ON BIPOLAR-VALUED SUBBISEMIRINGS OF BISEMIRINGS AND THEIR EXTENSION

M. Palanikumar ${ }^{1}$ and Aiyared Iampan $^{2, *}$
${ }^{1}$ Department of Mathematics Saveetha School of Engineering Saveetha University Saveetha Institute of Medical and Technical Sciences Tamil Nadu, Chennai 602105, India
palanimaths86@gmail.com
${ }^{2}$ Fuzzy Algebras and Decision-Making Problems Research Unit
Department of Mathematics
School of Science
University of Phayao
19 Moo 2, Tambon Mae Ka, Amphur Mueang, Phayao 56000, Thailand
*Corresponding author: aiyared.ia@up.ac.th

Received August 2022; revised December 2022

Abstract

We defined bipolar-valued subbisemirings, level sets of bipolar-valued subbisemirings, and bipolar-valued normal subbisemirings of bisemirings. Additionally, we look into some of these subbisemirings related properties (shortly, SBS). Let A be a bipolar-valued fuzzy set (BVFS) in S. Prove that $\tilde{f}=\left\langle f_{A}^{p}, f_{A}^{n}\right\rangle$ is a bipolar-valued subbisemiring of S if and only if all non-empty level set $\tilde{f}^{(t, s)}$ is a subbisemiring of S for $t \in[0,1]$ and $s \in[-1,0]$. Let A be a BVSBS of a bisemiring S and V be the strongest bipolar-valued relation of S. Prove that A is a $B V S B S$ of S if and only if V is a $B V S B S$ of $S \times S$. The homomorphic image and pre-image of BVSBS are also BVSBS. Let $f_{\tilde{\alpha}}$ be an $(\alpha, \beta)-B V S B S$ of S. Prove that the nonempty sets f_{α}^{p} and f_{α}^{n} are SBSs of S, where $f_{\alpha}^{p}=\left\{p \in S \mid f^{p}(p)>\alpha^{p}\right\}$ and $f_{\alpha}^{n}=\left\{p \in S \mid f^{n}(p)<\alpha^{n}\right\}$. Let $\tilde{f}=\left\langle f_{A}^{p}, f_{A}^{n}\right\rangle$ be any BVFS in S. Prove that \tilde{f} is an $(\alpha, \beta)-B V S B S$ of S if and only if each non-empty level subset $\tilde{f}^{(t, s)}$ is an $S B S$ of S for all $t \in\left(\alpha^{p}, \beta^{p}\right]$ and $s \in\left(\alpha^{n}, \beta^{n}\right]$. Examples are given to demonstrate our findings.

Keywords: Subbisemiring, Bipolar-valued subbisemiring, (α, β)-bipolar-valued subbisemiring, (α, β)-bipolar-valued normal subbisemiring, Homomorphism

1. Introduction. The various ideals based on semirings have been described by a number of authors and academics [1]. The German mathematician Dedekind initiated the study of semirings in relation to the ideals of commutative rings. The American mathematician Vandever later explored semirings and recognized them as a basic algebraic structure in 1934. It is a generalization of distributive lattices and rings. However, since 1950, there have been improvements in semiring theory. In 1965, Zadeh [2] introduced the fuzzy set theory. A bipolar fuzzy set is an extension of a fuzzy set in which membership degree range is $[-1,1]$ [3]. The membership degree range of the bipolar fuzzy set is expanded from the interval $[0,1]$ to $[-1,0]$. The idea which lies behind such description is connected with the existence of bipolar information (positive information and negative information) about the given set. Information that would be positive indicates what is accepted as possible, whereas information that is negative shows what is thought to be absolutely impossible.

In reality, a large number of human decisions are founded on dualistic or bipolar judgment thinking, which has both a positive and a negative side. For example, collaboration and competitiveness, hostile opposition, shared interests, effect and side effects, probability and conflict of interest improbability and other concepts are the two parties frequently collaborate. Lee [4] discussed the concept of BVFSs and their operations. Palanikumar and Arulmozhi $[5,6,7,8,9]$ presented various fuzzy ideals of bisemirings and semigroups. A semiring $(S,+, \cdot)$ is a non-empty set in which $(S,+)$ and (S, \cdot) are semigroups such that "." is distributive over " + ". Ahsan et al. [10] presented the idea of fuzzy semirings in 1993. Sen and Ghosh [11] introduced the notion for bisemirings in 2001. A bisemiring $(S,+, \circ, \times)$ is an algebraic structure in which $(S,+, \circ)$ and (S, \circ, \times) are semirings in which $(S,+),(S, \circ)$, and (S, \times) are semigroups such that $(1) x \circ(y+z)=x \circ y+x \circ z$, (2) $(y+z) \circ x=y \circ x+z \circ x$, (3) $x \times(y \circ z)=(x \times y) \circ(x \times z)$, and (4) $(y \circ z) \times x=$ $(y \times x) \circ(z \times x)$ for all $x, y, z \in S$. A non-empty subset A of a bisemiring $(S,+, \circ, \times)$ is an SBS of S if and only if $x+y \in A, x \circ y \in A$, and $x \times y \in A$ for all $x, y \in$ A [12]. Palanikumar et al. discussed various algebraic structures and its applications $[13,14,15,16,17,18,19]$. The goal of this study is to investigate and make conclusions on several aspects of the subbisemiring theory to BVSBS theory. The following five sections make up the article. Section 1 contains the introduction, and Section 2 has the semiring and SBS preliminary facts. The BVSBS hypothesis is contained in Section 3. In Section 4, the idea of (α, β)-BVSBS homomorphism is proposed, and its features are discussed. The theory of (α, β)-BVNSBS homomorphism is introduced in Section 5. Additionally, when evaluating the BVSBS and BVNSBS, use some numerical examples.
2. Preliminaries. In this section, we quickly recall some of the basic definitions required for our further studies.
Definition 2.1. [3] Let $(S,+, \cdot)$ be a semiring. A fuzzy set A in S is said to be a fuzzy subsemiring of S if it satisfies the following conditions:
(1) $f_{A}(x+y) \geq \min \left\{f_{A}(x), f_{A}(y)\right\}$,
(2) $f_{A}(x \cdot y) \geq \min \left\{f_{A}(x), f_{A}(y)\right\}, \forall x, y \in S$.

Definition 2.2. [4] The BVFS A in a universe X is an object having the form $A=$ $\left\{\left\langle x, f_{A}^{p}(x), f_{A}^{n}(x)\right\rangle \mid x \in X\right\}$, where $f_{A}^{p}: X \rightarrow[0,1]$ and $f_{A}^{n}: X \rightarrow[-1,0]$. Here $f_{A}^{p}(x)$ represents the degree of satisfaction of the element x to the property and $f_{A}^{n}(x)$ represents the degree of satisfaction of x to some implicit counter property of A. For simplicity, the symbol $\left\langle f_{A}^{p}, f_{A}^{n}\right\rangle$ is used for the BVFS $A=\left\{\left\langle x, f_{A}^{p}(x), f_{A}^{n}(x)\right\rangle \mid x \in X\right\}$.
Definition 2.3. Let $A=\left\langle f_{A}^{p}, f_{A}^{n}\right\rangle$ and $B=\left\langle f_{B}^{p}, f_{B}^{n}\right\rangle$ be two BVFSs in a non-empty set X. Then
(1) $A \cap B=\left\{\left\langle x, \min \left\{f_{A}^{p}(x), f_{B}^{p}(x)\right\}, \max \left\{f_{A}^{n}(x), f_{B}^{n}(x)\right\}\right\rangle \mid x \in X\right\}$,
(2) $A \cup B=\left\{\left\langle x, \max \left\{f_{A}^{p}(x), f_{B}^{p}(x)\right\}, \min \left\{f_{A}^{n}(x), f_{B}^{n}(x)\right\}\right\rangle \mid x \in X\right\}$.

Definition 2.4. For any BVFS $A=\left\langle f_{A}^{p}, f_{A}^{n}\right\rangle$ in a non-empty set X, we defined the (α, β)-cut of A as the crisp subset $\left\{x \in X \mid f_{A}^{p}(x) \geq \alpha\right.$ and $\left.f_{A}^{n}(x) \leq \beta\right\}$ of X.

Definition 2.5. Let A and B be fuzzy sets in S_{1} and S_{2}, respectively. The product of A and B denoted by $A \times B$ is defined as $A \times B=\left\{f_{A \times B}\left(s_{1}, s_{2}\right) \mid s_{1} \in S_{1}\right.$ and $\left.s_{2} \in S_{2}\right\}$, where $f_{A \times B}\left(s_{1}, s_{2}\right)=\min \left\{f_{A}\left(s_{1}\right), f_{B}\left(s_{2}\right)\right\}$ for all $s_{1} \in S_{1}$ and $s_{2} \in S_{2}$.
Definition 2.6. [5] The fuzzy set A in a bisemiring $\left(S, \boxtimes_{1}, \boxtimes_{2}, \boxtimes_{3}\right)$ is said to be a fuzzy subbisemiring (FSBS) of S if it satisfies the following conditions:
(1) $f_{A}\left(x \boxtimes_{1} y\right) \geq \min \left\{f_{A}(x), f_{A}(y)\right\}$,
(2) $f_{A}\left(x \boxtimes_{2} y\right) \geq \min \left\{f_{A}(x), f_{A}(y)\right\}$,
(3) $f_{A}\left(x \boxtimes_{3} y\right) \geq \min \left\{f_{A}(x), f_{A}(y)\right\}, \forall x, y \in S$.

Definition 2.7. [5] The FSBS A of a bisemiring $\left(S, \boxtimes_{1}, \boxtimes_{2}, \boxtimes_{3}\right)$ is said to be a fuzzy normal subbisemiring (FNSBS) of S if it satisfies the following conditions:
(1) $f_{A}\left(x \boxtimes_{1} y\right)=f_{A}\left(y \boxtimes_{1} x\right)$,
(2) $f_{A}\left(x \boxtimes_{2} y\right)=f_{A}\left(y \boxtimes_{2} x\right)$,
(3) $f_{A}\left(x \boxtimes_{3} y\right)=f_{A}\left(y \boxtimes_{3} x\right), \forall x, y \in S$.

Definition 2.8. [12] Let $(S,+, \cdot, \times)$ and $(T, \oplus, \circ, \otimes)$ be two bisemirings. A function ϕ : $S \rightarrow T$ is said to be a homomorphism if it satisfies the following conditions:
(1) $\phi(x+y)=\phi(x) \oplus \phi(y)$,
(2) $\phi(x \cdot y)=\phi(x) \circ \phi(y)$,
(3) $\phi(x \times y)=\phi(x) \otimes \phi(y), \forall x, y \in S$.
3. Bipolar-Valued Subbisemirings. In what follows, let $S=\left(S, \boxtimes_{1}, \boxtimes_{2}, \boxtimes_{3}\right)$ denote a bisemiring unless otherwise stated.
Definition 3.1. Let S be the $S B S$. The $B V F S A=\left\langle f_{A}^{p}, f_{A}^{n}\right\rangle$ in S is said to be a bipolarvalued subbisemiring ($B V S B S$) of S if it satisfies the following conditions:
(1) $f_{A}^{p}\left(x \boxtimes_{1} y\right) \geq \min \left\{f_{A}^{p}(x), f_{A}^{p}(y)\right\}$,
(2) $f_{A}^{p}\left(x \boxtimes_{2} y\right) \geq \min \left\{f_{A}^{p}(x), f_{A}^{p}(y)\right\}$,
(3) $f_{A}^{p}\left(x \boxtimes_{3} y\right) \geq \min \left\{f_{A}^{p}(x), f_{A}^{p}(y)\right\}$,
(4) $f_{A}^{n}\left(x \boxtimes_{1} y\right) \leq \max \left\{f_{A}^{n}(x), f_{A}^{n}(y)\right\}$,
(5) $f_{A}^{n}\left(x \boxtimes_{2} y\right) \leq \max \left\{f_{A}^{n}(x), f_{A}^{n}(y)\right\}$,
(6) $f_{A}^{n}\left(x \boxtimes_{3} y\right) \leq \max \left\{f_{A}^{n}(x), f_{A}^{n}(y)\right\}, \forall x, y \in S$.

