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Abstract. We defined bipolar-valued subbisemirings, level sets of bipolar-valued sub-
bisemirings, and bipolar-valued normal subbisemirings of bisemirings. Additionally, we
look into some of these subbisemirings related properties (shortly, SBS). Let A be a

bipolar-valued fuzzy set (BVFS) in S. Prove that f̃ = ⟨fp
A, f

n
A⟩ is a bipolar-valued sub-

bisemiring of S if and only if all non-empty level set f̃ (t,s) is a subbisemiring of S for
t ∈ [0, 1] and s ∈ [−1, 0]. Let A be a BVSBS of a bisemiring S and V be the strongest
bipolar-valued relation of S. Prove that A is a BVSBS of S if and only if V is a BVSBS
of S ×S. The homomorphic image and pre-image of BVSBS are also BVSBS. Let fα̃ be
an (α, β)-BVSBS of S. Prove that the nonempty sets fp

α and fn
α are SBSs of S, where

fp
α = {p ∈ S | fp(p) > αp} and fn

α = {p ∈ S | fn(p) < αn}. Let f̃ = ⟨fp
A, f

n
A⟩ be any

BVFS in S. Prove that f̃ is an (α, β)-BVSBS of S if and only if each non-empty level

subset f̃ (t,s) is an SBS of S for all t ∈ (αp, βp] and s ∈ (αn, βn]. Examples are given to
demonstrate our findings.
Keywords: Subbisemiring, Bipolar-valued subbisemiring, (α, β)-bipolar-valued sub-
bisemiring, (α, β)-bipolar-valued normal subbisemiring, Homomorphism

1. Introduction. The various ideals based on semirings have been described by a number
of authors and academics [1]. The German mathematician Dedekind initiated the study
of semirings in relation to the ideals of commutative rings. The American mathematician
Vandever later explored semirings and recognized them as a basic algebraic structure in
1934. It is a generalization of distributive lattices and rings. However, since 1950, there
have been improvements in semiring theory. In 1965, Zadeh [2] introduced the fuzzy set
theory. A bipolar fuzzy set is an extension of a fuzzy set in which membership degree range
is [−1, 1] [3]. The membership degree range of the bipolar fuzzy set is expanded from the
interval [0, 1] to [−1, 0]. The idea which lies behind such description is connected with the
existence of bipolar information (positive information and negative information) about
the given set. Information that would be positive indicates what is accepted as possible,
whereas information that is negative shows what is thought to be absolutely impossible.
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In reality, a large number of human decisions are founded on dualistic or bipolar judgment
thinking, which has both a positive and a negative side. For example, collaboration and
competitiveness, hostile opposition, shared interests, effect and side effects, probability
and conflict of interest improbability and other concepts are the two parties frequently
collaborate. Lee [4] discussed the concept of BVFSs and their operations. Palanikumar
and Arulmozhi [5, 6, 7, 8, 9] presented various fuzzy ideals of bisemirings and semigroups.
A semiring (S,+, ·) is a non-empty set in which (S,+) and (S, ·) are semigroups such that
“·” is distributive over “+”. Ahsan et al. [10] presented the idea of fuzzy semirings in
1993. Sen and Ghosh [11] introduced the notion for bisemirings in 2001. A bisemiring
(S,+, ◦,×) is an algebraic structure in which (S,+, ◦) and (S, ◦,×) are semirings in
which (S,+), (S, ◦), and (S,×) are semigroups such that (1) x ◦ (y + z) = x ◦ y + x ◦ z,
(2) (y + z) ◦ x = y ◦ x + z ◦ x, (3) x × (y ◦ z) = (x × y) ◦ (x × z), and (4) (y ◦ z) × x =
(y × x) ◦ (z × x) for all x, y, z ∈ S. A non-empty subset A of a bisemiring (S,+, ◦,×)
is an SBS of S if and only if x + y ∈ A, x ◦ y ∈ A, and x × y ∈ A for all x, y ∈
A [12]. Palanikumar et al. discussed various algebraic structures and its applications
[13, 14, 15, 16, 17, 18, 19]. The goal of this study is to investigate and make conclusions on
several aspects of the subbisemiring theory to BVSBS theory. The following five sections
make up the article. Section 1 contains the introduction, and Section 2 has the semiring
and SBS preliminary facts. The BVSBS hypothesis is contained in Section 3. In Section
4, the idea of (α, β)-BVSBS homomorphism is proposed, and its features are discussed.
The theory of (α, β)-BVNSBS homomorphism is introduced in Section 5. Additionally,
when evaluating the BVSBS and BVNSBS, use some numerical examples.

2. Preliminaries. In this section, we quickly recall some of the basic definitions required
for our further studies.

Definition 2.1. [3] Let (S,+, ·) be a semiring. A fuzzy set A in S is said to be a fuzzy
subsemiring of S if it satisfies the following conditions:

(1) fA(x+ y) ≥ min{fA(x), fA(y)},
(2) fA(x · y) ≥ min{fA(x), fA(y)}, ∀x, y ∈ S.

Definition 2.2. [4] The BVFS A in a universe X is an object having the form A =
{⟨x, f p

A(x), f
n
A(x)⟩ | x ∈ X}, where fp

A: X → [0, 1] and fn
A: X → [−1, 0]. Here f p

A(x)
represents the degree of satisfaction of the element x to the property and fn

A(x) represents
the degree of satisfaction of x to some implicit counter property of A. For simplicity, the
symbol ⟨fp

A, f
n
A⟩ is used for the BVFS A = {⟨x, f p

A(x), f
n
A(x)⟩ | x ∈ X}.

Definition 2.3. Let A = ⟨fp
A, f

n
A⟩ and B = ⟨f p

B, f
n
B⟩ be two BVFSs in a non-empty set

X. Then

(1) A ∩B = {⟨x,min{f p
A(x), f

p
B(x)},max{fn

A(x), f
n
B(x)}⟩ | x ∈ X},

(2) A ∪B = {⟨x,max{f p
A(x), f

p
B(x)},min{fn

A(x), f
n
B(x)}⟩ | x ∈ X}.

Definition 2.4. For any BVFS A = ⟨f p
A, f

n
A⟩ in a non-empty set X, we defined the

(α, β)-cut of A as the crisp subset {x ∈ X | f p
A(x) ≥ α and fn

A(x) ≤ β} of X.

Definition 2.5. Let A and B be fuzzy sets in S1 and S2, respectively. The product of A
and B denoted by A × B is defined as A × B = {fA×B(s1, s2) | s1 ∈ S1 and s2 ∈ S2},
where fA×B(s1, s2) = min{fA(s1), fB(s2)} for all s1 ∈ S1 and s2 ∈ S2.

Definition 2.6. [5] The fuzzy set A in a bisemiring (S,�1,�2,�3) is said to be a fuzzy
subbisemiring (FSBS) of S if it satisfies the following conditions:

(1) fA(x�1 y) ≥ min{fA(x), fA(y)},



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.19, NO.2, 2023 341

(2) fA(x�2 y) ≥ min{fA(x), fA(y)},
(3) fA(x�3 y) ≥ min{fA(x), fA(y)}, ∀x, y ∈ S.

