(0.55,0.45,0.35)⟩ .

Ȯp

∧
Öq is determined by

Ȯp

∧
Öq(e1) =


u1

⟨([0.45,0.7],[0.7,0.8],[0.3,0.55]),(0.25,0.65,0.85)⟩

u2

⟨([0.4,0.8],[0.65,0.85],[0.2,0.6]),(0.35,0.75,0.55)⟩

u3

⟨([0.4,0.65],[0.75,0.9],[0.35,0.6]),(0.75,0.55,0.85)⟩ ;

Ȯp

∧
Öq(e2) =


u1

⟨([0.6,0.8],[0.7,0.85],[0.2,0.4]),(0.75,0.55,0.65)⟩

u2

⟨([0.6,0.8],[0.65,0.85],[0.2,0.4]),(0.65,0.95,0.85)⟩

u3

⟨([0.4,0.75],[0.55,0.75],[0.25,0.6]),(0.35,0.55,0.45)⟩ .
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Definition 3.6. A PPyNVSS ∅θ(e)(u) =
⟨
∅(e)(u), θ(e)(u)

⟩
is said to be a possibility null

Pythagorean neutrosophic vague soft set ∅θ : E → P Ȯ(U ) × P Ȯ(U ), where ∅(e)(u) =

([0, 0], [1, 1], [1, 1]) and θ(e)(u) = ([0, 0], [1, 1], [1, 1]), ∀u ∈ U .

Definition 3.7. A PPyNVSS ΩΛ(e)(u) =
⟨
Ω(e)(u),Λ(e)(u)

⟩
is said to be a possibility

absolute Pythagorean neutrosophic vague soft set ΩΛ : E → P Ȯ(U ) × P Ȯ(U ), where

Ω(e)(u) = ([1, 1], [0, 0], [0, 0]) and Λ(e)(u) = ([1, 1], [0, 0], [0, 0]), ∀u ∈ U .

Theorem 3.1. Let Ȯp be the PPyNVSS on (U , E). Then

(i) Ȯp = Ȯp

∨
Ȯp, Ȯp = Ȯp

∧
Ȯp,

(ii) Ȯp ⊑ Ȯp

∨
Ȯp, Ȯp ⊑ Ȯp

∧
Ȯp,

(iii) Ȯp

∨
∅θ = Ȯp, Ȯp

∧
∅θ = ∅θ,

(iv) Ȯp

∨
ΩΛ = ΩΛ, Ȯp

∧
ΩΛ = Ȯp.

Proof: The proof of Theorem 3.1 is handed over to Definitions 3.6 and 3.7.

Remark 3.1. Let Ȯp be the PPyNVSS on (U , E). If Ȯp ̸= ΩΛ or Ȯp ̸= ∅θ, then Ȯp

∨
Ȯc

p ̸=
ΩΛ and Ȯp

∧
Ȯc

p ̸= ∅θ.

Theorem 3.2. Let Ȯp, Öq and
...
Or be the PPyNVSSs over (U , E). Then the commutative

laws, De Morgan’s laws, associative laws, and distributive laws hold:

(1) Ȯp

∨
Öq = Öq

∨
Ȯp,

(2) Ȯp

∧
Öq = Öq

∧
Ȯp,

(3) Ȯp

∨(
Öq

∨ ...
Or

)
=

(
Ȯp

∨
Öq

)∨ ...
Or,

(4) Ȯp

∧(
Öq

∧ ...
Or

)
=

(
Ȯp

∧
Öq

)∧ ...
Or,

(5)
(
Ȯp

∨
Öq

)c

= Ȯc
p

∧
Öc

q ,

(6)
(
Ȯp

∧
Öq

)c

= Ȯc
p

∨
Öc

q ,

(7)
(
Ȯp

∨
Öq

)∧
Ȯp = Ȯp,

(8)
(
Ȯp

∧
Öq

)∨
Ȯp = Ȯp,

(9) Ȯp

∨(
Öq

∧ ...
Or

)
=

(
Ȯp

∨
Öq

)∧(
Ȯp

∨ ...
Or

)
,

(10) Ȯp

∧(
Öq

∨ ...
Or

)
=

(
Ȯp

∧
Öq

)∨(
Ȯp

∧ ...
Or

)
.

