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Abstract. Network centrality metrics based on heuristics which work as a guideline on
removing vertices is a vital topic for the research of network robustness. In this paper,
we analyze the correlation and difference between 12 popular centrality metrics among
three distinct network models, including the correlation analysis and granularity anal-
ysis. We also concern about the destructiveness of these centrality metrics when they
are used as attack strategies. The results show that most of the centrality metrics are
highly correlated with each other across three network models. The granularity analysis
on centrality metrics is also considered in this paper. The experiment results also ver-
ify the previous conclusion that scale free networks are more vulnerable to intentional
attack than other networks. We observe that more correlated centrality metrics would
cause more similar damage to network connectivity; at the meantime, we also find that
the attack strategies based on few centrality metrics could destroy networks very quickly.
All these results inspire us that there is a paradigm that could detect the attack strategy
with strong destructiveness for distinct networks by combining the highly correlated and
highly destructive metrics.
Keywords: Complex networks, Correlation analysis, Network models, Attack strate-
gies, Granularity analysis

1. Introduction. Complex network theory gives us a series of methods to model and
investigate various real-world systems [1], including many large-scale infrastructure net-
works [2, 3, 4, 5], such as the Internet, power grids, and transportation networks. Indeed,
the study of complex networks is inspired by empirical analysis of real networks. Erdös
and Rényi [6] introduced random network model in 1959 which is called Erdös-Rényi (ER)
random network. And Watts and Strogatz [7] and Barabási and Albert [8] described the
collective dynamics of small-world network which is called Watts-Strogatz (WS) small-
world network, and the emergence of scaling in random scale-free network which is called
Barabási-Albert (BA) scale-free network. A small-world network is structured with a high
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clustering coefficient and small average shortest distance, while a scale-free network is a
type of network in which the degree distribution of vertices obeys the power-law distri-
bution. Research on the complex networks has been mounting steadily up a number of
years; however, there still remains much to be desired for the development complex net-
work. We know that human life is dependent on many critical infrastructure networks,
while a slight failure of these infrastructure networks may bring the ordinary activities
of human life to a halt. For example, a traffic jam caused by a traffic accident on one
expressway can cause the collapse of multiple expressways. The functionality of complex
networks has much reliance on their structural robustness [9], i.e., the ability to maintain
sufficient connectivity when a subset of their vertices or edges is removed.
The research of the robustness of a network attracts many interests in recent years.

Albert et al. [10] first proposed two types of failures, the first one is random attack, and
the other is intentional attack. This paper found that the scale-free networks are incred-
ible vulnerable when intentional attack happened. This result inspired many researchers
to do an increasing number of studies on the robustness of networks [11, 12, 13]. For
intentional vertices attack, most researchers remove the vertices by their importance rank
based on heuristics which is called centrality metric. Centrality metrics [14, 15, 16, 17] can
evaluate the importance of the vertices based on their influence over the network topolog-
ical construction and connectivity. Magoni [2] showed a few essential centrality metrics
that could be used as the guideline on removing vertices, including degree centrality and
betweenness centrality. Newman [18] based on the betweenness centrality presented the
flow betweenness centrality by introducing a random walk. To deal with the high compu-
tational complexity of global information, Kermarrec et al. [19] proposed the second-order
centrality. Most real-world networks security problems can be regarded as the robustness
of the networks.
To research the network robustness, some researchers pay attention to the attack strate-

gies on the basis of centrality metrics. Most of the researchers believe that high-complexity
metrics can be replaced by high correlated but low-complexity metrics. Valente et al.
[20] found strong but varied correlations among nine popular centrality measures on 58
real-world networks. On the research of 15 centrality measures on 68 real-world graphs,
Baig and Akoglu [21] also found that these strategies are well correlated across different
methodologies including the disruption level that they caused. Besides the correlations of
8 centrality metrics, Grando et al. [22] studied the granularity of these metrics, and found
that some of them outmatch the others in granularity. Then they presented a regression
model [23] generated by the neural network that could get the approximate values of
centrality metrics, but they did not consider the destructive effect when the centrality
metrics guiding removing the vertices. Hasson and Hussein [24] achieved the correlation
analysis study for centrality metrics on six estimated centrality measures for three dif-
ferent datasets in order to find high correlated alternative measures for high-complexity
metrics.
Although some significant contributions have been studied by these excellent research-

ers, there are still many questions under discussion. Compared with previous researches,
this paper tries to answer the following questions. First, can we find a new method to
evaluate the correlations between some mainstream centrality metrics from a statistics
perspective? Second, if yes for the first question, are their correlations constant among
distinct network models? Third, is there any relationship between the destructive level
and their correlations among distinct network models when they are used as attacking
guidelines? In other words, could highly correlated metrics cause the similar destructive-
ness? Fourth, is there any relationship between the most destructive centrality guideline
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and the network model type? The four questions are approached for our further work
about getting the most destructive attacking guideline on distinct networks.