Example 3.1. Let $S=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ be the bisemiring with the following Cayley table:

\boxtimes_{1}	x_{1}	x_{2}	x_{3}	x_{4}
x_{1}	x_{1}	x_{1}	x_{1}	x_{1}
x_{2}	x_{1}	x_{2}	x_{1}	x_{2}
x_{3}	x_{1}	x_{1}	x_{3}	x_{3}
x_{4}	x_{1}	x_{2}	x_{3}	x_{4}

\bigotimes_{2}	x_{1}	x_{2}	x_{3}	x_{4}
x_{1}	x_{1}	x_{2}	x_{3}	x_{4}
x_{2}	x_{2}	x_{2}	x_{4}	x_{4}
x_{3}	x_{3}	x_{4}	x_{3}	x_{4}
x_{4}	x_{4}	x_{4}	x_{4}	x_{4}

\boxtimes_{3}	x_{1}	x_{2}	x_{3}	x_{4}
x_{1}	x_{1}	x_{1}	x_{1}	x_{1}
x_{2}	x_{1}	x_{2}	x_{3}	x_{4}
x_{3}	x_{4}	x_{4}	x_{4}	x_{4}
x_{4}	x_{4}	x_{4}	x_{4}	x_{4}

$$
\left\langle f_{A}^{p}, f_{A}^{n}\right\rangle(x)=\left\{\begin{array}{l}
\langle 0.70,-0.40\rangle \text { if } x=x_{1} \\
\langle 0.60,-0.30\rangle \text { if } x=x_{2} \\
\langle 0.30,-0.10\rangle \text { if } x=x_{3} \\
\langle 0.50,-0.20\rangle \text { if } x=x_{4}
\end{array}\right.
$$

Now $f_{A}^{p}\left(x_{2} \boxtimes_{1} x_{3}\right)=f_{A}^{p}\left(x_{1}\right)=0.70$ and $\min \left\{f_{A}^{p}\left(x_{2}\right), f_{A}^{p}\left(x_{3}\right)\right\}=\min \{0.60,0.30\}=0.30$. Hence, $f_{A}^{p}\left(x_{2} \boxtimes_{1} x_{3}\right) \geq \min \left\{f_{A}^{p}\left(x_{2}\right), f_{A}^{p}\left(x_{3}\right)\right\}$. Also, $f_{A}^{n}\left(x_{2} \boxtimes_{1} x_{3}\right)=f_{A}^{n}\left(x_{1}\right)=-0.40$, $\max \left\{f_{A}^{n}\left(x_{2}\right), f_{A}^{n}\left(x_{3}\right)\right\}=\max \{-0.30,-0.10\}=-0.10$.

Hence, $f_{A}^{n}\left(x_{2} \boxtimes_{1} x_{3}\right) \leq \max \left\{f_{A}^{n}\left(x_{2}\right), f_{A}^{n}\left(x_{3}\right)\right\}$. By routine calculations based on Definition 3.1, all the conditions are satisfied. Therefore, A is a BVSBS of S.

Theorem 3.1. The arbitrary intersection of a BVSBS of S is a BVSBS of S.
Proof: Let $\left\{V_{i} \mid i \in I\right\}$ be the family of BVSBSs of S and $A=\bigcap_{i \in I} V_{i}$. Let $x, y \in S$. Then

$$
f_{A}^{p}\left(x \boxtimes_{1} y\right)=\inf _{i \in I}\left\{f_{V_{i}}^{p}\left(x \boxtimes_{1} y\right)\right\}
$$

$$
\begin{aligned}
& \geq \inf _{i \in I}\left\{\min \left\{f_{V_{i}}^{p}(x), f_{V_{i}}^{p}(y)\right\}\right\} \\
& =\min \left\{\inf _{i \in I}\left\{f_{V_{i}}^{p}(x)\right\}, \inf _{i \in I}\left\{f_{V_{i}}^{p}(y)\right\}\right\} \\
& =\min \left\{f_{A}^{p}(x), f_{A}^{p}(y)\right\} .
\end{aligned}
$$

Similarly, $f_{A}^{p}\left(x \boxtimes_{2} y\right) \geq \min \left\{f_{A}^{p}(x), f_{A}^{p}(y)\right\}$ and $f_{A}^{p}\left(x \boxtimes_{3} y\right) \geq \min \left\{f_{A}^{p}(x), f_{A}^{p}(y)\right\}$. Also,

$$
\begin{aligned}
f_{A}^{n}\left(x \boxtimes_{1} y\right) & =\sup _{i \in I}\left\{f_{V_{i}}^{n}\left(x \boxtimes_{1} y\right)\right\} \\
& \leq \sup _{i \in I}\left\{\max \left\{f_{V_{i}}^{n}(x), f_{V_{i}}^{n}(y)\right\}\right\} \\
& =\max \left\{\sup _{i \in I}\left\{f_{V_{i}}^{n}(x)\right\}, \sup _{i \in I}\left\{f_{V_{i}}^{n}(y)\right\}\right\} \\
& =\max \left\{f_{A}^{n}(x), f_{A}^{n}(y)\right\} .
\end{aligned}
$$

Similarly, $f_{A}^{n}\left(x \boxtimes_{2} y\right) \leq \max \left\{f_{A}^{n}(x), f_{A}^{n}(y)\right\}$ and $f_{A}^{n}\left(x \boxtimes_{3} y\right) \leq \max \left\{f_{A}^{n}(x), f_{A}^{n}(y)\right\}$. Hence, A is a BVSBS of S.

Theorem 3.2. If A and B are the two $B V S B S s$ of S_{1} and S_{2}, respectively, then the Cartesian product $A \times B$ is a $B V S B S$ of $S_{1} \times S_{2}$.

Proof: Let A and B be the two BVSBSs of S_{1} and S_{2}, respectively. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ $\in S_{1} \times S_{2}$. Then

$$
\begin{aligned}
f_{A \times B}^{p}\left[\left(x_{1}, y_{1}\right) \boxtimes_{1}\left(x_{2}, y_{2}\right)\right] & =f_{A \times B}^{p}\left(x_{1} \boxtimes_{1} x_{2}, y_{1} \boxtimes_{1} y_{2}\right) \\
& =\min \left\{f_{A}^{p}\left(x_{1} \boxtimes_{1} x_{2}\right), f_{B}^{p}\left(y_{1} \boxtimes_{1} y_{2}\right)\right\} \\
& \geq \min \left\{\min \left\{f_{A}^{p}\left(x_{1}\right), f_{A}^{p}\left(x_{2}\right)\right\}, \min \left\{f_{B}^{p}\left(y_{1}\right), f_{B}^{p}\left(y_{2}\right)\right\}\right\} \\
& =\min \left\{\min \left\{f_{A}^{p}\left(x_{1}\right), f_{B}^{p}\left(y_{1}\right)\right\}, \min \left\{f_{A}^{p}\left(x_{2}\right), f_{B}^{p}\left(y_{2}\right)\right\}\right\} \\
& =\min \left\{f_{A \times B}^{p}\left(x_{1}, y_{1}\right), f_{A \times B}^{p}\left(x_{2}, y_{2}\right)\right\} .
\end{aligned}
$$

Also,

$$
f_{A \times B}^{p}\left[\left(x_{1}, y_{1}\right) \boxtimes_{2}\left(x_{2}, y_{2}\right)\right] \geq \min \left\{f_{A \times B}^{p}\left(x_{1}, y_{1}\right), f_{A \times B}^{p}\left(x_{2}, y_{2}\right)\right\}
$$

and

$$
f_{A \times B}^{p}\left[\left(x_{1}, y_{1}\right) \boxtimes_{3}\left(x_{2}, y_{2}\right)\right] \geq \min \left\{f_{A \times B}^{p}\left(x_{1}, y_{1}\right), f_{A \times B}^{p}\left(x_{2}, y_{2}\right)\right\} .
$$

Similarly,

$$
\begin{aligned}
f_{A \times B}^{n}\left[\left(x_{1}, y_{1}\right) \boxtimes_{1}\left(x_{2}, y_{2}\right)\right] & =f_{A \times B}^{n}\left(x_{1} \boxtimes_{1} x_{2}, y_{1} \boxtimes_{1} y_{2}\right) \\
& =\max \left\{f_{A}^{n}\left(x_{1} \boxtimes_{1} x_{2}\right), f_{B}^{n}\left(y_{1} \boxtimes_{1} y_{2}\right)\right\} \\
& \leq \max \left\{\max \left\{f_{A}^{n}\left(x_{1}\right), f_{A}^{n}\left(x_{2}\right)\right\}, \max \left\{f_{B}^{n}\left(y_{1}\right), f_{B}^{n}\left(y_{2}\right)\right\}\right\} \\
& =\max \left\{\max \left\{f_{A}^{n}\left(x_{1}\right), f_{B}^{n}\left(y_{1}\right)\right\}, \max \left\{f_{A}^{n}\left(x_{2}\right), f_{B}^{n}\left(y_{2}\right)\right\}\right\} \\
& =\max \left\{f_{A \times B}^{n}\left(x_{1}, y_{1}\right), f_{A \times B}^{n}\left(x_{2}, y_{2}\right)\right\} .
\end{aligned}
$$

Also,

$$
f_{A \times B}^{n}\left[\left(x_{1}, y_{1}\right) \boxtimes_{2}\left(x_{2}, y_{2}\right)\right] \leq \max \left\{f_{A \times B}^{n}\left(x_{1}, y_{1}\right), f_{A \times B}^{n}\left(x_{2}, y_{2}\right)\right\}
$$

and

$$
f_{A \times B}^{n}\left[\left(x_{1}, y_{1}\right) \boxtimes_{3}\left(x_{2}, y_{2}\right)\right] \leq \max \left\{f_{A \times B}^{n}\left(x_{1}, y_{1}\right), f_{A \times B}^{n}\left(x_{2}, y_{2}\right)\right\} .
$$

Hence, $A \times B$ is a BVSBS of $S_{1} \times S_{2}$.
Corollary 3.1. If $A_{1}, A_{2}, \ldots, A_{n}$ are BVSBSs of bisemirings $S_{1}, S_{2}, \ldots, S_{n}$, respectively, then $A_{1} \times A_{2} \times \cdots \times A_{n}$ is a BVSBS of $S_{1} \times S_{2} \times \cdots \times S_{n}$.

Definition 3.2. Let A be the BVFS in S, the strongest bipolar-valued relation on S, that is a bipolar-valued relation V on A is given by $f_{V}^{p}(x, y)=\min \left\{f_{A}^{p}(x), f_{A}^{p}(y)\right\}$ and $f_{V}^{n}(x, y)=\max \left\{f_{A}^{n}(x), f_{A}^{n}(y)\right\}, \forall x, y \in S$.
Theorem 3.3. Let A be the BVSBS of S and V be the strongest bipolar-valued relation on S. Then A is a BVSBS of S if and only if V is a BVSBS of $S \times S$.

Proof: Assume that A is a BVSBS of S and V is the strongest bipolar-valued relation on S. Then for any $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in S \times S$, we have

$$
\begin{aligned}
f_{V}^{p}\left(x \boxtimes_{1} y\right) & =f_{V}^{p}\left[\left(x_{1}, x_{2}\right) \boxtimes_{1}\left(y_{1}, y_{2}\right)\right] \\
& =f_{V}^{p}\left(x_{1} \boxtimes_{1} y_{1}, x_{2} \boxtimes_{1} y_{2}\right) \\
& =\min \left\{f_{A}^{p}\left(x_{1} \boxtimes_{1} y_{1}\right), f_{A}^{p}\left(x_{2} \boxtimes_{1} y_{2}\right)\right\} \\
& \geq \min \left\{\min \left\{f_{A}^{p}\left(x_{1}\right), f_{A}^{p}\left(y_{1}\right)\right\}, \min \left\{f_{A}^{p}\left(x_{2}\right), f_{A}^{p}\left(y_{2}\right)\right\}\right\} \\
& =\min \left\{\min \left\{f_{A}^{p}\left(x_{1}\right), f_{A}^{p}\left(x_{2}\right)\right\}, \min \left\{f_{A}^{p}\left(y_{1}\right), f_{A}^{p}\left(y_{2}\right)\right\}\right\} \\
& =\min \left\{f_{V}^{p}\left(x_{1}, x_{2}\right), f_{V}^{p}\left(y_{1}, y_{2}\right)\right\} \\
& =\min \left\{f_{V}^{p}(x), f_{V}^{p}(y)\right\} .
\end{aligned}
$$

Also, $f_{V}^{p}\left(x \boxtimes_{2} y\right) \geq \min \left\{f_{V}^{p}(x), f_{V}^{p}(y)\right\}$ and $f_{V}^{p}\left(x \boxtimes_{3} y\right) \geq \min \left\{f_{V}^{p}(x), f_{V}^{p}(y)\right\}$. Similarly,

$$
f_{V}^{n}\left(x \boxtimes_{1} y\right) \leq \max \left\{f_{V}^{n}(x), f_{V}^{n}(y)\right\}, \quad f_{V}^{n}\left(x \boxtimes_{2} y\right) \leq \max \left\{f_{V}^{n}(x), f_{V}^{n}(y)\right\}
$$

and

$$
f_{V}^{n}\left(x \boxtimes_{3} y\right) \leq \max \left\{f_{V}^{n}(x), f_{V}^{n}(y)\right\} .
$$