Proof: The proof of Theorem 3.2 is handed over to Definitions 3.4 and 3.5.

Definition 3.8. Let
(
Ȯp, A

)
and

(
Öq, B

)
be the PPyNVSSs on (U , E). Then the oper-

ation “
(
Ȯp, A

)
AND

(
Öq, B

)
” is defined by

(
Ȯp, A

)∧(
Öq, B

)
=

(...
Or, A×B

)
, where

...
Or(θ, κ) =

⟨...
O (θ, κ)(u), r(θ, κ)(u)

⟩
such that

...
O(θ, κ) = Ȯ(θ)

∧
Ö(κ) and r(θ, κ) = p(θ)

∧
q(κ), ∀(θ, κ) ∈ A×B.



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.19, NO.1, 2023 129

Definition 3.9. Let
(
Ȯp, A

)
and

(
Öq, B

)
be the PPyNVSSs on (U , E). Then the oper-

ation “
(
Ȯp, A

)
OR

(
Öq, B

)
” is defined by

(
Ȯp, A

)∨(
Öq, B

)
=

(...
Or, A×B

)
, where

...
Or(θ, κ) =

⟨...
O (θ, κ)(u), r(θ, κ)(u)

⟩
such that

...
O(θ, κ) = Ȯ(θ)

∨
Ö(κ) and r(θ, κ) = p(θ)∨

q(κ), ∀(θ, κ) ∈ A×B.

Theorem 3.3. Let
(
Ȯp, A

)
and

(
Öq, B

)
be the PPyNVSSs on (U , E). Then

(i)
((

Ȯp, A
)∧(

Öq, B
))c

=
(
Ȯp, A

)c∨(
Öq, B

)c

,

(ii)
((

Ȯp, A
)∨(

Öq, B
))c

=
(
Ȯp, A

)c ∧(
Öq, B

)c

.

Proof: The proof of Theorem 3.3 is handed over to Definitions 3.8 and 3.9.

4. Similarity Measure between Two PPyNVSSs. In this section, we introduced
the distance between the Possibility Pythagorean neutrosophic vague soft sets.

Definition 4.1. Let U be the universe and E be the set of parameters. Suppose that Ȯp

and Öq be the PPyNVSSs on (U , E). The similarity measure between two PPyNVSSs

Ȯp and Öq is defined by Sim
(
Ȯp, Öq

)
= Φ

(
Ȯ, Ö

)
· Ψ(p, q) such that Φ

(
Ȯ, Ö

)
=

X1+X2+Y1+Y2+Z1+Z2

6
and Ψ(p, q) = 1−

∑
|(θ1i+θ2i)−(κ1i+κ2i)|∑
|(θ1i+θ2i)+(κ1i+κ2i)| ,

where

X1 = T−
(
Ȯ(e)(u), Ö(e)(u)

)
=

∑n
i=1

(
εT−

Ȯ(ei)
(u) · εT−

Ö(ei)
(u)

)
∑n

i=1

(
1−

√(
1− ε2T

Ȯ(ei)
(u)

)
·
(
1− ε2T

Ö(ei)
(u)

)) ,

X2 = 1− F−
(
Ȯ(e)(u), Ö(e)(u)

)
=

∑n
i=1

((
1− εF

−

Ȯ(ei)
(u)

)
·
(
1− εF

−

Ö(ei)
(u)

))
∑n

i=1 1 +

√(
1 +

(
1− ε2F

−

Ȯ(ei)
(u)

))
·
(
1 +

(
1− ε2F

−

Ö(ei)
(u)

)) ,

Y1 = I−
(
Ȯ(e)(u), Ö(e)(u)

)
=

∑n
i=1

(
εI

−

Ȯ(ei)
(u) · εI−

Ö(ei)
(u)

)
∑n

i=1

(
1−

√(
1− ε2I

−

Ȯ(ei)
(u)