The contributions of this paper are as follows.

• In recent years, researchers have introduced correlation analysis methods in statis-
tics, such as Pearson correlation coefficient and Kendall rank correlation coefficient,
into the study of the degree of correlation between central indicators. However, no
researchers are concerned about whether these methods can effectively evaluate the
degree of correlation between centrality indicators. The main research content of this
paper is to propose a more suitable PCA-based method for evaluating the correlation
degree between centrality indicators, and compare the effectiveness of this method
with traditional correlation analysis methods in statistics used in previous studies in
evaluating the correlation degree between centrality indicators.

• We adopt the granularity property to evaluate the differentiate ability of centrality
metrics among distinct network models. We observe that more correlated centrality
metrics would cause more similar damage to network connectivity, and we find that
the attack strategies based on few centrality metrics could destroy networks very
quickly. We find that there is a paradigm that could detect the attack strategy with
strong destructiveness for distinct networks by combining the highly correlated and
highly destructive metrics.

The remainder of this paper is organized as follows. In Section 2, we give the three
popular network models in brief: ER random network, WS small-world network and BA
scale-free network. In Section 3, we detail the 12 popular centrality metrics that can
be used as a guideline on removing vertices. In Section 4, we introduce the principal
component analysis (PCA) to quantify the correlations between these centrality metrics
from a statistical perspective, and the granularity analysis method which could evaluate
the differentiate ability of centrality measures when they are used to rank the importance
of vertices. In Section 5, we present the robustness measures: the relative size of the largest
connected component (LCC), robustness index R and vulnerability index V. In Section
6, simulation results and discussions are presented. Finally, we conclude the implications
of our results in Section 7.

2. Network Models. Consider that an undirected network is given by a pair G =
{V,E}. V = {1, . . . , N} is the set of vertices and E ⊆ V × V is the set of edges that
exist in this network. Then the adjacency matrix A, in which the element aij equals 1
represents vertices i and j are connected by an edge, 0 if they are disconnected. One edge
eij ∈ E indicates that vertices i and j connect to each other. Vi = {j ∈ V : (i, j) ∈ E} is
the set of neighbors of vertex i, and the degree of vertex i is denoted by ki = |Vi|. The
average network degree is denoted by ⟨k⟩.

Researches during the past several decades on numerous real-world systems, have re-
vealed that many networks share some common features including scale-free degree distri-
bution, community structure and so on [25, 26, 27]. Then the research of complex network
models that generate networks of common features has attracted much attention. In this
paper, we consider the most well-known 3 complex network models: Erdös-Rényi (ER)
random graph [6], Barabási-Albert (BA) scale-free network [8] and Watts-Strogatz (WS)
small-world network [7]. The structures of these models are described in detail as follows.

2.1. Erdös-Rényi random network. The first network model was proposed by Erdös
and Rényi, which is called random graphs. For an ER random graph model, a fixed
number of vertices N is defined, and the vertices are randomly connected with each other
by an identical probability p. In this kind of networks, a higher p indicates a higher
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mean degree and density, and a lower network diameter. ER random network model
cannot properly implement real-world networks because this model does not show any
community structure and their degree distribution follows a Poisson distribution [6].

2.2. Watts-Strogatz small-world network. Most vertices are reachable within short
paths in small-world networks [7]. Meanwhile, these networks show numerous small cycles,
especially of size three. Watts and Strogatz [7] proposed a model to generate networks
with the small-world properties. The graph starts with a ring of connected vertices, each
one adjacent to its k-nearest neighbors. Then, with probability p, each edge is randomly
reassigned to any available position. This relinking method, with an intermediate or small
p (typically p should be lower than 0.5), will create paths among distant vertices while
keeping a high clustering coefficient among close neighbors. A higher k indicates a higher
mean degree ⟨k⟩, clustering, and density, although diameter decreases, while a lower
clustering coefficient and diameter.