Hence, V is a BVSBS of $S \times S$.
Conversely, assume that V is a BVSBS of $S \times S$. Then for any $x=\left(x_{1}, x_{2}\right), y=$ $\left(y_{1}, y_{2}\right) \in S \times S$, we have

$$
\begin{aligned}
\min \left\{f_{A}^{p}\left(x_{1} \boxtimes_{1} y_{1}\right), f_{A}^{p}\left(x_{2} \boxtimes_{1} y_{2}\right)\right\} & =f_{V}^{p}\left(x_{1} \boxtimes_{1} y_{1}, x_{2} \boxtimes_{1} y_{2}\right) \\
& =f_{V}^{p}\left[\left(x_{1}, x_{2}\right) \boxtimes_{1}\left(y_{1}, y_{2}\right)\right] \\
& =f_{V}^{p}\left(x \boxtimes_{1} y\right) \\
& \geq \min \left\{f_{V}^{p}(x), f_{V}^{p}(y)\right\} \\
& =\min \left\{f_{V}^{p}\left(x_{1}, x_{2}\right), f_{V}^{p}\left(y_{1}, y_{2}\right)\right\} \\
& =\min \left\{\min \left\{f_{A}^{p}\left(x_{1}\right), f_{A}^{p}\left(x_{2}\right)\right\}, \min \left\{f_{A}^{p}\left(y_{1}\right), f_{A}^{p}\left(y_{2}\right)\right\}\right\} .
\end{aligned}
$$

If $f_{A}^{p}\left(x_{1} \boxtimes_{1} y_{1}\right) \leq f_{A}^{p}\left(x_{2} \boxtimes_{1} y_{2}\right)$, then $f_{A}^{p}\left(x_{1}\right) \leq f_{A}^{p}\left(x_{2}\right)$ and $f_{A}^{p}\left(y_{1}\right) \leq f_{A}^{p}\left(y_{2}\right)$. We get $f_{A}^{p}\left(x_{1} \boxtimes_{1} y_{1}\right) \geq \min \left\{f_{A}^{p}\left(x_{1}\right), f_{A}^{p}\left(y_{1}\right)\right\}$ and $\min \left\{f_{A}^{p}\left(x_{1} \boxtimes_{2} y_{1}\right), f_{A}^{p}\left(x_{2} \boxtimes_{2} y_{2}\right)\right\} \geq \min \left\{\min \left\{f_{A}^{p}\left(x_{1}\right)\right.\right.$, $\left.\left.f_{A}^{p}\left(x_{2}\right)\right\}, \min \left\{f_{A}^{p}\left(y_{1}\right), f_{A}^{p}\left(y_{2}\right)\right\}\right\}$.

If $f_{A}^{p}\left(x_{1} \boxtimes_{2} y_{1}\right) \leq f_{A}^{p}\left(x_{2} \boxtimes_{2} y_{2}\right)$, then $f_{A}^{p}\left(x_{1} \boxtimes_{2} y_{1}\right) \geq \min \left\{f_{A}^{p}\left(x_{1}\right), f_{A}^{p}\left(y_{1}\right)\right\}$. We get $\min \left\{f_{A}^{p}\left(x_{1} \boxtimes_{3} y_{1}\right), f_{A}^{p}\left(x_{2} \boxtimes_{3} y_{2}\right)\right\} \geq \min \left\{\min \left\{f_{A}^{p}\left(x_{1}\right), f_{A}^{p}\left(x_{2}\right)\right\}, \min \left\{f_{A}^{p}\left(y_{1}\right), f_{A}^{p}\left(y_{2}\right)\right\}\right\}$.

If $f_{A}^{p}\left(x_{1} \boxtimes_{3} y_{1}\right) \leq f_{A}^{p}\left(x_{2} \boxtimes_{3} y_{2}\right)$, then $f_{A}^{p}\left(x_{1} \boxtimes_{3} y_{1}\right) \geq \min \left\{f_{A}^{p}\left(x_{1}\right), f_{A}^{p}\left(y_{1}\right)\right\}$. Similarly, $\max \left\{f_{A}^{n}\left(x_{1} \boxtimes_{1} y_{1}\right), f_{A}^{n}\left(x_{2} \boxtimes_{1} y_{2}\right)\right\} \leq \max \left\{\max \left\{f_{A}^{n}\left(x_{1}\right), f_{A}^{n}\left(x_{2}\right)\right\}, \max \left\{f_{A}^{n}\left(y_{1}\right), f_{A}^{n}\left(y_{2}\right)\right\}\right\}$.

If $f_{A}^{n}\left(x_{1} \boxtimes_{1} y_{1}\right) \geq f_{A}^{n}\left(x_{2} \boxtimes_{1} y_{2}\right)$, then $f_{A}^{n}\left(x_{1}\right) \geq f_{A}^{n}\left(x_{2}\right)$ and $f_{A}^{n}\left(y_{1}\right) \geq f_{A}^{n}\left(y_{2}\right)$. We get $f_{A}^{n}\left(x_{1} \boxtimes_{1} y_{1}\right) \leq \max \left\{f_{A}^{n}\left(x_{1}\right), f_{A}^{n}\left(y_{1}\right)\right\}$, so $\max \left\{f_{A}^{n}\left(x_{1} \boxtimes_{2} y_{1}\right), f_{A}^{n}\left(x_{2} \boxtimes_{2} y_{2}\right)\right\} \leq \max \left\{\max \left\{f_{A}^{n}\left(x_{1}\right)\right.\right.$, $\left.\left.f_{A}^{n}\left(x_{2}\right)\right\}, \max \left\{f_{A}^{n}\left(y_{1}\right), f_{A}^{n}\left(y_{2}\right)\right\}\right\}$.

If $f_{A}^{n}\left(x_{1} \boxtimes_{2} y_{1}\right) \geq f_{A}^{n}\left(x_{2} \boxtimes_{2} y_{2}\right)$, then $f_{A}^{n}\left(x_{1} \boxtimes_{2} y_{1}\right) \leq \max \left\{f_{A}^{n}\left(x_{1}\right), f_{A}^{n}\left(y_{1}\right)\right\}$. We get $\max \left\{f_{A}^{n}\left(x_{1} \boxtimes_{3} y_{1}\right), f_{A}^{n}\left(x_{2} \boxtimes_{3} y_{2}\right)\right\} \leq \max \left\{\max \left\{f_{A}^{n}\left(x_{1}\right), f_{A}^{n}\left(x_{2}\right)\right\}, \max \left\{f_{A}^{n}\left(y_{1}\right), f_{A}^{n}\left(y_{2}\right)\right\}\right\}$.
If $f_{A}^{n}\left(x_{1} \boxtimes_{3} y_{1}\right) \geq f_{A}^{n}\left(x_{2} \boxtimes_{3} y_{2}\right)$, then $f_{A}^{n}\left(x_{1} \boxtimes_{3} y_{1}\right) \leq \max \left\{f_{A}^{n}\left(x_{1}\right), f_{A}^{n}\left(y_{1}\right)\right\}$.
Hence, A is a BVSBS of S.
Theorem 3.4. A BVFS $\tilde{f}=\left\langle f_{A}^{p}, f_{A}^{n}\right\rangle$ is an BVSBS of S if and only if all non-empty level set $\tilde{f}^{(t, s)}$ is an $S B S$ of S for $t \in[0,1]$ and $s \in[-1,0]$.

Proof: Assume that \tilde{f} is a BVSBS of S. For each $t \in[0,1]$ and $s \in[-1,0]$ and $a_{1}, a_{2} \in \tilde{f}(t, s)$, we have $f_{A}^{p}\left(a_{1}\right) \geq t, f_{A}^{p}\left(a_{2}\right) \geq t$ and $f_{A}^{n}\left(a_{1}\right) \leq s, f_{A}^{n}\left(a_{2}\right) \leq s$. Now, $f_{A}^{p}\left(a_{1} \boxtimes_{1} a_{2}\right) \geq \min \left\{f_{A}^{p}\left(a_{1}\right), f_{A}^{p}\left(a_{2}\right)\right\} \geq t, f_{A}^{p}\left(a_{1} \boxtimes_{2} a_{2}\right) \geq \min \left\{f_{A}^{p}\left(a_{1}\right), f_{A}^{p}\left(a_{2}\right)\right\} \geq t$, and $f_{A}^{p}\left(a_{1} \boxtimes_{3} a_{2}\right) \geq \min \left\{f_{A}^{p}\left(a_{1}\right), f_{A}^{p}\left(a_{2}\right)\right\} \geq t$. Similarly,

$$
f_{A}^{n}\left(a_{1} \boxtimes_{1} a_{2}\right) \leq \max \left\{f_{A}^{n}\left(a_{1}\right), f_{A}^{n}\left(a_{2}\right)\right\} \leq s, f_{A}^{n}\left(a_{1} \boxtimes_{2} a_{2}\right) \leq \max \left\{f_{A}^{n}\left(a_{1}\right), f_{A}^{n}\left(a_{2}\right)\right\} \leq s,
$$ and

$$
f_{A}^{n}\left(a_{1} \boxtimes_{3} a_{2}\right) \leq \max \left\{f_{A}^{n}\left(a_{1}\right), f_{A}^{n}\left(a_{2}\right)\right\} \leq s .
$$

This implies that $a_{1} \boxtimes_{1} a_{2} \in \tilde{f}^{(t, s)}, a_{1} \boxtimes_{2} a_{2} \in \tilde{f}^{(t, s)}$, and $a_{1} \boxtimes_{3} a_{2} \in \tilde{f}^{(t, s)}$. Therefore, $\tilde{f}^{(t, s)}$ is an SBS of S for each $t \in[0,1]$ and $s \in[-1,0]$.

Conversely, assume that $\tilde{f}^{(t, s)}$ is an SBS of S for each $t \in[0,1]$ and $s \in[-1,0]$. Suppose if there exist $a_{1}, a_{2} \in S$ such that $f_{A}^{p}\left(a_{1} \boxtimes_{1} a_{2}\right)<\min \left\{f_{A}^{p}\left(a_{1}\right), f_{A}^{p}\left(a_{2}\right)\right\}$. Select $t \in[0,1]$ such that $f_{A}^{p}\left(a_{1} \boxtimes_{1} a_{2}\right)<t \leq \min \left\{f_{A}^{p}\left(a_{1}\right), f_{A}^{p}\left(a_{2}\right)\right\}, f_{A}^{p}\left(a_{1} \boxtimes_{2} a_{2}\right)<t \leq \min \left\{f_{A}^{p}\left(a_{1}\right), f_{A}^{p}\left(a_{2}\right)\right\}$, and $f_{A}^{p}\left(a_{1} \boxtimes_{3} a_{2}\right)<t \leq \min \left\{f_{A}^{p}\left(a_{1}\right), f_{A}^{p}\left(a_{2}\right)\right\}$. Then $a_{1}, a_{2} \in \tilde{f}^{(t, s)}$, but $a_{1} \boxtimes_{1} a_{2} \notin \tilde{f}^{(t, s)}$, $a_{1} \boxtimes_{2} a_{2} \notin \tilde{f}^{(t, s)}$, and $a_{1} \boxtimes_{3} a_{2} \notin \tilde{f}^{(t, s)}$. This contradicts to that $\tilde{f}^{(t, s)}$ is an SBS of S. Hence, $f_{A}^{p}\left(a_{1} \boxtimes_{1} a_{2}\right) \geq \min \left\{f_{A}^{p}\left(a_{1}\right), f_{A}^{p}\left(a_{2}\right)\right\}$, $f_{A}^{p}\left(a_{1} \boxtimes_{2} a_{2}\right) \geq \min \left\{f_{A}^{p}\left(a_{1}\right), f_{A}^{p}\left(a_{2}\right)\right\}$, and $f_{A}^{p}\left(a_{1} \boxtimes_{3} a_{2}\right) \geq \min \left\{f_{A}^{p}\left(a_{1}\right), f_{A}^{p}\left(a_{2}\right)\right\}$. Similarly,

$$
f_{A}^{n}\left(a_{1} \boxtimes_{1} a_{2}\right) \leq \max \left\{f_{A}^{n}\left(a_{1}\right), f_{A}^{n}\left(a_{2}\right)\right\}, f_{A}^{n}\left(a_{1} \boxtimes_{2} a_{2}\right) \leq \max \left\{f_{A}^{n}\left(a_{1}\right), f_{A}^{n}\left(a_{2}\right)\right\},
$$

and

$$
f_{A}^{n}\left(a_{1} \boxtimes_{3} a_{2}\right) \leq \max \left\{f_{A}^{n}\left(a_{1}\right), f_{A}^{n}\left(a_{2}\right)\right\} .
$$

Hence, $\tilde{f}=\left\langle f_{A}^{p}, f_{A}^{n}\right\rangle$ is a BVSBS of S.
Theorem 3.5. If A is a $B V S B S$ of S, then $H=\left\{x|x \in S| f_{A}^{p}(x)=1\right.$ and $\left.f_{A}^{n}(x)=-1\right\}$ is either empty or is an $S B S$ of S.