Definition 2.7. [5] The FSBS A of a bisemiring (S,�1,�2,�3) is said to be a fuzzy
normal subbisemiring (FNSBS) of S if it satisfies the following conditions:

(1) fA(x�1 y) = fA(y �1 x),

(2) fA(x�2 y) = fA(y �2 x),

(3) fA(x�3 y) = fA(y �3 x), ∀x, y ∈ S.

Definition 2.8. [12] Let (S,+, ·,×) and (T,⊕, ◦,⊗) be two bisemirings. A function ϕ:
S → T is said to be a homomorphism if it satisfies the following conditions:

(1) ϕ(x+ y) = ϕ(x)⊕ ϕ(y),

(2) ϕ(x · y) = ϕ(x) ◦ ϕ(y),
(3) ϕ(x× y) = ϕ(x)⊗ ϕ(y), ∀x, y ∈ S.

3. Bipolar-Valued Subbisemirings. In what follows, let S = (S,�1,�2,�3) denote a
bisemiring unless otherwise stated.

Definition 3.1. Let S be the SBS. The BVFS A = ⟨f p
A, f

n
A⟩ in S is said to be a bipolar-

valued subbisemiring (BVSBS) of S if it satisfies the following conditions:

(1) f p
A(x�1 y) ≥ min{fp

A(x), f
p
A(y)},

(2) f p
A(x�2 y) ≥ min{fp

A(x), f
p
A(y)},

(3) f p
A(x�3 y) ≥ min{fp

A(x), f
p
A(y)},

(4) fn
A(x�1 y) ≤ max{fn

A(x), f
n
A(y)},

(5) fn
A(x�2 y) ≤ max{fn

A(x), f
n
A(y)},

(6) fn
A(x�3 y) ≤ max{fn

A(x), f
n
A(y)}, ∀x, y ∈ S.

Example 3.1. Let S = {x1, x2, x3, x4} be the bisemiring with the following Cayley table:

�1 x1 x2 x3 x4

x1 x1 x1 x1 x1

x2 x1 x2 x1 x2

x3 x1 x1 x3 x3

x4 x1 x2 x3 x4

�2 x1 x2 x3 x4

x1 x1 x2 x3 x4

x2 x2 x2 x4 x4

x3 x3 x4 x3 x4

x4 x4 x4 x4 x4

�3 x1 x2 x3 x4

x1 x1 x1 x1 x1

x2 x1 x2 x3 x4

x3 x4 x4 x4 x4

x4 x4 x4 x4 x4

⟨f p
A, f

n
A⟩(x) =


⟨0.70,−0.40⟩ if x = x1

⟨0.60,−0.30⟩ if x = x2

⟨0.30,−0.10⟩ if x = x3

⟨0.50,−0.20⟩ if x = x4

Now f p
A(x2 �1 x3) = fp

A(x1) = 0.70 and min{fp
A(x2), f

p
A(x3)} = min{0.60, 0.30} = 0.30.

Hence, f p
A(x2 �1 x3) ≥ min{fp

A(x2), f
p
A(x3)}. Also, fn

A(x2 �1 x3) = fn
A(x1) = −0.40,

max{fn
A(x2), f

n
A(x3)} = max{−0.30,−0.10} = −0.10.

Hence, fn
A(x2�1x3) ≤ max{fn

A(x2), f
n
A(x3)}. By routine calculations based on Definition

3.1, all the conditions are satisfied. Therefore, A is a BVSBS of S.

Theorem 3.1. The arbitrary intersection of a BVSBS of S is a BVSBS of S.

Proof: Let {Vi | i ∈ I} be the family of BVSBSs of S and A =
∩

i∈IVi. Let x, y ∈ S.
Then

fp
A(x�1 y) = inf

i∈I
{fp

Vi
(x�1 y)}
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≥ inf
i∈I

{min{f p
Vi
(x), f p

Vi
(y)}}

= min

{
inf
i∈I

{f p
Vi
(x)}, inf

i∈I
{fp

Vi
(y)}

}
= min{f p

A(x), f
p
A(y)}.

Similarly, fp
A(x�2 y) ≥ min{f p

A(x), f
p
A(y)} and fp

A(x�3 y) ≥ min{f p
A(x), f

p
A(y)}. Also,

fn
A(x�1 y) = sup

i∈I
{fn

Vi
(x�1 y)}

≤ sup
i∈I

{max{fn
Vi
(x), fn

Vi
(y)}}

= max

{
sup
i∈I

{fn
Vi
(x)}, sup

i∈I
{fn

Vi
(y)}

}
= max{fn

A(x), f
n
A(y)}.

Similarly, fn
A(x�2 y) ≤ max{fn

A(x), f
n
A(y)} and fn

A(x�3 y) ≤ max{fn
A(x), f

n
A(y)}. Hence,

A is a BVSBS of S. 2

Theorem 3.2. If A and B are the two BVSBSs of S1 and S2, respectively, then the
Cartesian product A×B is a BVSBS of S1 × S2.

Proof: Let A and B be the two BVSBSs of S1 and S2, respectively. Let (x1, y1), (x2, y2)
∈ S1 × S2. Then

fp
A×B[(x1, y1)�1 (x2, y2)] = fp

A×B(x1 �1 x2, y1 �1 y2)

= min{f p
A(x1 �1 x2), f

p
B(y1 �1 y2)}

≥ min{min{f p
A(x1), f

p
A(x2)},min{f p

B(y1), f
p
B(y2)}}

= min{min{f p
A(x1), f

p
B(y1)},min{fp

A(x2), f
p
B(y2)}}

= min{f p
A×B(x1, y1), f

p
A×B(x2, y2)}.

Also,

f p
A×B[(x1, y1)�2 (x2, y2)] ≥ min{f p

A×B(x1, y1), f
p
A×B(x2, y2)}

and

fp
A×B [(x1, y1)�3 (x2, y2)] ≥ min{f p

A×B(x1, y1), f
p
A×B(x2, y2)}.

Similarly,

fn
A×B [(x1, y1)�1 (x2, y2)] = fn

A×B(x1 �1 x2, y1 �1 y2)

= max{fn
A(x1 �1 x2), f

n
B(y1 �1 y2)}

≤ max{max{fn
A(x1), f

n
A(x2)},max{fn

B(y1), f
n
B(y2)}}

= max{max{fn
A(x1), f

n
B(y1)},max{fn

A(x2), f
n
B(y2)}}

= max{fn
A×B(x1, y1), f

n
A×B(x2, y2)}.

Also,

fn
A×B [(x1, y1)�2 (x2, y2)] ≤ max{fn

A×B(x1, y1), f
n
A×B(x2, y2)}

and

fn
A×B [(x1, y1)�3 (x2, y2)] ≤ max{fn

A×B(x1, y1), f
n
A×B(x2, y2)}.