)
·
(
1− ε2I

−

Ö(ei)
(u)

)) ,

Y2 = I+
(
Ȯ(e)(u), Ö(e)(u)

)
=

∑n
i=1

(
εI

+

Ȯ(ei)
(u) · εI+

Ö(ei)
(u)

)
∑n

i=1

(
1 +

√(
1 + ε2I

+

Ȯ(ei)
(u)

)
·
(
1 + ε2I

+

Ö(ei)
(u)

)) ,

Z1 = F−
(
Ȯ(e)(u), Ö(e)(u)

)
=

√√√√√1−

∑n
i=1

∣∣∣ε2F−
Ȯ(ei)

(u)− ε2F−
Ö(ei)

(u)
∣∣∣∑n

i=1 1 +
((

ε2F−
Ȯ(ei)

(u)
)
·
(
ε2F−

Ö(ei)
(u)

)) ,
Z2 = T−

(
Ȯ(e)(u), Ö(e)(u)

)
=

√√√√√1 +

∑n
i=1

∣∣∣(1− ε2T
−

Ȯ(ei)
(u)

)
+
(
1− ε2T

−

Ö(ei)
(u)

)∣∣∣∑n
i=1 1 +

((
1− ε2T

−

Ȯ(ei)
(u)

)
·
(
1− ε2T

−

Ö(ei)
(u)

))
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and θ1i =
ε2T
p(ei)

(u)

ε2T
p(ei)

(u)+ε2F
p(ei)

(u)
, θ2i =

ε2T
p(ei)

(u)

ε2T
p(ei)

(u)+ε2I
p(ei)

(u)
, κ1i =

ε2T
q(ei)

(u)

ε2T
q(ei)

(u)+ε2F
q(ei)

(u)
, κ2i =

ε2T
q(ei)

(u)

ε2T
q(ei)

(u)+ε2I
q(ei)

(u)
.

Theorem 4.1. Let Ȯp, Öq and
...
Or be the PPyNVSSs over (U , E). Then

(i) Sim
(
Ȯp, Öq

)
= Sim

(
Öq, Ȯp

)
,

(ii) 0 ≼ Sim
(
Ȯp, Öq

)
≼ 1,

(iii) Ȯp = Öq =⇒ Sim
(
Ȯp, Öq

)
= 1,

(iv) Ȯp ⊑ Öq ⊑
...
Or =⇒ Sim

(
Ȯp,

...
Or

)
≼ Sim

(
Öq,

...
Or

)
,

(v) Ȯp

∧
Öq = {ϕ} ⇔ Sim

(
Ȯp, Öq

)
= 0.

Proof: The proofs (i), (ii), (iii) and (v) are trivial. (iv) Clearly, εT−
Ȯ(e)

(u) · εT−...
O (e)(u) ≼

εT−
Ö(e)

(u) · εT−...
O (e)(u) implies that

n∑
i=1

(
εT−

Ȯ(ei)
(u) · εT−...

O (ei)
(u)

)
≼

n∑
i=1

(
εT−

Ö(ei)
(u) · εT−...

O (ei)
(u)

)
. (1)

Clearly,
(
ε2T−

Ȯ(e)
(u)

)
≼

(
ε2T−

Ö(e)
(u)

)
implies that −

(
ε2T−

Ȯ(e)
(u)

)
≽ −

(
ε2T−

Ö(e)
(u)

)
and

n∑
i=1

1−
√(

1−
(
ε2T−

Ȯ(ei)
(u)

))
·
(
1−

(
ε2T−...

O (ei)
(u)

))
≼

n∑
i=1

1−
√(

1−
(
ε2T−

Ö(ei)
(u)

))
·
(
1−

(
ε2T−...

O (ei)
(u)

))
. (2)

Equation (1) is divided by Equation (2),∑n
i=1

(
εT−

Ȯ(ei)
(u) · εT−...

O (ei)
(u)

)
∑n

i=1 1−
√(

1−
(
ε2T

Ȯ(ei)
(u)

))
·
(
1−

(
ε2T...