Proof: Assume that H is non-empty. If $x, y \in H$, then $f_{A}^{p}(x)=1, f_{A}^{p}(y)=1$ and $f_{A}^{n}(x)=-1, f_{A}^{n}(y)=-1$. Now, $f_{A}^{p}\left(x \boxtimes_{1} y\right) \geq \min \left\{f_{A}^{p}(x), f_{A}^{p}(y)\right\}=\min \{1,1\}=1$. Therefore, $f_{A}^{p}\left(x \boxtimes_{1} y\right)=1$. Similarly, $f_{A}^{p}\left(x \boxtimes_{2} y\right)=1$ and $f_{A}^{p}\left(x \boxtimes_{3} y\right)=1$. Now, $f_{A}^{n}\left(x \boxtimes_{1} y\right)$ $\leq \max \left\{f_{A}^{n}(x), f_{A}^{n}(y)\right\}=\max \{-1,-1\}=-1$. Therefore, $f_{A}^{n}\left(x \boxtimes_{1} y\right)=-1$. Similarly, $f_{A}^{n}\left(x \boxtimes_{2} y\right)=-1$ and $f_{A}^{n}\left(x \boxtimes_{3} y\right)=-1$. Thus, $x \boxtimes_{1} y \in H, x \boxtimes_{2} y \in H$, and $x \boxtimes_{3} y \in H$. Hence, H is an SBS of S.

Definition 3.3. Let A be any $B V S B S$ of $S, a \in S$ and a fixed real number $p(a) \in[0,1]$. Then the pseudo bipolar-valued coset $(a A)^{p}$ is defined by $\left(\left(a f_{A}^{p}\right)^{p}\right)(x)=p(a) f_{A}^{p}(x)$ and $\left(\left(a f_{A}^{n}\right)^{p}\right)(x)=p(a) f_{A}^{n}(x)$ for every $x \in S$.
Theorem 3.6. If A is a BVSBS of S, then the pseudo bipolar-valued coset $(a A)^{p}$ is a $B V S B S$ of S for every $a \in S$.

Proof: Let A be any BVSBS of S and for every $x, y \in S$. Then $\left(\left(a f_{A}^{p}\right)^{p}\right)\left(x \boxtimes_{1} y\right)=$ $p(a) f_{A}^{p}\left(x \boxtimes_{1} y\right) \geq p(a) \min \left\{f_{A}^{p}(x), f_{A}^{p}(y)\right\}=\min \left\{p(a) f_{A}^{p}(x), p(a) f_{A}^{p}(y)\right\}=\min \left\{\left(\left(a f_{A}^{p}\right)^{p}\right)(x)\right.$, $\left.\left(\left(a f_{A}^{p}\right)^{p}\right)(y)\right\}$. Hence, $\left(\left(a f_{A}^{p}\right)^{p}\right)\left(x \boxtimes_{1} y\right) \geq \min \left\{\left(\left(a f_{A}^{p}\right)^{p}\right)(x),\left(\left(a f_{A}^{p}\right)^{p}\right)(y)\right\}$. Similarly,

$$
\left(\left(a f_{A}^{p}\right)^{p}\right)\left(x \boxtimes_{2} y\right) \geq \min \left\{\left(\left(a f_{A}^{p}\right)^{p}\right)(x),\left(\left(a f_{A}^{p}\right)^{p}\right)(y)\right\}
$$

and

$$
\left(\left(a f_{A}^{p}\right)^{p}\right)\left(x \boxtimes_{3} y\right) \geq \min \left\{\left(\left(a f_{A}^{p}\right)^{p}\right)(x),\left(\left(a f_{A}^{p}\right)^{p}\right)(y)\right\}
$$

Now, $\left(\left(a f_{A}^{n}\right)^{p}\right)\left(x \boxtimes_{1} y\right)=p(a) f_{A}^{n}\left(x \boxtimes_{1} y\right) \leq p(a) \max \left\{f_{A}^{n}(x), f_{A}^{n}(y)\right\}=\max \left\{p(a) f_{A}^{n}(x)\right.$, $\left.p(a) f_{A}^{n}(y)\right\}=\max \left\{\left(\left(a f_{A}^{n}\right)^{p}\right)(x),\left(\left(a f_{A}^{n}\right)^{p}\right)(y)\right\}$. Hence, $\left(\left(a f_{A}^{n}\right)^{p}\right)\left(x \boxtimes_{1} y\right) \leq \max \left\{\left(\left(a f_{A}^{n}\right)^{p}\right)(x)\right.$, $\left.\left(\left(a f_{A}^{n}\right)^{p}\right)(y)\right\}$. Similarly,

$$
\left(\left(a f_{A}^{n}\right)^{p}\right)\left(x \boxtimes_{2} y\right) \leq \max \left\{\left(\left(a f_{A}^{n}\right)^{p}\right)(x),\left(\left(a f_{A}^{n}\right)^{p}\right)(y)\right\}
$$

and

$$
\left(\left(a f_{A}^{n}\right)^{p}\right)\left(x \boxtimes_{3} y\right) \leq \max \left\{\left(\left(a f_{A}^{n}\right)^{p}\right)(x),\left(\left(a f_{A}^{n}\right)^{p}\right)(y)\right\} .
$$

Hence, $(a A)^{p}$ is a BVSBS of S.
Definition 3.4. Let $\left(S_{1}, \oplus_{1}, \oplus_{2}, \oplus_{3}\right)$ and $\left(S_{2}, \odot_{1}, \odot_{2}, \odot_{3}\right)$ be any two bisemirings. Let φ : $S_{1} \rightarrow S_{2}$ be any function, A be any BVSBS in S_{1}, and V be any BVSBS in $\varphi\left(S_{1}\right)=$ S_{2}. If $f_{A}=\left\langle f_{A}^{p}, f_{A}^{n}\right\rangle$ is a BVFS in S_{1}, then f_{V} is a BVFS in S_{2}, defined by $f_{V}^{p}(y)=$ $\sup _{x \in \varphi^{-1} y} f_{A}^{p}(x)$ and $f_{V}^{n}(y)=\inf _{x \in \varphi^{-1} y} f_{A}^{n}(x)$ for all $x \in S_{1}$ and $y \in S_{2}$ is called the image of f_{A} under φ. Similarly, if $f_{V}=\left\langle f_{V}^{p}, f_{V}^{n}\right\rangle$ is a BVFS in S_{2}, then the BVFS $f_{A}=\varphi \circ f_{V}$ in S_{1} [i.e., the BVFS defined by $f_{A}(x)=f_{V}(\varphi(x))$] is called the preimage of f_{V} under φ.

Theorem 3.7. Let $\left(S_{1}, \oplus_{1}, \oplus_{2}, \oplus_{3}\right)$ and $\left(S_{2}, \odot_{1}, \odot_{2}, \odot_{3}\right)$ be any two bisemirings. The homomorphic image of BVSBS of S_{1} is a BVSBS of S_{2}.

Proof: Let $\varphi: S_{1} \rightarrow S_{2}$ be any homomorphism. Then $\varphi\left(x \oplus_{1} y\right)=\varphi(x) \odot_{1} \varphi(y), \varphi(x$ $\left.\oplus_{2} y\right)=\varphi(x) \odot_{2} \varphi(y)$, and $\varphi\left(x \oplus_{3} y\right)=\varphi(x) \odot_{3} \varphi(y)$ for all $x, y \in S_{1}$. Let $V=\varphi(A)$, where A is any BVSBS of S_{1}. Let $\varphi(x), \varphi(y) \in S_{2}$. Let $x \in \varphi^{-1}(\varphi(x))$ and $y \in \varphi^{-1}(\varphi(y))$ be such that $f_{A}^{p}(x)=\sup _{z \in \varphi^{-1}(\varphi(x))} f_{A}^{p}(z)$ and $f_{A}^{p}(y)=\sup _{z \in \varphi^{-1}(\varphi(y))} f_{A}^{p}(z)$. Now,

$$
\begin{aligned}
f_{V}^{p}\left(\varphi(x) \odot_{1} \varphi(y)\right) & =\sup _{z^{\prime} \in \varphi^{-1}\left(\varphi(x) \odot_{1} \varphi(y)\right)} f_{A}^{p}\left(z^{\prime}\right) \\
& =\sup _{z^{\prime} \in \varphi^{-1}\left(\varphi\left(x \oplus_{1} y\right)\right)} f_{A}^{p}\left(z^{\prime}\right) \\
& =f_{A}^{p}\left(x \oplus_{1} y\right) \\
& \geq \min \left\{f_{A}^{p}(x), f_{A}^{p}(y)\right\} \\
& =\min \left\{f_{V}^{p} \varphi(x), f_{V}^{p} \varphi(y)\right\} .
\end{aligned}
$$

Thus, $f_{V}^{p}\left(\varphi(x) \odot_{1} \varphi(y)\right) \geq \min \left\{f_{V}^{p} \varphi(x), f_{V}^{p} \varphi(y)\right\}$. Similarly,

$$
f_{V}^{p}\left(\varphi(x) \odot_{2} \varphi(y)\right) \geq \min \left\{f_{V}^{p} \varphi(x), f_{V}^{p} \varphi(y)\right\}
$$

and

$$
f_{V}^{p}\left(\varphi(x) \odot_{3} \varphi(y)\right) \geq \min \left\{f_{V}^{p} \varphi(x), f_{V}^{p} \varphi(y)\right\} .
$$

Let $\varphi(x), \varphi(y) \in S_{2}$. Let $x \in \varphi^{-1}(\varphi(x))$ and $y \in \varphi^{-1}(\varphi(y))$ be such that $f_{A}^{n}(x)=$ $\inf _{z \in \varphi^{-1}(\varphi(x))} f_{A}^{n}(z)$ and $f_{A}^{n}(y)=\inf _{z \in \varphi^{-1}(\varphi(y))} f_{A}^{n}(z)$. Now,

$$
\begin{aligned}
f_{V}^{n}\left(\varphi(x) \odot_{1} \varphi(y)\right) & =\inf _{z^{\prime} \in \varphi^{-1}\left(\varphi(x) \odot_{1} \varphi(y)\right)} f_{A}^{n}\left(z^{\prime}\right) \\
& =\inf _{z^{\prime} \in \varphi^{-1}(\varphi(x \oplus 1 y))} f_{A}^{n}\left(z^{\prime}\right) \\
& =f_{A}^{n}\left(x \oplus_{1} y\right) \\
& \leq \max \left\{f_{A}^{n}(x), f_{A}^{n}(y)\right\} \\
& =\max \left\{f_{V}^{n} \varphi(x), f_{V}^{n} \varphi(y)\right\} .
\end{aligned}
$$

Thus, $f_{V}^{n}\left(\varphi(x) \odot_{1} \varphi(y)\right) \leq \max \left\{f_{V}^{n} \varphi(x), f_{V}^{n} \varphi(y)\right\}$. Similarly,

$$
f_{V}^{n}\left(\varphi(x) \odot_{2} \varphi(y)\right) \leq \max \left\{f_{V}^{n} \varphi(x), f_{V}^{n} \varphi(y)\right\}
$$

and

$$
f_{V}^{n}\left(\varphi(x) \odot_{3} \varphi(y)\right) \leq \max \left\{f_{V}^{n} \varphi(x), f_{V}^{n} \varphi(y)\right\} .
$$

Hence, V is a BVSBS of S_{2}.
Theorem 3.8. Let $\left(S_{1}, \oplus_{1}, \oplus_{2}, \oplus_{3}\right)$ and $\left(S_{2}, \odot_{1}, \odot_{2}, \odot_{3}\right)$ be any two bisemirings. The homomorphic preimage of BVSBS of S_{2} is a BVSBS of S_{1}.