Hence, A×B is a BVSBS of S1 × S2. 2

Corollary 3.1. If A1, A2, . . . , An are BVSBSs of bisemirings S1, S2, . . . , Sn, respectively,
then A1 × A2 × · · · × An is a BVSBS of S1 × S2 × · · · × Sn.
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Definition 3.2. Let A be the BVFS in S, the strongest bipolar-valued relation on S,
that is a bipolar-valued relation V on A is given by f p

V (x, y) = min{f p
A(x), f

p
A(y)} and

fn
V (x, y) = max{fn

A(x), f
n
A(y)}, ∀x, y ∈ S.

Theorem 3.3. Let A be the BVSBS of S and V be the strongest bipolar-valued relation
on S. Then A is a BVSBS of S if and only if V is a BVSBS of S × S.

Proof: Assume that A is a BVSBS of S and V is the strongest bipolar-valued relation
on S. Then for any x = (x1, x2), y = (y1, y2) ∈ S × S, we have

f p
V (x�1 y) = fp

V [(x1, x2)�1 (y1, y2)]

= fp
V (x1 �1 y1, x2 �1 y2)

= min{fp
A(x1 �1 y1), f

p
A(x2 �1 y2)}

≥ min{min{fp
A(x1), f

p
A(y1)},min{fp

A(x2), f
p
A(y2)}}

= min{min{f p
A(x1), f

p
A(x2)},min{fp

A(y1), f
p
A(y2)}}

= min{fp
V (x1, x2), f

p
V (y1, y2)}

= min{fp
V (x), f

p
V (y)}.

Also, f p
V (x�2 y) ≥ min{fp

V (x), f
p
V (y)} and f p

V (x�3 y) ≥ min{f p
V (x), f

p
V (y)}. Similarly,

fn
V (x�1 y) ≤ max{fn

V (x), f
n
V (y)}, fn

V (x�2 y) ≤ max{fn
V (x), f

n
V (y)},

and
fn
V (x�3 y) ≤ max{fn

V (x), f
n
V (y)}.

Hence, V is a BVSBS of S × S.
Conversely, assume that V is a BVSBS of S × S. Then for any x = (x1, x2), y =

(y1, y2) ∈ S × S, we have

min{f p
A(x1 �1 y1), f

p
A(x2 �1 y2)} = fp

V (x1 �1 y1, x2 �1 y2)

= fp
V [(x1, x2)�1 (y1, y2)]

= fp
V (x�1 y)

≥ min{f p
V (x), f

p
V (y)}

= min{fp
V (x1, x2), f

p
V (y1, y2)}

= min{min{f p
A(x1), f

p
A(x2)},min{fp

A(y1), f
p
A(y2)}}.

If fp
A(x1 �1 y1) ≤ fp

A(x2 �1 y2), then f p
A(x1) ≤ f p

A(x2) and f p
A(y1) ≤ f p

A(y2). We get
f p
A(x1�1y1) ≥ min{f p

A(x1), f
p
A(y1)} and min{f p

A(x1�2y1), f
p
A(x2�2y2)}≥min{min{f p

A(x1),
f p
A(x2)},min{f p

A(y1), f
p
A(y2)}}.

If fp
A(x1 �2 y1) ≤ f p

A(x2 �2 y2), then f p
A(x1 �2 y1) ≥ min{f p

A(x1), f
p
A(y1)}. We get

min{fp
A(x1 �3 y1), f

p
A(x2 �3 y2)} ≥ min{min{f p

A(x1), f
p
A(x2)},min{fp

A(y1), f
p
A(y2)}}.

If fp
A(x1 �3 y1) ≤ fp

A(x2 �3 y2), then fp
A(x1 �3 y1) ≥ min{f p

A(x1), f
p
A(y1)}. Similarly,

max{fn
A(x1 �1 y1), f

n
A(x2 �1 y2)} ≤ max{max{fn

A(x1), f
n
A(x2)},max{fn

A(y1), f
n
A(y2)}}.

If fn
A(x1 �1 y1) ≥ fn

A(x2 �1 y2), then fn
A(x1) ≥ fn

A(x2) and fn
A(y1) ≥ fn

A(y2). We get
fn
A(x1�1y1)≤max{fn

A(x1), f
n
A(y1)}, so max{fn

A(x1�2y1), f
n
A(x2�2y2)}≤max{max{fn

A(x1),
fn
A(x2)},max{fn

A(y1), f
n
A(y2)}}.

If fn
A(x1 �2 y1) ≥ fn

A(x2 �2 y2), then fn
A(x1 �2 y1) ≤ max{fn

A(x1), f
n
A(y1)}. We get

max{fn
A(x1 �3 y1), f

n
A(x2 �3 y2)} ≤ max{max{fn

A(x1), f
n
A(x2)},max{fn

A(y1), f
n
A(y2)}}.

If fn
A(x1 �3 y1) ≥ fn

A(x2 �3 y2), then fn
A(x1 �3 y1) ≤ max{fn

A(x1), f
n
A(y1)}.

Hence, A is a BVSBS of S. 2

Theorem 3.4. A BVFS f̃ = ⟨f p
A, f

n
A⟩ is an BVSBS of S if and only if all non-empty level

set f̃ (t,s) is an SBS of S for t ∈ [0, 1] and s ∈ [−1, 0].
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Proof: Assume that f̃ is a BVSBS of S. For each t ∈ [0, 1] and s ∈ [−1, 0] and

a1, a2 ∈ f̃ (t,s), we have f p
A(a1) ≥ t, f p

A(a2) ≥ t and fn
A(a1) ≤ s, fn

A(a2) ≤ s. Now,
f p
A(a1 �1 a2) ≥ min{f p

A(a1), f
p
A(a2)} ≥ t, f p

A(a1 �2 a2) ≥ min{f p
A(a1), f

p
A(a2)} ≥ t, and

f p
A(a1 �3 a2) ≥ min{f p

A(a1), f
p
A(a2)} ≥ t. Similarly,

fn
A(a1 �1 a2) ≤ max{fn

A(a1), f
n
A(a2)} ≤ s, fn

A(a1 �2 a2) ≤ max{fn
A(a1), f

n
A(a2)} ≤ s,

and
fn
A(a1 �3 a2) ≤ max{fn

A(a1), f
n
A(a2)} ≤ s.

This implies that a1 �1 a2 ∈ f̃ (t,s), a1 �2 a2 ∈ f̃ (t,s), and a1 �3 a2 ∈ f̃ (t,s). Therefore, f̃ (t,s)

is an SBS of S for each t ∈ [0, 1] and s ∈ [−1, 0].