2.3. Barabási-Albert scale-free network. The degree distribution of large social net-
works follows a scale-free power-law distribution, which can be explained that networks
expand continuously by the addition of new vertices and that these new vertices are pref-
erentially connected to vertices already well connected. It starts with k number of fully
connected vertices and keeps adding new vertices with k connections, defined by a prefer-
ential attachment formula [7]. The probability of a vertex pi receiving a new connection
link according to the degree d of the vertex is divided by the sum degree of all vertices.
In this way, high degree vertices have a greater chance of receiving new connections than
vertices with lower degree. In these networks, a higher k, the mean degree, clustering
coefficient, and density get higher, while the diameter sinks.

3. Attack Strategies Based on Centrality Metrics. For the study on the robustness
of complex infrastructure networks, many researchers concern about how to improve the
performance and avoid unexpected damages, either due to random failures or intentional
attacks happened on the networks. Intentional vertices attack is considered in this paper.
For intentional vertices attack, attacker can attack the vertices according to their central-
ity values. The method of removing vertices according to their centrality metrics rank is
also denoted as attack strategies in the rest of this paper. According to the purpose and
conceptualization, centrality measures can be classified into four classes [23, 28, 29] shown
in Table 1. The four classes: degree centralities, path centralities, proximity centralities
and spectral centralities are respectively denoted as the 1st, 2nd, 3rd and 4th centralities
in this paper. Here we briefly present the popular 12 centralities as follows. For the first
class, degree centralities (DC) are the simplest and most straightforward centrality mea-
sures. These centralities are related with the idea of visibility that a vertex has among
its neighbors. For the second class, path centralities evaluate the vertices as being central
if they are in between (or at the “crossroads”) of many “paths”. This fact allows the
vertices to control the communication through such paths. Each centrality of this class
considers different kinds of paths or consists of a distinct evaluation of these paths. Most

Table 1. Four centrality classes

Centrality class
Degree (1st) DC
Path (2nd) BC SOC CFBC LoadC

Proximity (3rd) CC CFCC HarmC RC
Spectral (4th) EVC PRC
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of these metrics require the graph to be strongly connected or evaluate each connected
component of the graph individually and independently. However, there are more toler-
ant variations or adaptations that relax these restrictions to any kind of graph structure.
For the third class, the basic idea of proximity centralities is that the lower the distance
between a vertex to the others, the higher its centrality value and its independence from
the network. The main difference among these centralities is that each metric computes
the “distance” between vertices in a distinct way. Since these centralities are based on
distance metrics, there is an inherent problem with disconnected graphs: depending on
the centrality measure, the distance between two disconnected vertices are considered
infinite or the largest possible distance for the given network size. For the fourth class,
spectral centralities evaluate the vertices centrality by their participation in substructures
of the network. They are called spectral measures because of their relation with the set of
eigenvalues of the adjacency or Laplacian matrix of the graph representing the network.

3.1. Degree centralities. Degree centralities calculate the importance of vertices by the
number of neighbors. They were introduced by Shaw [33] and popularized by Freeman
[34]. The degree centrality (DC) is described below.

CD(v) = kv/(N − 1) (1)

where kv is the degree of vertex v, and N is the total number of vertices of the network.
If the network is directed (meaning that ties have direction), then two separate measures

of degree centralities are defined, namely, indegree and outdegree. They can be thought
of as a kind of popularity measure, but crude measures that do not recognize a difference
between quantity and quality.

3.2. Path centralities. Path centralities evaluate the importance of vertices by the num-
ber of times a vertex acts as a bridge among paths existing in the network. The path
centralities used in this paper are shown as the following: betweenness centrality (BC)
[30], second order centrality (SOC) [19], current-flow betweenness centrality (CFBC) [18]
and load centrality (LoadC) [23], while LoadC is slightly different from BC.

For path centralities, the most popular measure is BC considering the shortest paths,
called geodesics. This measure was introduced by Shaw [33].

CB(v) =
N∑
s=1

N∑
t=s+1

gst(v)

/
gst (2)

where gst is the total number of the shortest paths from vertex s to t and gst(v) is the
number of those paths that pass through v.

To optimize the imperfection of betweenness centrality as it considers only shortest
paths. SOC was introduced by Kermarrec et al. [19] based on a random walk. A dis-
tributed algorithm is used to compute the standard deviation of the return times for each
vertex based on the Metropolis-Hastings process in which Markov chain is homogeneous
and irreducible. A classical discrete time Markov chain is used on the finite state space
S to represent the random walk. The standard deviation σ(v) is shown as below.