Proof: Let $\varphi: S_{1} \rightarrow S_{2}$ be any homomorphism. Then $\varphi\left(x \oplus_{1} y\right)=\varphi(x) \odot_{1} \varphi(y)$, $\varphi\left(x \oplus_{2} y\right)=\varphi(x) \odot_{2} \varphi(y)$, and $\varphi\left(x \oplus_{3} y\right)=\varphi(x) \odot_{3} \varphi(y)$ for all $x, y \in S_{1}$. Let $V=\varphi(A)$, where V is any BVSBS of S_{2}. Let $x, y \in S_{1}$. Then $f_{A}^{p}\left(x \oplus_{1} y\right)=f_{V}^{p}\left(\varphi\left(x \oplus_{1} y\right)\right)=$ $f_{V}^{p}\left(\varphi(x) \odot_{1} \varphi(y)\right) \geq \min \left\{f_{V}^{p} \varphi(x), f_{V}^{p} \varphi(y)\right\}=\min \left\{f_{A}^{p}(x), f_{A}^{p}(y)\right\}$. Thus, $f_{A}^{p}\left(x \oplus_{1} y\right) \geq$ $\min \left\{f_{A}^{p}(x), f_{A}^{p}(y)\right\}$. Similarly,

$$
f_{A}^{p}\left(x \oplus_{2} y\right) \geq \min \left\{f_{A}^{p}(x), f_{A}^{p}(y)\right\}
$$

and

$$
f_{A}^{p}\left(x \oplus_{3} y\right) \geq \min \left\{f_{A}^{p}(x), f_{A}^{p}(y)\right\}
$$

Now, $f_{A}^{n}\left(x \oplus_{1} y\right)=f_{V}^{n}\left(\varphi\left(x \oplus_{1} y\right)\right)=f_{V}^{n}\left(\varphi(x) \odot_{1} \varphi(y)\right) \leq \max \left\{f_{V}^{n} \varphi(x), f_{V}^{n} \varphi(y)\right\}=$ $\max \left\{f_{A}^{n}(x), f_{A}^{n}(y)\right\}$. Thus, $f_{A}^{n}\left(x \oplus_{1} y\right) \leq \max \left\{f_{A}^{n}(x), f_{A}^{n}(y)\right\}$. Similarly,

$$
f_{A}^{n}\left(x \oplus_{2} y\right) \leq \max \left\{f_{A}^{n}(x), f_{A}^{n}(y)\right\}
$$

and

$$
f_{A}^{n}\left(x \oplus_{3} y\right) \leq \max \left\{f_{A}^{n}(x), f_{A}^{n}(y)\right\} .
$$

Hence, A is a BVSBS of S_{1}.
Theorem 3.9. Let $\left(S_{1}, \oplus_{1}, \oplus_{2}, \oplus_{3}\right)$ and $\left(S_{2}, \odot_{1}, \odot_{2}, \odot_{3}\right)$ be any two bisemirings. If φ : $S_{1} \rightarrow S_{2}$ is a homomorphism, then $\varphi\left(A_{(t, s)}\right)$ is a level SBS of BVSBS V of S_{2}.

Proof: Let $\varphi: S_{1} \rightarrow S_{2}$ be any homomorphism. Then $\varphi\left(x \oplus_{1} y\right)=\varphi(x) \odot_{1} \varphi(y), \varphi(x$ $\left.\oplus_{2} y\right)=\varphi(x) \odot_{2} \varphi(y)$, and $\varphi\left(x \oplus_{3} y\right)=\varphi(x) \odot_{3} \varphi(y)$ for all $x, y \in S_{1}$. Let $V=\varphi(A)$, where A is a BVSBS of S_{1}. By Theorem 3.7, we have V is a BVSBS of S_{2}. Let $A_{(t, s)}$ be any level SBS of A. Suppose that $x, y \in A_{(t, s)}$. Then $\varphi\left(x \oplus_{1} y\right), \varphi\left(x \oplus_{2} y\right)$ and $\varphi\left(x \oplus_{3} y\right) \in A_{(t, s)}$. Now, $f_{V}^{p}(\varphi(x))=f_{A}^{p}(x) \geq t$ and $f_{V}^{p}(\varphi(y))=f_{A}^{p}(y) \geq t$. Then $f_{V}^{p}\left(\varphi(x) \odot_{1} \varphi(y)\right) \geq$ $f_{A}^{p}\left(x \oplus_{1} y\right) \geq t, f_{V}^{p}\left(\varphi(x) \odot_{2} \varphi(y)\right) \geq f_{A}^{p}\left(x \oplus_{2} y\right) \geq t$, and $f_{V}^{p}\left(\varphi(x) \odot_{3} \varphi(y)\right) \geq f_{A}^{p}\left(x \oplus_{3} y\right) \geq t$ for all $\varphi(x), \varphi(y) \in S_{2}$. Now, $f_{V}^{n}(\varphi(x))=f_{A}^{n}(x) \leq s$ and $f_{V}^{n}(\varphi(y))=f_{A}^{n}(y) \leq s$. Then $f_{V}^{n}\left(\varphi(x) \odot_{1} \varphi(y)\right) \leq f_{A}^{n}\left(x \oplus_{1} y\right) \leq s, f_{V}^{n}\left(\varphi(x) \odot_{2} \varphi(y)\right) \leq f_{A}^{n}\left(x \oplus_{2} y\right) \leq s$, and $f_{V}^{n}\left(\varphi(x) \odot_{3}\right.$ $\varphi(y)) \leq f_{A}^{n}\left(x \oplus_{3} y\right) \leq s$ for all $\varphi(x), \varphi(y) \in S_{2}$. Hence, $\varphi\left(A_{(t, s)}\right)$ is a level SBS of BVSBS V of S_{2}.
Theorem 3.10. Let $\left(S_{1}, \oplus_{1}, \oplus_{2}, \oplus_{3}\right)$ and $\left(S_{2}, \odot_{1}, \odot_{2}, \odot_{3}\right)$ be any two bisemirings. If φ : $S_{1} \rightarrow S_{2}$ is any homomorphism, then $A_{(t, s)}$ is a level SBS of BVSBS A of S_{1}.

Proof: Let $\varphi: S_{1} \rightarrow S_{2}$ be any homomorphism. Then $\varphi\left(x \oplus_{1} y\right)=\varphi(x) \odot_{1} \varphi(y)$, $\varphi\left(x \oplus_{2} y\right)=\varphi(x) \odot_{2} \varphi(y)$, and $\varphi\left(x \oplus_{3} y\right)=\varphi(x) \odot_{3} \varphi(y)$ for all $x, y \in S_{1}$. Let $V=\varphi(A)$, where V is a BVSBS of S_{2}. By Theorem 3.8, we have A is a BVSBS of S_{1}. Let $\varphi\left(A_{(t, s)}\right)$ be a level SBS of V. Suppose that $\varphi(x), \varphi(y) \in \varphi\left(A_{(t, s)}\right)$. Then $\varphi\left(x \oplus_{1} y\right), \varphi\left(x \oplus_{2} y\right), \varphi\left(x \oplus_{3} y\right) \in$ $\varphi\left(A_{(t, s)}\right)$. Now, $f_{A}^{p}(x)=f_{V}^{p}(\varphi(x)) \geq t$ and $f_{A}^{p}(y)=f_{V}^{p}(\varphi(y)) \geq t$. Then $f_{A}^{p}\left(x \oplus_{1} y\right) \geq t$, $f_{A}^{p}\left(x \oplus_{2} y\right) \geq t$, and $f_{A}^{p}\left(x \oplus_{3} y\right) \geq t$ for all $x, y \in S_{1}$. Now, $f_{A}^{n}(x)=f_{V}^{n}(\varphi(x)) \leq s$ and $f_{A}^{n}(y)=f_{V}^{n}(\varphi(y)) \leq s$. Then $f_{A}^{n}\left(x \oplus_{1} y\right)=f_{V}^{n}\left(\varphi(x) \odot_{1} \varphi(y)\right) \leq s, f_{A}^{n}\left(x \oplus_{2} y\right)=$ $f_{V}^{n}\left(\varphi(x) \odot_{2} \varphi(y)\right) \leq s$, and $f_{A}^{n}\left(x \oplus_{3} y\right)=f_{V}^{n}\left(\varphi(x) \odot_{3} \varphi(y)\right) \leq s$ for all $x, y \in S_{1}$. Hence, $A_{(t, s)}$ is a level SBS of BVSBS A of S_{1}.
4. $(\boldsymbol{\alpha}, \boldsymbol{\beta})$-Bipolar-Valued Subbisemirings. In what follows that, let $\left(\alpha^{p}, \beta^{p}\right) \in[0,1]$ and $\left(\alpha^{n}, \beta^{n}\right) \in[-1,0]$ be such that $0 \leq \alpha^{p}<\beta^{p} \leq 1$ and $-1 \leq \beta^{n}<\alpha^{n} \leq 0$, both $(\alpha, \beta) \in[0,1]$ are arbitrary fixed.
Definition 4.1. Let S be the $S B S$. The BVFS A in S is called an (α, β)-bipolar-valued subbisemiring $((\alpha, \beta)-B V S B S)$ of S if it satisfies the following conditions:
(1) $\max \left\{f_{A}^{p}\left(x \boxtimes_{1} y\right), \alpha^{p}\right\} \geq \min \left\{f_{A}^{p}(x), f_{A}^{p}(y), \beta^{p}\right\}$,
(2) $\max \left\{f_{A}^{p}\left(x \boxtimes_{2} y\right), \alpha^{p}\right\} \geq \min \left\{f_{A}^{p}(x), f_{A}^{p}(y), \beta^{p}\right\}$,
(3) $\max \left\{f_{A}^{p}\left(x \boxtimes_{3} y\right), \alpha^{p}\right\} \geq \min \left\{f_{A}^{p}(x), f_{A}^{p}(y), \beta^{p}\right\}$,
(4) $\min \left\{f_{A}^{n}\left(x \boxtimes_{1} y\right), \alpha^{n}\right\} \leq \max \left\{f_{A}^{n}(x), f_{A}^{n}(y), \beta^{n}\right\}$,
(5) $\min \left\{f_{A}^{n}\left(x \boxtimes_{2} y\right), \alpha^{n}\right\} \leq \max \left\{f_{A}^{n}(x), f_{A}^{n}(y), \beta^{n}\right\}$,
(6) $\min \left\{f_{A}^{n}\left(x \boxtimes_{3} y\right), \alpha^{n}\right\} \leq \max \left\{f_{A}^{n}(x), f_{A}^{n}(y), \beta^{n}\right\}, \forall x, y \in S$.

Example 4.1. By Example 3.1, we have

$$
\left\langle f^{p}, f^{n}\right\rangle(x)= \begin{cases}\langle 0.75,-0.45\rangle & \text { if } x=x_{1} \\ \langle 0.65,-0.35\rangle & \text { if } x=x_{2} \\ \langle 0.35,-0.15\rangle & \text { if } x=x_{3} \\ \langle 0.55,-0.25\rangle & \text { if } x=x_{4}\end{cases}
$$

Then A is a $(0.60,0.70)-B V S B S$ of S.
Theorem 4.1. The arbitrary intersection of an $(\alpha, \beta)-B V S B S$ s of S is an $(\alpha, \beta)-B V S B S$ of S.

Proof: Let $\left\{V_{i} \mid i \in I\right\}$ be a family of (α, β)-BVSBSs of S and $A=\bigcap_{i \in I} V_{i}$. Let $x, y \in S$. Then

$$
\begin{aligned}
\max \left\{f_{A}^{p}\left(x \boxtimes_{1} y\right), \alpha^{p}\right\} & =\inf _{i \in I}\left\{\max \left\{f_{V_{i}}^{p}\left(x \boxtimes_{1} y\right), \alpha^{p}\right\}\right\} \\
& \geq \inf _{i \in I}\left\{\min \left\{f_{V_{i}}^{p}(x), f_{V_{i}}^{p}(y), \beta^{p}\right\}\right\} \\
& =\min \left\{\inf _{i \in I}\left\{f_{V_{i}}^{p}(x)\right\}, \inf _{i \in I}\left\{f_{V_{i}}^{p}(y), \beta^{p}\right\}\right\} \\
& =\min \left\{f_{A}^{p}(x), f_{A}^{p}(y), \beta^{p}\right\} .
\end{aligned}
$$

Similarly,

$$
\max \left\{f_{A}^{p}\left(x \boxtimes_{2} y\right), \alpha^{p}\right\} \geq \min \left\{f_{A}^{p}(x), f_{A}^{p}(y), \beta^{p}\right\}
$$

and

$$
\max \left\{f_{A}^{p}\left(x \boxtimes_{3} y\right), \alpha^{p}\right\} \geq \min \left\{f_{A}^{p}(x), f_{A}^{p}(y), \beta^{p}\right\} .
$$

Now,

$$
\begin{aligned}
\min \left\{f_{A}^{n}\left(x \boxtimes_{1} y\right), \alpha^{n}\right\} & =\sup _{i \in I}\left\{\min \left\{f_{V_{i}}^{n}\left(x \boxtimes_{1} y\right), \alpha^{n}\right\}\right\} \\
& \leq \sup _{i \in I}\left\{\max \left\{f_{V_{i}}^{n}(x), f_{V_{i}}^{n}(y), \beta^{n}\right\}\right\} \\
& =\max \left\{\sup _{i \in I}\left\{f_{V_{i}}^{n}(x)\right\}, \sup _{i \in I}\left\{f_{V_{i}}^{n}(y), \beta^{n}\right\}\right\} \\
& =\max \left\{f_{A}^{n}(x), f_{A}^{n}(y), \beta^{n}\right\} .
\end{aligned}
$$

Similarly,

$$
\min \left\{f_{A}^{n}\left(x \boxtimes_{2} y\right), \alpha^{n}\right\} \leq \max \left\{f_{A}^{n}(x), f_{A}^{n}(y), \beta^{n}\right\}
$$

and

$$
\min \left\{f_{A}^{n}\left(x \boxtimes_{3} y\right), \alpha^{n}\right\} \leq \max \left\{f_{A}^{n}(x), f_{A}^{n}(y), \beta^{n}\right\} .
$$

Hence, A is an (α, β)-BVSBS of S.
Theorem 4.2. If A and B are any two $(\alpha, \beta)-B V S B S$ s of bisemirings S_{1} and S_{2}, respectively, then $A \times B$ is an $(\alpha, \beta)-B V S B S$ of $S_{1} \times S_{2}$.