Conversely, assume that f̃ (t,s) is an SBS of S for each t ∈ [0, 1] and s ∈ [−1, 0]. Suppose
if there exist a1, a2 ∈ S such that f p

A(a1 �1 a2) < min{f p
A(a1), f

p
A(a2)}. Select t ∈ [0, 1]

such that fp
A(a1�1a2) < t ≤ min{f p

A(a1), f
p
A(a2)}, f

p
A(a1�2a2) < t ≤ min{f p

A(a1), f
p
A(a2)},

and fp
A(a1 �3 a2) < t ≤ min{f p

A(a1), f
p
A(a2)}. Then a1, a2 ∈ f̃ (t,s), but a1 �1 a2 /∈ f̃ (t,s),

a1 �2 a2 /∈ f̃ (t,s), and a1 �3 a2 /∈ f̃ (t,s). This contradicts to that f̃ (t,s) is an SBS of S.
Hence, f p

A(a1 �1 a2) ≥ min{f p
A(a1), f

p
A(a2)}, f p

A(a1 �2 a2) ≥ min{f p
A(a1), f

p
A(a2)}, and

f p
A(a1 �3 a2) ≥ min{f p

A(a1), f
p
A(a2)}. Similarly,

fn
A(a1 �1 a2) ≤ max{fn

A(a1), f
n
A(a2)}, fn

A(a1 �2 a2) ≤ max{fn
A(a1), f

n
A(a2)},

and
fn
A(a1 �3 a2) ≤ max{fn

A(a1), f
n
A(a2)}.

Hence, f̃ = ⟨f p
A, f

n
A⟩ is a BVSBS of S. 2

Theorem 3.5. If A is a BVSBS of S, then H = {x | x ∈ S | f p
A(x) = 1 and fn

A(x) = −1}
is either empty or is an SBS of S.

Proof: Assume that H is non-empty. If x, y ∈ H, then fp
A(x) = 1, f p

A(y) = 1 and
fn
A(x) = −1, fn

A(y) = −1. Now, f p
A(x �1 y) ≥ min{f p

A(x), f
p
A(y)} = min{1, 1} = 1.

Therefore, f p
A(x�1 y) = 1. Similarly, f p

A(x�2 y) = 1 and f p
A(x�3 y) = 1. Now, fn

A(x�1 y)
≤ max{fn

A(x), f
n
A(y)} = max{−1,−1} = −1. Therefore, fn

A(x �1 y) = −1. Similarly,
fn
A(x�2 y) = −1 and fn

A(x�3 y) = −1. Thus, x�1 y ∈ H, x�2 y ∈ H, and x�3 y ∈ H.
Hence, H is an SBS of S. 2

Definition 3.3. Let A be any BVSBS of S, a ∈ S and a fixed real number p(a) ∈ [0, 1].
Then the pseudo bipolar-valued coset (aA)p is defined by ((afp

A)
p)(x) = p(a)f p

A(x) and
((afn

A)
p)(x) = p(a)fn

A(x) for every x ∈ S.

Theorem 3.6. If A is a BVSBS of S, then the pseudo bipolar-valued coset (aA)p is a
BVSBS of S for every a ∈ S.

Proof: Let A be any BVSBS of S and for every x, y ∈ S. Then ((afp
A)

p)(x �1 y) =
p(a)f p

A(x�1y) ≥ p(a)min{f p
A(x), f

p
A(y)} = min{p(a)f p

A(x), p(a)f
p
A(y)} = min{((afp

A)
p)(x),

((af p
A)

p)(y)}. Hence, ((af p
A)

p)(x�1 y) ≥ min{((afp
A)

p)(x), ((afp
A)

p)(y)}. Similarly,

((af p
A)

p)(x�2 y) ≥ min{((afp
A)

p)(x), ((afp
A)

p)(y)}
and

((afp
A)

p)(x�3 y) ≥ min{((afp
A)

p)(x), ((afp
A)

p)(y)}.
Now, ((afn

A)
p)(x �1 y) = p(a)fn

A(x �1 y) ≤ p(a)max{fn
A(x), f

n
A(y)} = max{p(a)fn

A(x),
p(a)fn

A(y)} = max{((afn
A)

p)(x), ((afn
A)

p)(y)}. Hence, ((afn
A)

p)(x�1y) ≤ max{((afn
A)

p)(x),
((afn

A)
p)(y)}. Similarly,

((afn
A)

p)(x�2 y) ≤ max{((afn
A)

p)(x), ((afn
A)

p)(y)}
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and

((afn
A)

p)(x�3 y) ≤ max{((afn
A)

p)(x), ((afn
A)

p)(y)}.
Hence, (aA)p is a BVSBS of S. 2

Definition 3.4. Let (S1,⊕1,⊕2,⊕3) and (S2,⊙1,⊙2,⊙3) be any two bisemirings. Let φ:
S1 → S2 be any function, A be any BVSBS in S1, and V be any BVSBS in φ(S1) =
S2. If fA = ⟨fp

A, f
n
A⟩ is a BVFS in S1, then fV is a BVFS in S2, defined by fp

V (y) =
supx∈φ−1y f

p
A(x) and fn

V (y) = infx∈φ−1y f
n
A(x) for all x ∈ S1 and y ∈ S2 is called the image

of fA under φ. Similarly, if fV = ⟨fp
V , f

n
V ⟩ is a BVFS in S2, then the BVFS fA = φ ◦ fV

in S1 [i.e., the BVFS defined by fA(x) = fV (φ(x))] is called the preimage of fV under φ.

Theorem 3.7. Let (S1,⊕1,⊕2,⊕3) and (S2,⊙1,⊙2,⊙3) be any two bisemirings. The ho-
momorphic image of BVSBS of S1 is a BVSBS of S2.

Proof: Let φ: S1 → S2 be any homomorphism. Then φ(x⊕1 y) = φ(x)⊙1 φ(y), φ(x
⊕2 y) = φ(x) ⊙2 φ(y), and φ(x ⊕3 y) = φ(x) ⊙3 φ(y) for all x, y ∈ S1. Let V = φ(A),
where A is any BVSBS of S1. Let φ(x), φ(y) ∈ S2. Let x ∈ φ−1(φ(x)) and y ∈ φ−1(φ(y))
be such that f p

A(x) = supz∈φ−1(φ(x)) f
p
A(z) and f p

A(y) = supz∈φ−1(φ(y)) f
p
A(z). Now,

fp
V (φ(x)⊙1 φ(y)) = sup

z′∈φ−1(φ(x)⊙1φ(y))

f p
A(z

′)

= sup
z′∈φ−1(φ(x⊕1y))

f p
A(z

′)

= fp
A(x⊕1 y)

≥ min{f p
A(x), f

p
A(y)}

= min{fp
V φ(x), f

p
V φ(y)}.

Thus, fp
V (φ(x)⊙1 φ(y)) ≥ min{f p

V φ(x), f
p
V φ(y)}. Similarly,

fp
V (φ(x)⊙2 φ(y)) ≥ min{fp

V φ(x), f
p
V φ(y)}

and

f p
V (φ(x)⊙3 φ(y)) ≥ min{f p

V φ(x), f
p
V φ(y)}.

Let φ(x), φ(y) ∈ S2. Let x ∈ φ−1(φ(x)) and y ∈ φ−1(φ(y)) be such that fn
A(x) =

infz∈φ−1(φ(x)) f
n
A(z) and fn

A(y) = infz∈φ−1(φ(y)) f
n
A(z). Now,

fn
V (φ(x)⊙1 φ(y)) = inf

z′∈φ−1(φ(x)⊙1φ(y))
fn
A(z

′)

= inf
z′∈φ−1(φ(x⊕1y))

fn
A(z

′)

= fn
A(x⊕1 y)

≤ max{fn
A(x), f

n
A(y)}

= max{fn
V φ(x), f

n
V φ(y)}.