O (ei)
(u)

))
≼

∑n
i=1

(
εT−

Ö(ei)
(u) · εT−...

O (ei)
(u)

)
∑n

i=1 1−
√(

1−
(
ε2T

Ö(ei)
(u)

))
·
(
1−

(
ε2T...

O (ei)
(u)

)) . (3)

Clearly,
(
1− εF

−

Ȯ(e)
(u)

)
·
(
1− εF

−...
O (e)(u)

)
≼

(
1− εF

−

Ö(e)
(u)

)
·
(
1− εF

−...
O (e)(u)

)
implies that

n∑
i=1

(
1− εF

−

Ȯ(e)
(u)

)
·
(
1− εF

−...
O (e)(u)

)
≼

n∑
i=1

(
1− εF

−

Ö(e)
(u)

)
·
(
1− εF

−...
O (e)(u)

)
. (4)

Clearly,
(
ε2F

−

Ȯ(e)
(u)

)
≼

(
ε2F

−

Ö(e)
(u)

)
implies that −

(
ε2F

−

Ȯ(e)
(u)

)
≽ −

(
ε2F

−

Ö(e)
(u)

)
and

n∑
i=1

1−
√(

1−
(
1− ε2F

−

Ȯ(ei)
(u)

))
·
(
1−

(
1− ε2F

−...
O (ei)

(u)
))

≼
n∑

i=1

1−
√(

1−
(
1− ε2F

−

Ö(ei)
(u)

))
·
(
1−

(
1− ε2F

−...
O (ei)

(u)
))

. (5)
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Equation (4) is divided by Equation (5),∑n
i=1

(
1− εF

−

Ȯ(ei)
(u) · 1− εF

−...
O (ei)

(u)
)

∑n
i=1 1−

√(
1−

(
1− ε2T

Ȯ(ei)
(u)

))
·
(
1−

(
1− ε2T...

O (ei)
(u)

))
≼

∑n
i=1

(
1− εF

−

Ö(ei)
(u) · 1− εF

−...
O (ei)

(u)
)

∑n
i=1 1−

√(
1−

(
1− ε2T

Ö(ei)
(u)

))
·
(
1−

(
1− ε2T...

O (ei)
(u)

)) . (6)

Clearly, εI
−

Ȯ(e)
(u) · εI−...

O (e)(u) ≼ εI
−

Ö(e)
(u) · εI−...

O (e)(u) implies that

n∑
i=1

(
εI

−

Ȯ(ei)
(u) · εI−...O (ei)

(u)
)
≼

n∑
i=1

(
εI

−

Ö(ei)
(u) · εI−...O (ei)

(u)
)
. (7)

Clearly,
(
ε2I

−

Ȯ(e)
(u)

)
≼

(
ε2I

−

Ö(e)
(u)

)
implies that −

(
ε2I

−

Ȯ(e)
(u)

)
≽ −

(
ε2I

−

Ö(e)
(u)

)
and

n∑
i=1

1−
√(

1−
(
ε2I

−

Ȯ(ei)
(u)

))
·
(
1−

(
ε2I

−...
O (ei)

(u)
))

≼
n∑

i=1

1−
√(

1−
(
ε2I

−

Ö(ei)
(u)

))
·
(
1−

(
ε2I

−...
O (ei)

(u)
))

. (8)

Equation (7) is divided by Equation (8),∑n
i=1

(
εI

−

Ȯ(ei)
(u) · εI−...

O (ei)
(u)

)
∑n

i=1 1−
√(

1−
(
ε2I

−

Ȯ(ei)
(u)

))
·
(
1−

(
ε2I

−...
O (ei)

(u)
))

≼

∑n
i=1

(
εI

−

Ö(ei)
(u) · εI−...

O (ei)
(u)

)
∑n

i=1 1−
√(

1−
(
ε2I

−

Ö(ei)
(u)

))
·
(
1−

(
ε2I

−...
O (ei)

(u)
)) . (9)

Similarly, ∑n
i=1

(
εI

+

Ȯ(ei)
(u) · εI+...