Proof: Let A and B be two (α, β)-BVSBSs of S_{1} and S_{2}, respectively. Let $\left(x_{1}, y_{1}\right),\left(x_{2}\right.$, $\left.y_{2}\right) \in S_{1} \times S_{2}$. Then

$$
\begin{aligned}
& \max \left\{f_{A \times B}^{p}\left[\left(x_{1}, y_{1}\right) \boxtimes_{1}\left(x_{2}, y_{2}\right)\right], \alpha^{p}\right\} \\
= & \max \left\{f_{A \times B}^{p}\left(x_{1} \boxtimes_{1} x_{2}, y_{1} \boxtimes_{1} y_{2}\right), \alpha^{p}\right\} \\
= & \min \left\{\max \left\{f_{A}^{p}\left(x_{1} \boxtimes_{1} x_{2}\right), \alpha^{p}\right\}, \max \left\{f_{B}^{p}\left(y_{1} \boxtimes_{1} y_{2}\right), \alpha^{p}\right\}\right\} \\
\geq & \min \left\{\min \left\{f_{A}^{p}\left(x_{1}\right), f_{A}^{p}\left(x_{2}\right), \beta^{p}\right\}, \min \left\{f_{B}^{p}\left(y_{1}\right), f_{B}^{p}\left(y_{2}\right), \beta^{p}\right\}\right\} \\
= & \min \left\{\left\{\min \left\{f_{A}^{p}\left(x_{1}\right), f_{B}^{p}\left(y_{1}\right)\right\}, \min \left\{f_{A}^{p}\left(x_{2}\right), f_{B}^{p}\left(y_{2}\right)\right\}\right\}, \beta^{p}\right\} \\
= & \min \left\{f_{A \times B}^{p}\left(x_{1}, y_{1}\right), f_{A \times B}^{p}\left(x_{2}, y_{2}\right), \beta^{p}\right\} .
\end{aligned}
$$

Also,

$$
\max \left\{f_{A \times B}^{p}\left[\left(x_{1}, y_{1}\right) \boxtimes_{2}\left(x_{2}, y_{2}\right)\right], \alpha^{p}\right\} \geq \min \left\{f_{A \times B}^{p}\left(x_{1}, y_{1}\right), f_{A \times B}^{p}\left(x_{2}, y_{2}\right), \beta^{p}\right\}
$$

and

$$
\max \left\{f_{A \times B}^{p}\left[\left(x_{1}, y_{1}\right) \boxtimes_{3}\left(x_{2}, y_{2}\right)\right], \alpha^{p}\right\} \geq \min \left\{f_{A \times B}^{p}\left(x_{1}, y_{1}\right), f_{A \times B}^{p}\left(x_{2}, y_{2}\right), \beta^{p}\right\} .
$$

Similarly,

$$
\begin{aligned}
& \min \left\{f_{A \times B}^{n}\left[\left(x_{1}, y_{1}\right) \boxtimes_{1}\left(x_{2}, y_{2}\right)\right], \alpha^{n}\right\} \\
= & \min \left\{f_{A \times B}^{n}\left(x_{1} \boxtimes_{1} x_{2}, y_{1} \boxtimes_{1} y_{2}\right), \alpha^{n}\right\} \\
= & \max \left\{\min \left\{f_{A}^{n}\left(x_{1} \boxtimes_{1} x_{2}\right), \alpha^{n}\right\}, \min \left\{f_{B}^{n}\left(y_{1} \boxtimes_{1} y_{2}\right), \alpha^{n}\right\}\right\} \\
\leq & \max \left\{\max \left\{f_{A}^{n}\left(x_{1}\right), f_{A}^{n}\left(x_{2}\right), \beta^{n}\right\}, \max \left\{f_{B}^{n}\left(y_{1}\right), f_{B}^{n}\left(y_{2}\right), \beta^{n}\right\}\right\} \\
= & \max \left\{\left\{\max \left\{f_{A}^{n}\left(x_{1}\right), f_{B}^{n}\left(y_{1}\right)\right\}, \max \left\{f_{A}^{n}\left(x_{2}\right), f_{B}^{n}\left(y_{2}\right)\right\}\right\}, \beta^{n}\right\} \\
= & \max \left\{f_{A \times B}^{n}\left(x_{1}, y_{1}\right), f_{A \times B}^{n}\left(x_{2}, y_{2}\right), \beta^{n}\right\} .
\end{aligned}
$$

Also,

$$
\min \left\{f_{A \times B}^{n}\left[\left(x_{1}, y_{1}\right) \boxtimes_{2}\left(x_{2}, y_{2}\right)\right], \alpha^{n}\right\} \leq \max \left\{f_{A \times B}^{n}\left(x_{1}, y_{1}\right), f_{A \times B}^{n}\left(x_{2}, y_{2}\right), \beta^{n}\right\}
$$

and

$$
\min \left\{f_{A \times B}^{n}\left[\left(x_{1}, y_{1}\right) \boxtimes_{3}\left(x_{2}, y_{2}\right)\right], \alpha^{n}\right\} \leq \max \left\{f_{A \times B}^{n}\left(x_{1}, y_{1}\right), f_{A \times B}^{n}\left(x_{2}, y_{2}\right), \beta^{n}\right\}
$$

Hence, $A \times B$ is an (α, β)-BVSBS of $S_{1} \times S_{2}$.
Corollary 4.1. If $A_{1}, A_{2}, \ldots, A_{n}$ are (α, β)-BVSBSs of $S_{1}, S_{2}, \ldots, S_{n}$, respectively, then $A_{1} \times A_{2} \times \cdots \times A_{n}$ is an $(\alpha, \beta)-B V S B S$ of $S_{1} \times S_{2} \times \cdots \times S_{n}$.

Definition 4.2. Let A be a BVFS in S, the strongest (α, β)-bipolar-valued relation on S, that is an (α, β)-bipolar-valued relation on A is V given by $\max \left\{f_{V}^{p}(x, y), \alpha^{p}\right\}=$ $\min \left\{f_{A}^{p}(x), f_{A}^{p}(y), \beta^{p}\right\}$ and $\min \left\{f_{V}^{n}(x, y), \alpha^{n}\right\}=\max \left\{f_{A}^{n}(x), f_{A}^{n}(y), \beta^{n}\right\}$ for all $x, y \in S$.
Theorem 4.3. Let A be an $(\alpha, \beta)-B V S B S$ of S and V be the strongest (α, β)-bipolarvalued relation on S. Then A is an $(\alpha, \beta)-B V S B S$ of S if and only if V is an $(\alpha, \beta)-B V S B S$ of $S \times S$.
Proof: The proof is similar to Theorem 3.3.
Theorem 4.4. If $f_{\tilde{\alpha}}$ is an $(\alpha, \beta)-B V S B S$ of S, then the nonempty sets f_{α}^{p} and f_{α}^{n} are SBSs of S, where $f_{\alpha}^{p}=\left\{p \in S \mid f^{p}(p)>\alpha^{p}\right\}$ and $f_{\alpha}^{n}=\left\{p \in S \mid f^{n}(p)<\alpha^{n}\right\}$.

Proof: Suppose that $f_{\tilde{\alpha}}$ is an (α, β)-BVSBS of S. Let f_{α}^{p} be an $\left(\alpha^{p}, \beta^{p}\right)$-BVSBS of S. Let $p, q \in S$ be such that $p, q \in f_{\alpha}^{p}$. Then $f^{p}(p)>\alpha^{p}$ and $f^{p}(q)>\alpha^{p}$. Now, $\max \left\{f^{p}\left(p \boxtimes_{1}\right.\right.$ $\left.q), \alpha^{p}\right\} \geq \min \left\{f^{p}(p), f^{p}(q), \beta^{p}\right\}>\min \left\{\alpha^{p}, \alpha^{p}, \beta^{p}\right\}=\alpha^{p}$. Hence, $f^{p}\left(p \boxtimes_{1} q\right)>\alpha^{p}$. It shows that $p \boxtimes_{1} q \in f_{\alpha}^{p}$. Similarly, $p \boxtimes_{2} q \in f_{\alpha}^{p}$ and $p \boxtimes_{3} q \in f_{\alpha}^{p}$. Therefore, f_{α}^{p} is an SBS of S. Let f_{α}^{n} be an $\left(\alpha^{n}, \beta^{n}\right)$-BVSBS of S. Let $p, q \in S$ be such that $p, q \in f_{\alpha}^{n}$. Then $f^{n}(p)<\alpha^{n}$ and $f^{n}(q)<\alpha^{n}$. Now, $\min \left\{f^{n}\left(p \boxtimes_{1} q\right), \alpha^{n}\right\} \leq \max \left\{f^{n}(p), f^{n}(q), \beta^{n}\right\}<\max \left\{\alpha^{n}, \alpha^{n}, \beta^{n}\right\}=\alpha^{n}$. Hence, $f^{n}\left(p \boxtimes_{1} q\right)<\alpha^{n}$. It shows that $p \boxtimes_{1} q \in f_{\alpha}^{n}$. Similarly, $p \boxtimes_{2} q \in f_{\alpha}^{n}$ and $p \boxtimes_{3} q \in f_{\alpha}^{n}$. Therefore, f_{α}^{n} is an SBS of S.

Theorem 4.5. A non-empty subset A of S is an $S B S$ of S if and only if the BVFS $\tilde{f}=\left\langle f_{A}^{p}, f_{A}^{n}\right\rangle$ of S, and then is an $(\alpha, \beta)-B V S B S$ of S, where

$$
f_{A}^{p}(p)=\left\{\begin{array}{ll}
\geq \beta^{p} & \text { for all } p \in A \\
\alpha^{p} & \text { otherwise }
\end{array}, \quad f_{A}^{n}(p)= \begin{cases}\leq \beta^{n} & \text { for all } p \in A \\
\alpha^{n} & \text { otherwise }\end{cases}\right.
$$

Proof: Suppose that $\tilde{f}=\left\langle f_{A}^{p}, f_{A}^{n}\right\rangle$ is an (α, β)-BVSBS of S. Let $p, q \in A$. Then $f_{A}^{p}(p) \geq \beta^{p}, f_{A}^{p}(q) \geq \beta^{p}$ and $f_{A}^{n}(p) \leq \beta^{n}, f_{A}(q) \leq \beta^{n}$. Now, $\max \left\{f_{A}^{p}\left(p \boxtimes_{1} q\right), \alpha^{p}\right\} \geq$ $\min \left\{f_{A}^{p}(p), f_{A}^{p}(q), \beta^{p}\right\} \geq \min \left\{\beta^{p}, \beta^{p}, \beta^{p}\right\}=\beta^{p}$ and $\min \left\{f_{A}^{n}\left(p \boxtimes_{1} q\right), \alpha^{n}\right\} \leq \max \left\{f_{A}^{n}(p)\right.$, $\left.f_{A}^{n}(q), \beta^{n}\right\} \leq \max \left\{\beta^{n}, \beta^{n}, \beta^{n}\right\}=\beta^{n}$. It follows that $p \boxtimes_{1} q \in A$. Similarly, $p \boxtimes_{2} q \in A$ and $p \boxtimes_{3} q \in A$. If we choose $p, q \notin A$, then $p \boxtimes_{1} q \in A, p \boxtimes_{2} q \in A$, and $p \boxtimes_{3} q \in A$. Therefore, A is an SBS of S.

Conversely, suppose that A is an SBS of S. Let $p, q \in A$. Then $p \boxtimes_{1} q \in A$. Hence, $f_{A}^{p}\left(p \boxtimes_{1} q\right) \geq \beta^{p}$ and $f_{A}^{n}\left(p \boxtimes_{1} q\right) \leq \beta^{n}$. Therefore, $\max \left\{f_{A}^{p}\left(p \boxtimes_{1} q\right), \alpha^{p}\right\} \geq \beta^{p}=\min \left\{f_{A}^{p}(p)\right.$, $\left.f_{A}^{p}(q), \beta^{p}\right\}$ and $\min \left\{f_{A}^{n}\left(p \boxtimes_{1} q\right), \alpha^{n}\right\} \leq \beta^{n}=\max \left\{f_{A}^{n}(p), f_{A}^{n}(q), \beta^{n}\right\}$. If $p \notin A$ or $q \notin A$, then $\min \left\{f_{A}^{p}(p), f_{A}^{p}(q), \beta^{p}\right\}=\alpha^{p}$ and $\max \left\{f_{A}^{n}(p), f_{A}^{n}(q), \beta^{n}\right\}=\alpha^{n}$. That is $\max \left\{f_{A}^{p}\left(p \boxtimes_{1}\right.\right.$ $\left.q), \alpha^{p}\right\} \geq \min \left\{f_{A}^{p}(p), f_{A}^{p}(q), \beta^{p}\right\}$ and $\min \left\{f_{A}^{n}\left(p \boxtimes_{1} q\right), \alpha^{n}\right\} \leq \max \left\{f_{A}^{n}(p), f_{A}^{n}(q), \beta^{n}\right\}$. Similarly, other two operations \boxtimes_{2} and \boxtimes_{3} are true. Therefore, \tilde{f} is an (α, β)-BVSBS of S.