Thus, fn
V (φ(x)⊙1 φ(y)) ≤ max{fn

V φ(x), f
n
V φ(y)}. Similarly,

fn
V (φ(x)⊙2 φ(y)) ≤ max{fn

V φ(x), f
n
V φ(y)}

and

fn
V (φ(x)⊙3 φ(y)) ≤ max{fn

V φ(x), f
n
V φ(y)}.

Hence, V is a BVSBS of S2. 2

Theorem 3.8. Let (S1,⊕1,⊕2,⊕3) and (S2,⊙1,⊙2,⊙3) be any two bisemirings. The ho-
momorphic preimage of BVSBS of S2 is a BVSBS of S1.
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Proof: Let φ: S1 → S2 be any homomorphism. Then φ(x ⊕1 y) = φ(x) ⊙1 φ(y),
φ(x⊕2 y) = φ(x)⊙2 φ(y), and φ(x⊕3 y) = φ(x)⊙3 φ(y) for all x, y ∈ S1. Let V = φ(A),
where V is any BVSBS of S2. Let x, y ∈ S1. Then f p

A(x ⊕1 y) = f p
V (φ(x ⊕1 y)) =

f p
V (φ(x) ⊙1 φ(y)) ≥ min{f p

V φ(x), f
p
V φ(y)} = min{f p

A(x), f
p
A(y)}. Thus, f p

A(x ⊕1 y) ≥
min{fp

A(x), f
p
A(y)}. Similarly,

f p
A(x⊕2 y) ≥ min{fp

A(x), f
p
A(y)}

and
fp
A(x⊕3 y) ≥ min{f p

A(x), f
p
A(y)}.

Now, fn
A(x ⊕1 y) = fn

V (φ(x ⊕1 y)) = fn
V (φ(x) ⊙1 φ(y)) ≤ max{fn

V φ(x), f
n
V φ(y)} =

max{fn
A(x), f

n
A(y)}. Thus, fn

A(x⊕1 y) ≤ max{fn
A(x), f

n
A(y)}. Similarly,

fn
A(x⊕2 y) ≤ max{fn

A(x), f
n
A(y)}

and
fn
A(x⊕3 y) ≤ max{fn

A(x), f
n
A(y)}.

Hence, A is a BVSBS of S1. 2

Theorem 3.9. Let (S1,⊕1,⊕2,⊕3) and (S2,⊙1,⊙2,⊙3) be any two bisemirings. If φ:
S1 → S2 is a homomorphism, then φ(A(t,s)) is a level SBS of BVSBS V of S2.

Proof: Let φ: S1 → S2 be any homomorphism. Then φ(x⊕1 y) = φ(x)⊙1 φ(y), φ(x
⊕2y) = φ(x)⊙2φ(y), and φ(x⊕3 y) = φ(x)⊙3φ(y) for all x, y ∈ S1. Let V = φ(A), where
A is a BVSBS of S1. By Theorem 3.7, we have V is a BVSBS of S2. Let A(t,s) be any level
SBS of A. Suppose that x, y ∈ A(t,s). Then φ(x ⊕1 y), φ(x ⊕2 y) and φ(x ⊕3 y) ∈ A(t,s).
Now, f p

V (φ(x)) = f p
A(x) ≥ t and fp

V (φ(y)) = f p
A(y) ≥ t. Then f p

V (φ(x) ⊙1 φ(y)) ≥
f p
A(x⊕1 y) ≥ t, f p

V (φ(x)⊙2φ(y)) ≥ fp
A(x⊕2 y) ≥ t, and f p

V (φ(x)⊙3φ(y)) ≥ fp
A(x⊕3 y) ≥ t

for all φ(x), φ(y) ∈ S2. Now, f
n
V (φ(x)) = fn

A(x) ≤ s and fn
V (φ(y)) = fn

A(y) ≤ s. Then
fn
V (φ(x)⊙1 φ(y)) ≤ fn

A(x⊕1 y) ≤ s, fn
V (φ(x)⊙2 φ(y)) ≤ fn

A(x⊕2 y) ≤ s, and fn
V (φ(x)⊙3

φ(y)) ≤ fn
A(x⊕3 y) ≤ s for all φ(x), φ(y) ∈ S2. Hence, φ

(
A(t,s)

)
is a level SBS of BVSBS

V of S2. 2

Theorem 3.10. Let (S1,⊕1,⊕2,⊕3) and (S2,⊙1,⊙2,⊙3) be any two bisemirings. If φ:
S1 → S2 is any homomorphism, then A(t,s) is a level SBS of BVSBS A of S1.

Proof: Let φ: S1 → S2 be any homomorphism. Then φ(x ⊕1 y) = φ(x) ⊙1 φ(y),
φ(x⊕2 y) = φ(x)⊙2 φ(y), and φ(x⊕3 y) = φ(x)⊙3 φ(y) for all x, y ∈ S1. Let V = φ(A),
where V is a BVSBS of S2. By Theorem 3.8, we have A is a BVSBS of S1. Let φ(A(t,s)) be a
level SBS of V . Suppose that φ(x), φ(y) ∈ φ(A(t,s)). Then φ(x⊕1y), φ(x⊕2y), φ(x⊕3y) ∈
φ(A(t,s)). Now, f p

A(x) = fp
V (φ(x)) ≥ t and f p

A(y) = fp
V (φ(y)) ≥ t. Then f p

A(x ⊕1 y) ≥ t,
f p
A(x ⊕2 y) ≥ t, and f p

A(x ⊕3 y) ≥ t for all x, y ∈ S1. Now, fn
A(x) = fn

V (φ(x)) ≤ s
and fn

A(y) = fn
V (φ(y)) ≤ s. Then fn

A(x ⊕1 y) = fn
V (φ(x) ⊙1 φ(y)) ≤ s, fn

A(x ⊕2 y) =
fn
V (φ(x) ⊙2 φ(y)) ≤ s, and fn

A(x ⊕3 y) = fn
V (φ(x) ⊙3 φ(y)) ≤ s for all x, y ∈ S1. Hence,

A(t,s) is a level SBS of BVSBS A of S1. 2

4. (α,β)-Bipolar-Valued Subbisemirings. In what follows that, let (αp, βp) ∈ [0, 1]
and (αn, βn) ∈ [−1, 0] be such that 0 ≤ αp < βp ≤ 1 and −1 ≤ βn < αn ≤ 0, both
(α, β) ∈ [0, 1] are arbitrary fixed.