O (ei)
(u)

)
∑n

i=1 1−
√(

1−
(
ε2I

+

Ȯ(ei)
(u)

))
·
(
1−

(
ε2I

+...
O (ei)

(u)
))

≼

∑n
i=1

(
εI

+

Ö(ei)
(u) · εI+...

O (ei)
(u)

)
∑n

i=1 1−
√(

1−
(
ε2I

+

Ö(ei)
(u)

))
·
(
1−

(
ε2I

+...
O (ei)

(u)
)) . (10)

Clearly, ε2F−
Ȯ(e)

(u) ≽ ε2F−
Ö(e)

(u) and ε2F−
Ȯ(e)

(u)− ε2F−...
O (e)(u) ≽ ε2F−

Ö(e)
(u)− ε2F−...

O (e)(u). Hence

n∑
i=1

∣∣∣ε2F−
Ȯ(ei)

(u)− ε2F−...
O (ei)

(u)
∣∣∣ ≽ n∑

i=1

∣∣∣ε2F−
Ö(ei)

(u)− ε2F−...
O (ei)

(u)
∣∣∣ . (11)

Also,
(
ε2F−

Ȯ(e)
(u) · ε2F−...

O (e)(u)
)
≽

(
ε2F−

Ö(e)
(u) · ε2F−...

O (e)(u)
)
implies that
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n∑
i=1

1 +
(
ε2F−

Ȯ(ei)
(u) · ε2F−...

O (ei)
(u)

)
≽

n∑
i=1

1 +
(
ε2F−

Ö(ei)
(u) · ε2F−...

O (ei)
(u)

)
. (12)

Equation (11) is divided by Equation (12), and we get√√√√√1−

∑n
i=1

∣∣∣ε2F−
Ȯ(ei)

(u)− ε2F−...
O (ei)

(u)
∣∣∣∑n

i=1 1 +
(
ε2F−

Ȯ(ei)
(u) · ε2F−...

O (ei)
(u)

) ≼

√√√√√1−

∑n
i=1

∣∣∣ε2F−
Ö(ei)

(u)− ε2F−...
O (ei)

(u)
∣∣∣∑n

i=1 1 +
(
ε2F−

Ö(ei)
(u) · ε2F−...

O (ei)
(u)

) . (13)

Clearly,
(
1− ε2T

−

Ȯ(e)
(u)

)
≽

(
1− ε2T

−

Ö(e)
(u)

)
. Hence,

n∑
i=1

∣∣∣(1− ε2T
−

Ȯ(ei)
(u)

)
−

(
1− ε2T

−...
O (ei)

(u)
)∣∣∣ ≽ n∑

i=1

∣∣∣(1− ε2T
−

Ö(ei)
(u)

)
−
(
1− ε2T

−...
O (ei)

(u)
)∣∣∣ , (14)

n∑
i=1

1+
(
1− ε2T

−

Ȯ(ei)
(u)

)
·
(
1− ε2T

−...
O (ei)

(u)
)
≽

n∑
i=1

1+
(
1− ε2T

−

Ö(ei)
(u)

)
·
(
1− ε2T

−...
O (ei)

(u)
)
. (15)

Equation (14) is divided by Equation (15), and we get√√√√√1−

∑n
i=1

∣∣∣(1− ε2T
−

Ȯ(ei)
(u)

)
−

(
1− ε2T

−...
O (ei)

(u)
)∣∣∣∑n

i=1 1 +
((

1− ε2T
−

Ȯ(ei)
(u)

)
·
(
1− ε2T

−...
O (ei)

(u)
))

≼

√√√√√1−

∑n
i=1

∣∣∣(1− ε2T
−

Ö(ei)
(u)

)
−

(
1− ε2T

−...
O (ei)

(u)
)∣∣∣∑n

i=1 1 +
((

1− ε2T
−

Ö(ei)
(u)

)
·
(
1− ε2T

−...
O (ei)

(u)
)) . (16)

Hence,

Φ
(
Ȯ,

...
O
)
≼ Φ

(
Ö,

...
O
)
. (17)