Theorem 4.6. A BVFS $\tilde{f}=\left\langle f_{A}^{p}, f_{A}^{n}\right\rangle$ is an $(\alpha, \beta)-B V S B S$ of S if and only if each nonempty level subset $\tilde{f}^{(t, s)}$ is an SBS of S for all $t \in\left(\alpha^{p}, \beta^{p}\right]$ and $s \in\left(\alpha^{n}, \beta^{n}\right]$.

Proof: Suppose that \tilde{f} is an (α, β)-BVSBS of S. For each $t \in\left(\alpha^{p}, \beta^{p}\right]$ and $s \in\left(\alpha^{n}, \beta^{n}\right]$ and $p_{1}, p_{2} \in \tilde{f}^{(t, s)}$, we have $f_{A}^{p}\left(p_{1}\right) \geq t, f_{A}^{p}\left(p_{2}\right) \geq t$ and $f_{A}^{n}\left(p_{1}\right) \leq s, f_{A}^{n}\left(p_{2}\right) \leq s$. Now, $\max \left\{f_{A}^{p}\left(p_{1} \boxtimes_{1} p_{2}\right), \alpha^{p}\right\} \geq \min \left\{f_{A}^{p}\left(p_{1}\right), f_{A}^{p}\left(p_{2}, \beta^{p}\right)\right\} \geq t$ and $\max \left\{f_{A}^{p}\left(p_{1} \boxtimes_{2} p_{2}\right), \alpha^{p}\right\} \geq t$ and $\max \left\{f_{A}^{p}\left(p_{1} \boxtimes_{3} p_{2}\right), \alpha^{p}\right\} \geq t$. Similarly,

$$
\left.\min \left\{f_{A}^{n}\left(p_{1} \boxtimes_{1} p_{2}\right), \alpha^{n}\right\} \leq \max \left\{f_{A}^{n}\left(p_{1}\right), f_{A}^{n}\left(p_{2}\right), \beta^{n}\right)\right\} \leq s, \min \left\{f_{A}^{n}\left(p_{1} \boxtimes_{2} p_{2}\right), \alpha^{n}\right\} \leq s
$$

and

$$
\min \left\{f_{A}^{n}\left(p_{1} \boxtimes_{3} p_{2}\right), \alpha^{n}\right\} \leq s
$$

This implies that $p_{1} \boxtimes_{1} p_{2} \in \tilde{f}^{(t, s)}, p_{1} \boxtimes_{2} p_{2} \in \tilde{f}^{(t, s)}$, and $p_{1} \boxtimes_{3} p_{2} \in \tilde{f}^{(t, s)}$. Therefore, $\tilde{f}^{(t, s)}$ is an SBS of S for each $t \in\left(\alpha^{p}, \beta^{p}\right]$ and $s \in\left(\alpha^{n}, \beta^{n}\right]$.

Conversely, suppose that $\tilde{f}(t, s)$ is any SBS of S for each $t \in\left(\alpha^{p}, \beta^{p}\right]$ and $s \in\left(\alpha^{n}, \beta^{n}\right]$. Suppose if there exist $p_{1}, p_{2} \in S$ such that $\max \left\{f_{A}^{p}\left(p_{1} \boxtimes_{1} p_{2}\right), \alpha^{p}\right\}<\min \left\{f_{A}^{p}\left(p_{1}\right), f_{A}^{p}\left(p_{2}\right)\right.$, $\left.\beta^{p}\right\}$. Select $t \in[0,1]$ and $s \in[-1,0]$ such that $\max \left\{f_{A}^{p}\left(p_{1} \boxtimes_{1} p_{2}\right), \alpha^{p}\right\}<t \leq \min \left\{f_{A}^{p}\left(p_{1}\right)\right.$, $\left.f_{A}^{p}\left(p_{2}\right), \beta^{p}\right\}$ and $\min \left\{f_{A}^{n}\left(p_{1} \boxtimes_{1} p_{2}\right), \alpha^{n}\right\}>s \geq \max \left\{f_{A}^{n}\left(p_{1}\right), f_{A}^{n}\left(p_{2}\right), \beta^{n}\right\}$. Then $p_{1}, p_{2} \in \tilde{f}^{(t, s)}$, but $p_{1} \boxtimes_{1} p_{2} \notin \tilde{f}^{(t, s)}$. This contradicts to that $\tilde{f}(t, s)$ is an SBS of S. Hence, $\max \left\{f_{A}^{p}\left(p_{1} \boxtimes_{1}\right.\right.$ $\left.\left.p_{2}\right), \alpha^{p}\right\} \geq \min \left\{f_{A}^{p}\left(p_{1}\right), f_{A}^{p}\left(p_{2}\right), \beta^{p}\right\}$ and $\min \left\{f_{A}^{n}\left(p_{1} \boxtimes_{1} p_{2}\right), \alpha^{n}\right\} \leq \max \left\{f_{A}^{n}\left(p_{1}\right), f_{A}^{n}\left(p_{2}\right), \beta^{n}\right\}$. Similar proof for other two operations. Hence, \tilde{f} is an (α, β)-BVSBS of S.

Corollary 4.2. Every $B V S B S$ is an $(\alpha, \beta)-B V S B S$ of S by taking $\alpha^{p}=0, \beta^{p}=1$ and $\alpha^{n}=0, \beta^{n}=-1$. However, converse is not true by the following example.

Example 4.2. For Example 3.1, we define the BVFS \tilde{f} as follows:

$$
\left\langle f_{A}^{p}, f_{A}^{n}\right\rangle(x)= \begin{cases}\langle 0.80,-0.60\rangle & \text { if } x=a_{1} \\ \langle 0.70,-0.50\rangle & \text { if } x=a_{2} \\ \langle 0.50,-0.30\rangle & \text { if } x=a_{3} \\ \langle 0.30,-0.20\rangle & \text { if } x=a_{4}\end{cases}
$$

Then \tilde{f} is a $(0.65,0.75)$-BVSBS of S, but not a BVSBS. Since $f_{A}^{p}\left(a_{3} \boxtimes_{3} a_{3}\right)=f_{A}^{p}\left(a_{4}\right)=$ $0.30 \nsupseteq \min \left\{f_{A}^{p}\left(a_{3}\right), f_{A}^{p}\left(a_{3}\right)\right\}=0.50$ and $f_{A}^{n}\left(a_{3} \boxtimes_{3} a_{3}\right)=f_{A}^{n}\left(a_{4}\right)=-0.20 \not \leq \max \left\{f_{A}^{n}\left(a_{3}\right)\right.$, $\left.f_{A}^{n}\left(a_{3}\right)\right\}=-0.30$.

Theorem 4.7. Let $\left(S_{1}, \oplus_{1}, \oplus_{2}, \oplus_{3}\right)$ and $\left(S_{2}, \odot_{1}, \odot_{2}, \odot_{3}\right)$ be any two bisemirings. The homomorphic image of $(\alpha, \beta)-B V S B S$ of S_{1} is an $(\alpha, \beta)-B V S B S$ of S_{2}.

Proof: Let $\varphi: S_{1} \rightarrow S_{2}$ be any homomorphism. Then $\varphi\left(x \oplus_{1} y\right)=\varphi(x) \odot_{1} \varphi(y), \varphi\left(x \oplus_{2}\right.$ $y)=\varphi(x) \odot_{2} \varphi(y)$, and $\varphi\left(x \oplus_{3} y\right)=\varphi(x) \odot_{3} \varphi(y)$ for all $x, y \in S_{1}$. Let $V=\varphi(A)$, where A is any (α, β)-BVSBS of S_{1}. Let $\varphi(x), \varphi(y) \in S_{2}$. Let $x \in \varphi^{-1}(\varphi(x))$ and $y \in \varphi^{-1}(\varphi(y))$ be such that $f_{A}^{p}(x)=\sup _{z \in \varphi^{-1}(\varphi(x))} f_{A}^{p}(z)$ and $f_{A}^{p}(y)=\sup _{z \in \varphi^{-1}(\varphi(y))} f_{A}^{p}(z)$. Now,

$$
\begin{aligned}
\max \left\{f_{V}^{p}\left(\varphi(x) \odot_{1} \varphi(y)\right), \alpha^{p}\right\} & =\max \left\{\sup _{z^{\prime} \in \varphi^{-1}\left(\varphi(x) \odot_{1} \varphi(y)\right)} f_{A}^{p}\left(z^{\prime}\right), \alpha^{p}\right\} \\
& =\max \left\{\begin{array}{l}
\left.\sup ^{p} f_{A}^{p}\left(z^{\prime}\right), \alpha^{p}\right\} \\
z^{\prime} \in \varphi^{-1}(\varphi(x \oplus 1 y))
\end{array}\right. \\
& =\max \left\{f_{A}^{p}\left(x \oplus_{1} y\right), \alpha^{p}\right\} \\
& \geq \min \left\{f_{A}^{p}(x), f_{A}^{p}(y), \beta^{p}\right\} \\
& =\min \left\{f_{V}^{p} \varphi(x), f_{V}^{p} \varphi(y), \beta^{p}\right\} .
\end{aligned}
$$

Thus, $\max \left\{f_{V}^{p}\left(\varphi(x) \odot_{1} \varphi(y)\right), \alpha^{p}\right\} \geq \min \left\{f_{V}^{p} \varphi(x), f_{V}^{p} \varphi(y), \beta^{p}\right\}$. Similarly,

$$
\max \left\{f_{V}^{p}\left(\varphi(x) \odot_{2} \varphi(y)\right), \alpha^{p}\right\} \geq \min \left\{f_{V}^{p} \varphi(x), f_{V}^{p} \varphi(y), \beta^{p}\right\}
$$

and

$$
\max \left\{f_{V}^{p}\left(\varphi(x) \odot_{3} \varphi(y)\right), \alpha^{p}\right\} \geq \min \left\{f_{V}^{p} \varphi(x), f_{V}^{p} \varphi(y), \beta^{p}\right\}
$$

Let $x \in \varphi^{-1}(\varphi(x))$ and $y \in \varphi^{-1}(\varphi(y))$ be such that $f_{A}^{n}(x)=\inf _{z \in \varphi^{-1}(\varphi(x))} f_{A}^{n}(z)$ and $f_{A}^{n}(y)=\inf _{z \in \varphi^{-1}(\varphi(y))} f_{A}^{n}(z)$. Now,

$$
\begin{aligned}
\min \left\{f_{V}^{n}\left(\varphi(x) \odot_{1} \varphi(y)\right), \alpha^{n}\right\} & =\min \left\{\inf _{z^{\prime} \in \varphi^{-1}\left(\varphi(x) \odot_{1} \varphi(y)\right)} f_{A}^{n}\left(z^{\prime}\right), \alpha^{n}\right\} \\
& =\min \left\{\inf _{z^{\prime} \in \varphi^{-1}(\varphi(x \oplus 1 y))} f_{A}^{n}\left(z^{\prime}\right), \alpha^{n}\right\} \\
& =\min \left\{f_{A}^{n}\left(x \oplus_{1} y\right), \alpha^{n}\right\} \\
& \leq \max \left\{f_{A}^{n}(x), f_{A}^{n}(y), \beta^{n}\right\} \\
& =\max \left\{f_{V}^{n} \varphi(x), f_{V}^{n} \varphi(y), \beta^{n}\right\} .
\end{aligned}
$$

Thus, $\min \left\{f_{V}^{n}\left(\varphi(x) \odot_{1} \varphi(y)\right), \alpha^{n}\right\} \leq \max \left\{f_{V}^{n} \varphi(x), f_{V}^{n} \varphi(y), \beta^{n}\right\}$. Similarly,

$$
\min \left\{f_{V}^{n}\left(\varphi(x) \odot_{2} \varphi(y)\right), \alpha^{n}\right\} \leq \max \left\{f_{V}^{n} \varphi(x), f_{V}^{n} \varphi(y), \beta^{n}\right\}
$$

and

$$
\min \left\{f_{V}^{n}\left(\varphi(x) \odot_{3} \varphi(y)\right), \alpha^{n}\right\} \leq \max \left\{f_{V}^{n} \varphi(x), f_{V}^{n} \varphi(y), \beta^{n}\right\}
$$

Hence, V is an (α, β)-BVSBS of S_{2}.
Theorem 4.8. Let $\left(S_{1}, \oplus_{1}, \oplus_{2}, \oplus_{3}\right)$ and $\left(S_{2}, \odot_{1}, \odot_{2}, \odot_{3}\right)$ be any two bisemirings. The homomorphic preimage of $(\alpha, \beta)-B V S B S$ of S_{2} is an (α, β)-BVSBS of S_{1}.