Definition 4.1. Let S be the SBS. The BVFS A in S is called an (α, β)-bipolar-valued
subbisemiring ((α, β)-BVSBS) of S if it satisfies the following conditions:

(1) max{f p
A(x�1 y), α

p} ≥ min{f p
A(x), f

p
A(y), β

p},
(2) max{f p

A(x�2 y), α
p} ≥ min{f p

A(x), f
p
A(y), β

p},
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(3) max{f p
A(x�3 y), α

p} ≥ min{fp
A(x), f

p
A(y), β

p},
(4) min{fn

A(x�1 y), α
n} ≤ max{fn

A(x), f
n
A(y), β

n},
(5) min{fn

A(x�2 y), α
n} ≤ max{fn

A(x), f
n
A(y), β

n},
(6) min{fn

A(x�3 y), α
n} ≤ max{fn

A(x), f
n
A(y), β

n}, ∀x, y ∈ S.

Example 4.1. By Example 3.1, we have

⟨f p, fn⟩(x) =


⟨0.75,−0.45⟩ if x = x1

⟨0.65,−0.35⟩ if x = x2

⟨0.35,−0.15⟩ if x = x3

⟨0.55,−0.25⟩ if x = x4

Then A is a (0.60, 0.70)-BVSBS of S.

Theorem 4.1. The arbitrary intersection of an (α, β)-BVSBSs of S is an (α, β)-BVSBS
of S.

Proof: Let {Vi | i ∈ I} be a family of (α, β)-BVSBSs of S and A =
∩

i∈IVi. Let
x, y ∈ S. Then

max{f p
A(x�1 y), α

p} = inf
i∈I

{max{f p
Vi
(x�1 y), α

p}}

≥ inf
i∈I

{min{f p
Vi
(x), f p

Vi
(y), βp}}

= min

{
inf
i∈I

{fp
Vi
(x)}, inf

i∈I
{f p

Vi
(y), βp}

}
= min{f p

A(x), f
p
A(y), β

p}.
Similarly,

max{f p
A(x�2 y), α

p} ≥ min{f p
A(x), f

p
A(y), β

p}
and

max{fp
A(x�3 y), α

p} ≥ min{f p
A(x), f

p
A(y), β

p}.
Now,

min{fn
A(x�1 y), α

n} = sup
i∈I

{min{fn
Vi
(x�1 y), α

n}}

≤ sup
i∈I

{max{fn
Vi
(x), fn

Vi
(y), βn}}

= max

{
sup
i∈I

{fn
Vi
(x)}, sup

i∈I
{fn

Vi
(y), βn}

}
= max{fn

A(x), f
n
A(y), β

n}.
Similarly,

min{fn
A(x�2 y), α

n} ≤ max{fn
A(x), f

n
A(y), β

n}
and

min{fn
A(x�3 y), α

n} ≤ max{fn
A(x), f

n
A(y), β

n}.
Hence, A is an (α, β)-BVSBS of S. 2

Theorem 4.2. If A and B are any two (α, β)-BVSBSs of bisemirings S1 and S2, respec-
tively, then A×B is an (α, β)-BVSBS of S1 × S2.

Proof: Let A and B be two (α, β)-BVSBSs of S1 and S2, respectively. Let (x1, y1), (x2,
y2) ∈ S1 × S2. Then
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max{fp
A×B[(x1, y1)�1 (x2, y2)], α

p}
= max{fp

A×B(x1 �1 x2, y1 �1 y2), α
p}

= min{max{f p
A(x1 �1 x2), α

p},max{f p
B(y1 �1 y2), α

p}}
≥ min{min{fp

A(x1), f
p
A(x2), β

p},min{fp
B(y1), f

p
B(y2), β

p}}
= min{{min{f p

A(x1), f
p
B(y1)},min{f p

A(x2), f
p
B(y2)}}, β

p}
= min{f p

A×B(x1, y1), f
p
A×B(x2, y2), β

p}.
Also,

max{f p
A×B[(x1, y1)�2 (x2, y2)], α

p} ≥ min{f p
A×B(x1, y1), f

p
A×B(x2, y2), β

p}
and

max{f p
A×B[(x1, y1)�3 (x2, y2)], α

p} ≥ min{f p
A×B(x1, y1), f

p
A×B(x2, y2), β

p}.
Similarly,

min{fn
A×B[(x1, y1)�1 (x2, y2)], α

n}
= min{fn

A×B(x1 �1 x2, y1 �1 y2), α
n}

= max{min{fn
A(x1 �1 x2), α

n},min{fn
B(y1 �1 y2), α

n}}
≤ max{max{fn

A(x1), f
n
A(x2), β

n},max{fn
B(y1), f

n
B(y2), β

n}}
= max{{max{fn

A(x1), f
n
B(y1)},max{fn

A(x2), f
n
B(y2)}}, βn}

= max{fn
A×B(x1, y1), f

n
A×B(x2, y2), β

n}.
Also,

min{fn
A×B[(x1, y1)�2 (x2, y2)], α

n} ≤ max{fn
A×B(x1, y1), f

n
A×B(x2, y2), β

n}
and

min{fn
A×B[(x1, y1)�3 (x2, y2)], α

n} ≤ max{fn
A×B(x1, y1), f

n
A×B(x2, y2), β

n}.
Hence, A×B is an (α, β)-BVSBS of S1 × S2. 2

Corollary 4.1. If A1, A2, . . . , An are (α, β)-BVSBSs of S1, S2, . . . , Sn, respectively, then
A1 × A2 × · · · × An is an (α, β)-BVSBS of S1 × S2 × · · · × Sn.

Definition 4.2. Let A be a BVFS in S, the strongest (α, β)-bipolar-valued relation on
S, that is an (α, β)-bipolar-valued relation on A is V given by max{fp

V (x, y), α
p} =

min{fp
A(x), f

p
A(y), β

p} and min{fn
V (x, y), α

n} = max{fn
A(x), f

n
A(y), β

n} for all x, y ∈ S.

Theorem 4.3. Let A be an (α, β)-BVSBS of S and V be the strongest (α, β)-bipolar-
valued relation on S. Then A is an (α, β)-BVSBS of S if and only if V is an (α, β)-BVSBS
of S × S.

Proof: The proof is similar to Theorem 3.3. 2

Theorem 4.4. If fα̃ is an (α, β)-BVSBS of S, then the nonempty sets f p
α and fn

α are
SBSs of S, where fp

α = {p ∈ S | f p(p) > αp} and fn
α = {p ∈ S | fn(p) < αn}.

Proof: Suppose that fα̃ is an (α, β)-BVSBS of S. Let f p
α be an (αp, βp)-BVSBS of S.