Clearly, θ1i ≼ κ1i ≼ τ1i and θ2i ≼ κ2i ≼ τ2i, where

θ1i =
ε2Tp(ei)(u)

ε2Tp(ei)(u) + ε2Fp(ei)(u)
, θ2i =

ε2Tp(ei)(u)

ε2Tp(ei)(u) + ε2Ip(ei)(u)

κ1i =
ε2Tq(ei)(u)

ε2Tq(ei)(u) + ε2Fq(ei)(u)
, κ2i =

ε2Tq(ei)(u)

ε2Tq(ei)(u) + ε2Iq(ei)(u)

τ1i =
ε2Tr(ei)(u)

ε2Tr(ei)(u) + ε2Fr(ei)(u)
, τ2i =

ε2Tr(ei)(u)

ε2Tr(ei)(u) + ε2Ir(ei)(u)
.

Clearly, (θ1i + θ2i) ≼ (κ1i + κ2i) ≼ (τ1i + τ2i) and (θ1i + θ2i) − (τ1i + τ2i) ≼ (κ1i + κ2i) −
(τ1i + τ2i). Hence, |(κ1i + κ2i)− (τ1i + τ2i)| ≼ |(θ1i + θ2i)− (κ1i + κ2i)| and

− |(θ1i + θ2i)− (τ1i + τ2i)| ≼ − |(κ1i + κ2i)− (τ1i + τ2i)| , (18)

|(θ1i + θ2i) + (τ1i + τ2i)| ≼ |(κ1i + κ2i) + (τ1i + τ2i)| . (19)

Equation (18) is divided by Equation (19), and we get

1−
∑n

i=1 |(θ1i + θ2i)− (τ1i + τ2i)|∑n
i=1 |(θ1i + θ2i) + (τ1i + τ2i)|

≼ 1−
∑n

i=1 |(κ1i + κ2i)− (τ1i + τ2i)|∑n
i=1 |(κ1i + κ2i) + (τ1i + τ2i)|

.

Hence,

Ψ (p, r) ≼ Ψ(q, r) . (20)
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From Equations (17) and (20),

Φ
(
Ȯ,

...
O
)
·Ψ(p, r) ≼ Φ

(
Ö,

...
O
)
·Ψ(q, r) .

Hence, Sim
(
Ȯp,

...
Or

)
≼ Sim

(
Öq,

...
Or

)
. This proves (iv).

5. Robotic Engineering Selection Based on Similarity. In our daily life, we face
problems in decision-making in areas such as education, the economy, management, pol-
itics, and technology. As you embark on the robotic engineering selection process, the
following five items are important to consider before making your final decision. Our goal
is to select the optimal one out of a great number of alternatives based on the assessment
of experts against the criteria.

5.1. Robotic entries. Robotics is an applied engineering science that has been referred
to as a combination of machine tool technology and computer science. It includes ma-
chine design, production theory, microelectronics, computer programming, and artificial
intelligence. Now, we have randomized five types of robotics, namely manipulator robotic,
legged robotic, wheeled robotic, autonomous underwater vehicle robotic, and unmanned
aerial vehicle robotic. There are five types of criteria for choosing a robotics system by
E = {e1: robot controller features, e2: affordable off line programming software, e3:

Table 1. PPyNVSS for the ideal robotic data

Lp(e) e1 e2 e3

L (e) ⟨[0.81, 0.87], [0.7, 0.75], [0.13, 0.19]⟩ ⟨[0.82, 0.89], [0.8, 0.85], [0.11, 0.18]⟩ ⟨[0.83, 0.86], [0.75, 0.8], [0.14, 0.17]⟩
p(e) ⟨1, 0, 0⟩ ⟨1, 0, 0⟩ ⟨1, 0, 0⟩

Lp(e) e4 e5

L (e) ⟨[0.75, 0.82], [0.8, 0.85], [0.18, 0.25]⟩ ⟨[0.82, 0.85], [0.7, 0.75], [0.15, 0.18]⟩
p(e) ⟨1, 0, 0⟩ ⟨1, 0, 0⟩