Proof: Let $\varphi: S_{1} \rightarrow S_{2}$ be any homomorphism. Then $\varphi\left(x \oplus_{1} y\right)=\varphi(x) \odot_{1} \varphi(y)$, $\varphi\left(x \oplus_{2} y\right)=\varphi(x) \odot_{2} \varphi(y)$, and $\varphi\left(x \oplus_{3} y\right)=\varphi(x) \odot_{3} \varphi(y)$ for all $x, y \in S_{1}$. Let $V=$ $\varphi(A)$, where V is any (α, β)-BVSBS of S_{2}. Let $x, y \in S_{1}$. Then $\max \left\{f_{A}^{p}\left(x \oplus_{1} y\right), \alpha^{p}\right\}=$
$\max \left\{f_{V}^{p}\left(\varphi\left(x \oplus_{1} y\right)\right), \alpha^{p}\right\}=\max \left\{f_{V}^{p}\left(\varphi(x) \odot_{1} \varphi(y)\right), \alpha^{p}\right\} \geq \min \left\{f_{V}^{p} \varphi(x), f_{V}^{p} \varphi(y), \beta^{p}\right\}=$ $\min \left\{f_{A}^{p}(x), f_{A}^{p}(y), \beta^{p}\right\}$. Thus, $\max \left\{f_{A}^{p}\left(x \oplus_{1} y\right), \alpha^{p}\right\} \geq \min \left\{f_{A}^{p}(x), f_{A}^{p}(y), \beta^{p}\right\}$. Similarly,

$$
\max \left\{f_{A}^{p}\left(x \oplus_{2} y\right), \alpha^{p}\right\} \geq \min \left\{f_{A}^{p}(x), f_{A}^{p}(y), \beta^{p}\right\}
$$

and

$$
\max \left\{f_{A}^{p}\left(x \oplus_{3} y\right), \alpha^{p}\right\} \geq \min \left\{f_{A}^{p}(x), f_{A}^{p}(y), \beta^{p}\right\} .
$$

Now, $\min \left\{f_{A}^{n}\left(x \oplus_{1} y\right), \alpha^{n}\right\}=\min \left\{f_{V}^{n}\left(\varphi\left(x \oplus_{1} y\right)\right), \alpha^{n}\right\}=\min \left\{f_{V}^{n}\left(\varphi(x) \odot_{1} \varphi(y)\right), \alpha^{n}\right\} \leq$ $\max \left\{f_{V}^{n} \varphi(x), f_{V}^{n} \varphi(y), \beta^{n}\right\}=\max \left\{f_{A}^{n}(x), f_{A}^{n}(y), \beta^{n}\right\}$. Thus,

$$
\min \left\{f_{A}^{n}\left(x \oplus_{1} y\right), \alpha^{n}\right\} \leq \max \left\{f_{A}^{n}(x), f_{A}^{n}(y), \beta^{n}\right\} .
$$

Similarly,

$$
\min \left\{f_{A}^{n}\left(x \oplus_{2} y\right), \alpha^{n}\right\} \leq \max \left\{f_{A}^{n}(x), f_{A}^{n}(y), \beta^{n}\right\}
$$

and

$$
\min \left\{f_{A}^{n}\left(x \oplus_{3} y\right), \alpha^{n}\right\} \leq \max \left\{f_{A}^{n}(x), f_{A}^{n}(y), \beta^{n}\right\} .
$$

Hence, A is an (α, β)-BVSBS of S_{1}.
5. ($\boldsymbol{\alpha}, \boldsymbol{\beta}$)-Bipolar-Valued Normal Subbisemirings. In what follows that, let (α^{p}, β^{p}) $\in[0,1]$ and $\left(\alpha^{n}, \beta^{n}\right) \in[-1,0]$ be such that $0 \leq \alpha^{p}<\beta^{p} \leq 1$ and $-1 \leq \beta^{n}<\alpha^{n} \leq 0$, both $(\alpha, \beta) \in[0,1]$ are arbitrary fixed.

Definition 5.1. An (α, β)-BVSBS A of S is said to be an (α, β)-bipolar-valued normal subbisemiring $((\alpha, \beta)-B V N S B S)$ of S if it satisfies the following conditions:
(1) $f_{A}^{p}\left(x \boxtimes_{1} y\right)=f_{A}^{p}\left(y \boxtimes_{1} x\right)$,
(2) $f_{A}^{p}\left(x \boxtimes_{2} y\right)=f_{A}^{p}\left(y \boxtimes_{2} x\right)$,
(3) $f_{A}^{p}\left(x \boxtimes_{3} y\right)=f_{A}^{p}\left(y \boxtimes_{3} x\right)$,
(4) $f_{A}^{n}\left(x \boxtimes_{1} y\right)=f_{A}^{n}\left(y \boxtimes_{1} x\right)$,
(5) $f_{A}^{n}\left(x \boxtimes_{2} y\right)=f_{A}^{n}\left(y \boxtimes_{2} x\right)$,
(6) $f_{A}^{n}\left(x \boxtimes_{3} y\right)=f_{A}^{n}\left(y \boxtimes_{3} x\right), \forall x, y \in S$.

Theorem 5.1.

(1) The intersection of a family of BVNSBSs of S is a BVNSBS of S.
(2) The intersection of a family of $(\alpha, \beta)-B V N S B S s$ of S is an $(\alpha, \beta)-B V N S B S$ of S.

Theorem 5.2.

(1) If $A_{1}, A_{2}, \ldots, A_{n}$ are $B V N S B S$ of bisemirings $S_{1}, S_{2}, \ldots, S_{n}$, respectively, then $A_{1} \times$ $A_{2} \times \cdots \times A_{n}$ is a $B V N S B S$ of $S_{1} \times S_{2} \times \cdots \times S_{n}$.
(2) If $A_{1}, A_{2}, \ldots, A_{n}$ are $(\alpha, \beta)-B V N S B S$ of bisemirings $S_{1}, S_{2}, \ldots, S_{n}$, respectively, then $A_{1} \times A_{2} \times \cdots \times A_{n}$ is an $(\alpha, \beta)-B V N S B S$ of $S_{1} \times S_{2} \times \cdots \times S_{n}$.

Theorem 5.3.

(1) Let A be any $B V N S B S$ of S and V be the strongest bipolar-valued relation on S. Then A is a BVNSBS of S if and only if V is a $B V N S B S$ of $S \times S$.
(2) Let A be any (α, β)-BVNSBS of S and V be the strongest (α, β)-bipolar-valued relation on S. Then A is an $(\alpha, \beta)-B V N S B S$ of S if and only if V is an $(\alpha, \beta)-B V N S B S$ of $S \times S$.

Theorem 5.4. Let $\left(S_{1}, \oplus_{1}, \oplus_{2}, \oplus_{3}\right)$ and $\left(S_{2}, \odot_{1}, \odot_{2}, \odot_{3}\right)$ be any two bisemirings.
(1) The homomorphic image of any BVNSBS of S_{1} is a BVNSBS of S_{2}.
(2) The homomorphic image of any $(\alpha, \beta)-B V N S B S$ of S_{1} is an $(\alpha, \beta)-B V N S B S$ of S_{2}.

Theorem 5.5. Let $\left(S_{1}, \oplus_{1}, \oplus_{2}, \oplus_{3}\right)$ and $\left(S_{2}, \odot_{1}, \odot_{2}, \odot_{3}\right)$ be any two bisemirings.
(1) The homomorphic preimage of any $B V N S B S$ of S_{2} is a $B V N S B S$ of S_{1}.
(2) The homomorphic preimage of any $(\alpha, \beta)-B V N S B S$ of S_{2} is an $(\alpha, \beta)-B V N S B S$ of S_{1}.

Acknowledgment. This work was supported by the revenue budget in 2022, School of Science, University of Phayao, Thailand.

REFERENCES

[1] S. J. Golan, Semirings and Their Applications, Kluwer Academic Publishers, London, 1999.
[2] L. A. Zadeh, Fuzzy sets, Information and Control, vol.8, no.3, pp.338-353, 1965.
[3] J. Ahsan, J. N. Mordeson and M. Shabir, Fuzzy Semirings with Applications to Automata Theory, Springer Heidelberg New York Dordrecht, London, 2012.
[4] K. M. Lee, Bipolar-valued fuzzy sets and their operations, Proc. of Int. Conf. Intelligent Technologies, Bangkok, Thailand, pp.307-312, 2000.
[5] M. Palanikumar and K. Arulmozhi, On various ideals and its applications of bisemirings, Gedrag and Organisatie Review, vol.33, no.2, pp.522-533, 2020.
[6] M. Palanikumar and K. Arulmozhi, On vague subbisemirings of bisemirings, Bulletin of the International Mathematical Virtual Institute, vol.11, no.3, pp.419-428, 2021.
[7] M. Palanikumar and K. Arulmozhi, On new ways of various ideals in ternary semigroups, Matrix Science Mathematic, vol.4, no.1, pp.6-9, 2020.
[8] M. Palanikumar and K. Arulmozhi, On new approach of various fuzzy ideals in ordered G-semigroups, Gedrag and Organisatie Review, vol.33, no.2, pp.331-342, 2020.
[9] M. Palanikumar and K. Arulmozhi, On various tri-ideals in ternary semirings, Bulletin of the International Mathematical Virtual Institute, vol.11, no.1, pp.79-90, 2021.
[10] J. Ahsan, K. Saifullah and F. Khan, Fuzzy semirings, Fuzzy Sets and Systems, vol.60, pp.309-320, 1993.
[11] M. K. Sen and S. Ghosh, An introduction to bisemirings, Asian Bulletin of Mathematics, vol.28, no.3, pp.547-559, 2001.
[12] F. Hussian, R. M. Hashism, A. Khan and M. Naeem, Generalization of bisemirings, International Journal of Computer Science and Information Security, vol.14, no.9, pp.275-289, 2016.
[13] M. Palanikumar and A. Iampan, Spherical Fermatean interval valued fuzzy soft set based on multi criteria group decision making, International Journal of Innovative Computing, Information and Control, vol.18, no.2, pp.607-619, 2022.
[14] M. Palanikumar and A. Iampan, A novel approach to decision making based on type-II generalized Fermatean bipolar fuzzy soft sets, International Journal of Innovative Computing, Information and Control, vol.18, no.3, pp.769-781, 2022.
[15] M. Palanikumar, A. Iampan and L. J. Manavalan, M-bi-base generator of ordered Γ-semigroups, ICIC Express Letters, Part B: Applications, vol.13, no.8, pp.795-802, 2022.
[16] M. Palanikumar and K. Arulmozhi, (α, β)-neutrosophic subbisemiring of bisemiring, Neutrosophic Sets and Systems, vol.48, pp.368-385, 2022.
[17] M. Palanikumar, K. Arulmozhi, A. Iampan and K. Rangarajan, Multiple attribute decision-making based on sine trigonometric Fermatean normal fuzzy aggregation operator, International Journal of Innovative Computing, Information and Control, vol.18, no.5, pp.1431-1444, 2022.
[18] M. Palanikumar and K. Arulmozhi, On intuitionistic fuzzy normal subbisemiring of bisemiring, Nonlinear Studies, vol.28, no.3, pp.1-7, 2021.
[19] T. Gaketem and A. Iampan, Essential UP-ideals and t-essential fuzzy UP-ideals of UP-algebras, ICIC Express Letters, vol.15, no.12, pp.1283-1289, 2021.

Author Biography

M. Palanikumar works at Department of Mathematics, Saveetha School of Engineering, Saveetha University, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu, Chennai, India. He received his B.Sc., M.Sc., and M.Phil. degrees in Mathematics from affiliated to Madurai Kamaraj University, Madurai, India and Ph.D. degree from Department of Mathematics, Annamalai University, India. He has published more than 45 research papers in various international journals and has one international book published. His areas of interest include algebraic theory, such as semigroup theory, ring theory, semiring theory, fuzzy algebraic theory, and decision making with applications.

Aiyared Iampan is an Associate Professor at Department of Mathematics, School of Science, University of Phayao, Phayao, Thailand. He received his B.S., M.S., and Ph.D. degrees in Mathematics from Naresuan University, Phitsanulok, Thailand, under the thesis advisor of Professor Dr. Manoj Siripitukdet. His areas of interest include algebraic theory of semigroups, ternary semigroups, and Γ-semigroups, lattices and ordered algebraic structures, fuzzy algebraic structures, and logical algebras. He was the founder of the Group for Young Algebraists in University of Phayao in 2012 and one of the co-founders of the Fuzzy Algebras and DecisionMaking Problems Research Unit in University of Phayao in 2021.