Let p, q ∈ S be such that p, q ∈ fp
α. Then fp(p) > αp and fp(q) > αp. Now, max{f p(p�1

q), αp} ≥ min{f p(p), f p(q), βp} > min{αp, αp, βp} = αp. Hence, f p(p�1 q) > αp. It shows
that p�1 q ∈ fp

α. Similarly, p�2 q ∈ f p
α and p�3 q ∈ f p

α. Therefore, f
p
α is an SBS of S. Let

fn
α be an (αn, βn)-BVSBS of S. Let p, q ∈ S be such that p, q ∈ fn

α . Then fn(p) < αn and
fn(q) < αn. Now, min{fn(p�1 q), α

n} ≤ max{fn(p), fn(q), βn} < max{αn, αn, βn} = αn.
Hence, fn(p�1 q) < αn. It shows that p�1 q ∈ fn

α . Similarly, p�2 q ∈ fn
α and p�3 q ∈ fn

α .
Therefore, fn

α is an SBS of S. 2
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Theorem 4.5. A non-empty subset A of S is an SBS of S if and only if the BVFS
f̃ = ⟨f p

A, f
n
A⟩ of S, and then is an (α, β)-BVSBS of S, where

fp
A(p) =

{
≥ βp for all p ∈ A
αp otherwise

, fn
A(p) =

{
≤ βn for all p ∈ A
αn otherwise

Proof: Suppose that f̃ = ⟨f p
A, f

n
A⟩ is an (α, β)-BVSBS of S. Let p, q ∈ A. Then

f p
A(p) ≥ βp, fp

A(q) ≥ βp and fn
A(p) ≤ βn, fA(q) ≤ βn. Now, max{fp

A(p �1 q), α
p} ≥

min{fp
A(p), f

p
A(q), β

p} ≥ min{βp, βp, βp} = βp and min{fn
A(p �1 q), α

n} ≤ max{fn
A(p),

fn
A(q), β

n} ≤ max{βn, βn, βn} = βn. It follows that p�1 q ∈ A. Similarly, p�2 q ∈ A and
p�3 q ∈ A. If we choose p, q /∈ A, then p�1 q ∈ A, p�2 q ∈ A, and p�3 q ∈ A. Therefore,
A is an SBS of S.

Conversely, suppose that A is an SBS of S. Let p, q ∈ A. Then p �1 q ∈ A. Hence,
f p
A(p �1q) ≥ βp and fn

A(p�1 q) ≤ βn. Therefore, max{fp
A(p�1 q), α

p} ≥ βp = min{f p
A(p),

f p
A(q), β

p} and min{fn
A(p �1 q), α

n} ≤ βn = max{fn
A(p), f

n
A(q), β

n}. If p /∈ A or q /∈ A,
then min{f p

A(p), f
p
A(q), β

p} = αp and max{fn
A(p), f

n
A(q), β

n} = αn. That is max{f p
A(p �1

q), αp} ≥ min{f p
A(p), f

p
A(q), β

p} and min{fn
A(p �1 q), α

n} ≤ max{fn
A(p), f

n
A(q), β

n}. Sim-

ilarly, other two operations �2 and �3 are true. Therefore, f̃ is an (α, β)-BVSBS of S.
2

Theorem 4.6. A BVFS f̃ = ⟨f p
A, f

n
A⟩ is an (α, β)-BVSBS of S if and only if each non-

empty level subset f̃ (t,s) is an SBS of S for all t ∈ (αp, βp] and s ∈ (αn, βn].

Proof: Suppose that f̃ is an (α, β)-BVSBS of S. For each t ∈ (αp, βp] and s ∈ (αn, βn]

and p1, p2 ∈ f̃ (t,s), we have fp
A(p1) ≥ t, f p

A(p2) ≥ t and fn
A(p1) ≤ s, fn

A(p2) ≤ s. Now,
max{f p

A(p1 �1 p2), α
p} ≥ min{fp

A(p1), f
p
A(p2, β

p)} ≥ t and max{fp
A(p1 �2 p2), α

p} ≥ t and
max{f p

A(p1 �3 p2), α
p} ≥ t. Similarly,

min{fn
A(p1 �1 p2), α

n} ≤ max{fn
A(p1), f

n
A(p2), β

n)} ≤ s, min{fn
A(p1 �2 p2), α

n} ≤ s,

and

min{fn
A(p1 �3 p2), α

n} ≤ s.

This implies that p1 �1 p2 ∈ f̃ (t,s), p1 �2 p2 ∈ f̃ (t,s), and p1 �3 p2 ∈ f̃ (t,s). Therefore, f̃ (t,s)

is an SBS of S for each t ∈ (αp, βp] and s ∈ (αn, βn].

Conversely, suppose that f̃ (t,s) is any SBS of S for each t ∈ (αp, βp] and s ∈ (αn, βn].
Suppose if there exist p1, p2 ∈ S such that max{f p

A(p1 �1 p2), α
p} < min{f p

A(p1), f
p
A(p2),

βp}. Select t ∈ [0, 1] and s ∈ [−1, 0] such that max{f p
A(p1 �1 p2), α

p} < t ≤ min{f p
A(p1),

f p
A(p2), β

p} and min{fn
A(p1�1p2), α

n} > s ≥ max{fn
A(p1), f

n
A(p2), β

n}. Then p1, p2 ∈ f̃ (t,s),

but p1 �1 p2 /∈ f̃ (t,s). This contradicts to that f̃ (t,s) is an SBS of S. Hence, max{f p
A(p1 �1

p2), α
p} ≥ min{fp

A(p1), f
p
A(p2), β

p} and min{fn
A(p1 �1 p2), α

n} ≤ max{fn
A(p1), f

n
A(p2), β

n}.
Similar proof for other two operations. Hence, f̃ is an (α, β)-BVSBS of S. 2

Corollary 4.2. Every BVSBS is an (α, β)-BVSBS of S by taking αp = 0, βp = 1 and
αn = 0, βn = −1. However, converse is not true by the following example.

Example 4.2. For Example 3.1, we define the BVFS f̃ as follows:

⟨f p
A, f

n
A⟩(x) =


⟨0.80,−0.60⟩ if x = a1
⟨0.70,−0.50⟩ if x = a2
⟨0.50,−0.30⟩ if x = a3

⟨0.30,−0.20⟩ if x = a4
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Then f̃ is a (0.65, 0.75)-BVSBS of S, but not a BVSBS. Since f p
A(a3 �3 a3) = fp

A(a4) =
0.30 ̸≥ min{fp

A(a3), f
p
A(a3)} = 0.50 and fn

A(a3 �3 a3) = fn
A(a4) = −0.20 ̸≤ max{fn

A(a3),
fn
A(a3)} = −0.30.

Theorem 4.7. Let (S1,⊕1,⊕2,⊕3) and (S2,⊙1,⊙2,⊙3) be any two bisemirings. The ho-
momorphic image of (α, β)-BVSBS of S1 is an (α, β)-BVSBS of S2.

Proof: Let φ: S1 → S2 be any homomorphism. Then φ(x⊕1 y) = φ(x)⊙1φ(y), φ(x⊕2

y) = φ(x)⊙2 φ(y), and φ(x⊕3 y) = φ(x)⊙3 φ(y) for all x, y ∈ S1. Let V = φ(A), where
A is any (α, β)-BVSBS of S1. Let φ(x), φ(y) ∈ S2. Let x ∈ φ−1(φ(x)) and y ∈ φ−1(φ(y))
be such that f p

A(x) = supz∈φ−1(φ(x)) f
p
A(z) and f p

A(y) = supz∈φ−1(φ(y)) f
p
A(z). Now,

max{f p
V (φ(x)⊙1 φ(y)), α

p} = max

{
sup

z′∈φ−1(φ(x)⊙1φ(y))

f p
A(z

′), αp

}

= max

{
sup

z′∈φ−1(φ(x⊕1y))

f p
A(z

′), αp

}
= max{f p

A(x⊕1 y), α
p}

≥ min{f p
A(x), f

p
A(y), β

p}
= min{fp

V φ(x), f
p
V φ(y), β

p}.