Table 2. PPyNVSS for the manipulator robotic data

Ap1(e) e1 e2 e3

A (e) ⟨[0.35, 0.36], [0.75, 0.8], [0.64, 0.65]⟩ ⟨[0.41, 0.62], [0.85, 0.9], [0.38, 0.59]⟩ ⟨[0.56, 0.57], [0.82, 0.85], [0.43, 0.44]⟩
p1(e) ⟨0.95, 0.65, 0.75⟩ ⟨0.65, 0.55, 0.45⟩ ⟨0.65, 0.75, 0.55⟩

Ap1(e) e4 e5

A (e) ⟨[0.72, 0.73], [0.88, 0.9], [0.27, 0.28]⟩ ⟨[0.65, 0.66], [0.75, 0.8], [0.34, 0.35]⟩
p1(e) ⟨0.75, 0.65, 0.85⟩ ⟨0.85, 0.65, 0.45⟩

Table 3. PPyNVSS for the legged robotic data

Bp2(e) e1 e2 e3

B(e) ⟨[0.55, 0.64], [0.75, 0.8], [0.36, 0.45]⟩ ⟨[0.5, 0.52], [0.82, 0.87], [0.48, 0.5]⟩ ⟨[0.4, 0.52], [0.8, 0.83], [0.48, 0.6]⟩
p2(e) ⟨0.75, 0.65, 0.35⟩ ⟨0.65, 0.75, 0.55⟩ ⟨0.7, 0.45, 0.35⟩

Bp2(e) e4 e5

B(e) ⟨[0.35, 0.36], [0.84, 0.88], [0.64, 0.65]⟩ ⟨[0.45, 0.47], [0.73, 0.8], [0.53, 0.55]⟩
p2(e) ⟨0.55, 0.35, 0.45⟩ ⟨0.8, 0.65, 0.55⟩
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Table 4. PPyNVSS for the wheeled robotic data

Cp3(e) e1 e2 e3

C (e) ⟨[0.5, 0.65], [0.71, 0.8], [0.35, 0.5]⟩ ⟨[0.55, 0.6], [0.81, 0.87], [0.4, 0.45]⟩ ⟨[0.65, 0.75], [0.8, 0.85], [0.25, 0.35]⟩
p3(e) ⟨0.8, 0.4, 0.5⟩ ⟨0.75, 0.55, 0.6⟩ ⟨0.6, 0.7, 0.55⟩

Cp3(e) e4 e5

C (e) ⟨[0.45, 0.6], [0.83, 0.88], [0.4, 0.55]⟩ ⟨[0.35, 0.55], [0.75, 0.8], [0.45, 0.65]⟩
p3(e) ⟨0.8, 0.65, 0.55⟩ ⟨0.65, 0.5, 0.65⟩

Table 5. PPyNVSS for the autonomous underwater vehicle robotic data

Dp4(e) e1 e2 e3

D(e) ⟨[0.5, 0.65], [0.75, 0.8], [0.35, 0.5]⟩ ⟨[0.45, 0.5], [0.82, 0.86], [0.5, 0.55]⟩ ⟨[0.45, 0.5], [0.76, 0.82], [0.5, 0.55]⟩
p4(e) ⟨0.8, 0.65, 0.55⟩ ⟨0.6, 0.55, 0.5⟩ ⟨0.65, 0.55, 0.75⟩

Dp4(e) e4 e5

D(e) ⟨[0.6, 0.7], [0.83, 0.88], [0.3, 0.4]⟩ ⟨[0.5, 0.65], [0.74, 0.77], [0.35, 0.5]⟩
p4(e) ⟨0.7, 0.55, 0.65⟩ ⟨0.75, 0.35, 0.55⟩