Thus, max{f p
V (φ(x)⊙1 φ(y)), α

p} ≥ min{fp
V φ(x), f

p
V φ(y), β

p}. Similarly,

max{fp
V (φ(x)⊙2 φ(y)), α

p} ≥ min{f p
V φ(x), f

p
V φ(y), β

p}

and

max{f p
V (φ(x)⊙3 φ(y)), α

p} ≥ min{fp
V φ(x), f

p
V φ(y), β

p}.
Let x ∈ φ−1(φ(x)) and y ∈ φ−1(φ(y)) be such that fn

A(x) = infz∈φ−1(φ(x)) f
n
A(z) and

fn
A(y) = infz∈φ−1(φ(y)) f

n
A(z). Now,

min{fn
V (φ(x)⊙1 φ(y)), α

n} = min

{
inf

z′∈φ−1(φ(x)⊙1φ(y))
fn
A(z

′), αn

}
= min

{
inf

z′∈φ−1(φ(x⊕1y))
fn
A(z

′), αn

}
= min{fn

A(x⊕1 y), α
n}

≤ max{fn
A(x), f

n
A(y), β

n}
= max{fn

V φ(x), f
n
V φ(y), β

n}.

Thus, min{fn
V (φ(x)⊙1 φ(y)), α

n} ≤ max{fn
V φ(x), f

n
V φ(y), β

n}. Similarly,

min{fn
V (φ(x)⊙2 φ(y)), α

n} ≤ max{fn
V φ(x), f

n
V φ(y), β

n}

and

min{fn
V (φ(x)⊙3 φ(y)), α

n} ≤ max{fn
V φ(x), f

n
V φ(y), β

n}.
Hence, V is an (α, β)-BVSBS of S2. 2

Theorem 4.8. Let (S1,⊕1,⊕2,⊕3) and (S2,⊙1,⊙2,⊙3) be any two bisemirings. The ho-
momorphic preimage of (α, β)-BVSBS of S2 is an (α, β)-BVSBS of S1.

Proof: Let φ: S1 → S2 be any homomorphism. Then φ(x ⊕1 y) = φ(x) ⊙1 φ(y),
φ(x ⊕2 y) = φ(x) ⊙2 φ(y), and φ(x ⊕3 y) = φ(x) ⊙3 φ(y) for all x, y ∈ S1. Let V =
φ(A), where V is any (α, β)-BVSBS of S2. Let x, y ∈ S1. Then max{f p

A(x ⊕1 y), α
p} =
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max{f p
V (φ(x ⊕1 y)), αp} = max{f p

V (φ(x) ⊙1 φ(y)), αp} ≥ min{f p
V φ(x), f

p
V φ(y), β

p} =
min{fp

A(x), f
p
A(y), β

p}. Thus, max{f p
A(x⊕1 y), α

p} ≥ min{f p
A(x), f

p
A(y), β

p}. Similarly,

max{f p
A(x⊕2 y), α

p} ≥ min{f p
A(x), f

p
A(y), β

p}
and

max{fp
A(x⊕3 y), α

p} ≥ min{f p
A(x), f

p
A(y), β

p}.
Now, min{fn

A(x ⊕1 y), α
n} = min{fn

V (φ(x ⊕1 y)), α
n} = min{fn

V (φ(x) ⊙1 φ(y)), α
n} ≤

max{fn
V φ(x), f

n
V φ(y), β

n} = max{fn
A(x), f

n
A(y), β

n}. Thus,
min{fn

A(x⊕1 y), α
n} ≤ max{fn

A(x), f
n
A(y), β

n}.
Similarly,

min{fn
A(x⊕2 y), α

n} ≤ max{fn
A(x), f

n
A(y), β

n}
and

min{fn
A(x⊕3 y), α

n} ≤ max{fn
A(x), f

n
A(y), β

n}.
Hence, A is an (α, β)-BVSBS of S1. 2

5. (α,β)-Bipolar-Valued Normal Subbisemirings. In what follows that, let (αp, βp)
∈ [0, 1] and (αn, βn) ∈ [−1, 0] be such that 0 ≤ αp < βp ≤ 1 and −1 ≤ βn < αn ≤ 0, both
(α, β) ∈ [0, 1] are arbitrary fixed.

Definition 5.1. An (α, β)-BVSBS A of S is said to be an (α, β)-bipolar-valued normal
subbisemiring ((α, β)-BVNSBS) of S if it satisfies the following conditions:

(1) f p
A(x�1 y) = fp

A(y �1 x),

(2) f p
A(x�2 y) = fp

A(y �2 x),

(3) f p
A(x�3 y) = fp

A(y �3 x),

(4) fn
A(x�1 y) = fn

A(y �1 x),

(5) fn
A(x�2 y) = fn

A(y �2 x),

(6) fn
A(x�3 y) = fn

A(y �3 x), ∀x, y ∈ S.

Theorem 5.1.

(1) The intersection of a family of BVNSBSs of S is a BVNSBS of S.
(2) The intersection of a family of (α, β)-BVNSBSs of S is an (α, β)-BVNSBS of S.

Theorem 5.2.

(1) If A1, A2, . . . , An are BVNSBSs of bisemirings S1, S2, . . . , Sn, respectively, then A1×
A2 × · · · × An is a BVNSBS of S1 × S2 × · · · × Sn.

(2) If A1, A2, . . . , An are (α, β)-BVNSBS of bisemirings S1, S2, . . . , Sn, respectively, then
A1 × A2 × · · · × An is an (α, β)-BVNSBS of S1 × S2 × · · · × Sn.

Theorem 5.3.

(1) Let A be any BVNSBS of S and V be the strongest bipolar-valued relation on S.
Then A is a BVNSBS of S if and only if V is a BVNSBS of S × S.

(2) Let A be any (α, β)-BVNSBS of S and V be the strongest (α, β)-bipolar-valued rela-
tion on S. Then A is an (α, β)-BVNSBS of S if and only if V is an (α, β)-BVNSBS
of S × S.

Theorem 5.4. Let (S1,⊕1,⊕2,⊕3) and (S2,⊙1,⊙2,⊙3) be any two bisemirings.

(1) The homomorphic image of any BVNSBS of S1 is a BVNSBS of S2.
(2) The homomorphic image of any (α, β)-BVNSBS of S1 is an (α, β)-BVNSBS of S2.

Theorem 5.5. Let (S1,⊕1,⊕2,⊕3) and (S2,⊙1,⊙2,⊙3) be any two bisemirings.
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(1) The homomorphic preimage of any BVNSBS of S2 is a BVNSBS of S1.
(2) The homomorphic preimage of any (α, β)-BVNSBS of S2 is an (α, β)-BVNSBS of

S1.
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