Table 6. PPyNVSS for the unwanned aerial vehicle robotic data

Ep5(e) e1 e2 e3

E (e) ⟨[0.4, 0.85], [0.72, 0.8], [0.15, 0.6]⟩ ⟨[0.46, 0.8], [0.81, 0.86], [0.2, 0.54]⟩ ⟨[0.4, 0.75], [0.78, 0.84], [0.25, 0.6]⟩
p5(e) ⟨0.55, 0.5, 0.6⟩ ⟨0.85, 0.45, 0.35⟩ ⟨0.8, 0.55, 0.55⟩

Ep5(e) e4 e5

E (e) ⟨[0.5, 0.65], [0.82, 0.87], [0.35, 0.5]⟩ ⟨[0.4, 0.7], [0.75, 0.8], [0.3, 0.6]⟩
p5(e) ⟨0.7, 0.55, 0.45⟩ ⟨0.8, 0.35, 0.55⟩

safety codes, e4: continuous-duty cycle time, e5: experience and reputation of the robot
manufacturer}.
In order to discover the robotic data that is closest to the ideal robotic data, we need

to use Definition 4.1 to calculate the similarity measure of PPyNVSSs in Table 2 to Table
6 with the one in Table 1. The robotic data should be used as the similarity threshold.
Below the table is a formula for calculating the similarity measure for the five categories
of robotics.

T I F Φ Ψ Similarity

(L ,A ) 0.841841 0.992614 0.906279 0.913578 0.749102 0.684363

(L ,B) 0.769749 0.996851 0.866017 0.877539 0.788149 0.691632

(L ,C ) 0.856917 0.996861 0.910719 0.921499 0.762049 0.702227

(L ,D) 0.839134 0.997992 0.905781 0.914302 0.754157 0.689528

(L ,E ) 0.855988 0.997727 0.911717 0.921811 0.812534 0.749002

According to the preceding findings, the unwanted aerial vehicle robotic data is the most
similar to the ideal robotic data, with a similarity measure of 0.749002. Therefore, the
optimal one is unwanted aerial vehicle robotic.



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.19, NO.1, 2023 135

5.2. PyNVSS approach without the generalization parameter. To explore the
effect of the possibility parameter, we investigate the above mentioned robotic entries
using the PyNVSS technique. The similarity measure for the five categories of robotic
data mentioned above is calculated as follows. We have got

T I F Similarity

(L ,A ) 0.841841 0.992614 0.906279 0.913578

(L ,B) 0.769749 0.996851 0.866017 0.877539

(L ,C ) 0.856917 0.996861 0.910719 0.921499

(L ,D) 0.839134 0.997992 0.905781 0.914302

(L ,E ) 0.855988 0.997727 0.911717 0.921811

According to the preceding findings, the parameter has a considerable impact on the
calculation of the PPyNVSSs similarity measure. From the standpoint of similarity mea-
sure, the first fourth robotic data are considerably different from the ideal robotic data.
If the robotic data one unit chooses the threshold ⟨[0.5, 0.65], [0.82, 0.87], [0.35, 0.5]⟩, the
unwanted aerial vehicle data should be chosen as the finest in the world for real-world
applications.

5.3. Comparison for the PPyNVSS and PyNVSS. Using the PyNVSS technique
without the generalization parameter, on the other hand, we are unable to determine
which robotic data is the best. As a result, the possibility parameter has a significant
impact on the unwanted aerial vehicle data similarity measure. As a result, the PPyNVSS
method is more scientific and rational.

5.4. Advantage. The main goal of this work is to present a possibility Pythagorean
neutrosophic vague soft set to solve the phenomena related to decision-making. From the
above discussion, the possibility parameter has an important influence on the similarity
measure. Therefore, the PPyNVSS approach is more scientific and reasonable than the
PyNVSS approach in the process of decision-making. To illustrate the validity of this
similarity measure, the possibility of a Pythagorean neutrosophic vague soft set is applied
to decision-making problems.

6. Conclusion. We discussed the logical consistency of PPyNSVSS and PyNSVSS. Some
of the algebraic operations we established are complement, union, intersection, AND,
OR, commutative laws, De Morgan’s laws, associative laws, and distributive laws, all of
which hold. We contrasted PPyNSVSS with PyNSVSS in order to address decision-making
concerns and construct a similarity distance.
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