σ(v) =

√
2
∑
u∈S

M(v, u)− |S|(|S|+ 1) (3)

where M(v, u) represents the expected time starting from state v to reach state u for the
first time.
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CFBC uses an electrical current model for information spreading in contrast to between-
ness centrality which uses the shortest paths [18]. CFBC of a vertex v is the average of
the current flow over all source-target pairs:

CCFB(v) =
∑
s ̸=t∈S

I(st)v

/
1

2
N(N − 1) (4)

where I
(st)
v is the current flow through vertex v between source s and sink t.

LoadC is slightly different from BC [32]. Let θst be a quantity of a commodity that is
sent from vertex s to vertex t. We assume the commodity is always passed to the next
hop following the minimum weight paths (consider an algorithm to define the minimum
weight path), and in case of more than one next hop, traffic is divided equally among
them. We call θst(v) the overall commodity forwarded by vertex v. The load centrality
of v is given by

CLoad(v) =
2

N(N − 1)

∑
s,t∈S

θst(v) (5)

3.3. Proximity centralities. Distance between vertices also is introduced to evaluate
their importance which is named as proximity centralities. This centrality believes that
the lower the distance between a vertex to the others, the higher its centrality value and
its independence from the network. There are four proximity centralities considered in
this paper: closeness centrality (CC) [33], current-flow closeness centrality (CFCC) [34],
harmonic centrality (HarmC) [33] and reach centrality (RC) [35].
CC of a vertex measures the average farness (inverse distance) to all other vertices.

CC(v) = (N − 1)

/
N∑

u=1,u ̸=v

dvu (6)

where dvu is the shortest distance between vertices v and u.
CFCC is variant of CC based on effective resistance between vertices in a network. This

metric is also known as information centrality. We treat the graph G as a resistor network
via replacing every edge e by a resistor with resistance re = 1/w(e). Let vst(v) denote the
voltage of v when a unit current enters the network at s and leaves it at t. The CFCC of
vertex v is defined as

CCFC (v) = N

/
N∑

u=1,u ̸=v

(vvu(v)− vvu(u)) (7)

HarmC (also known as valued centrality) is a variant of closeness centrality, that was
invented to solve the problem the original formula had when dealing with unconnected
graphs. As with many of the centrality algorithms, it originates from the field of social
network analysis. The HarmC of v is given by

CHarm(v) = 1

/
N∑

u=1,u ̸=v

dvu (8)

The use of the HarmC mean avoids cases where an infinite distance outweighs.
RC is related to the number of vertices that can be reached from every other vertex in k

hops or less. For k = 1, this is equivalent to DC. For directed networks, both in-reach and
out-reach are calculated. The routine also calculates weighted distance reach centrality
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for each vertex. RC of v is measured using the formula:

CR(v) = 1 +
k∑

x=1

rvx

/
x (9)

where rvx is the number of vertices at x hop distance from v. The upper limit in the
summation is due to the fact that the maximum hop a node can have is its eccentricity.

3.4. Spectral centralities. Metrics in this group consider the involvement of vertices in
the substructures of networks. They are called spectral measures because of their relation
with the set of eigenvalues of the adjacency or Laplacian matrix of the graph representing
the network. While the mostly widely known among these measures is the eigenvector
centrality (EVC) [36], PageRank centrality (PRC) [37] and SubGraph centrality (SubGC)
[23].

PRC is first used to rank web pages of Google. It is supposed to characterize the
behavior of a guest browsing the web pages. This process can be modelled by a simple
combination of a random walk with occasional jumps towards randomly selected vertices
to evaluate the importance of vertices for a network. This can be described by the simple
set of implicit relations:

CPR(v) =
q

N
+ (1− q)

∑
j:j→v

p(j)

/
kout(j) (10)

kout(j) the outdegree of vertex j and the sum runs over the vertices pointing towards i. For
undirected networks, kout(j) = kj. The damping factor q is a probability, that weighs the
mixture between random walk and random jump. On practical applications it is usually
set to small values (typically 0.15). For any q > 0 the process reaches stationarity, as
a walker has a finite (no matter how small) probability to escape from a dangling end,
whenever it lands there.

EVC considers not only immediate contacts but also indirect connections with every
vertex of the network. Moreover, it weighs contacts of a vertex according to their own
centrality. The importance CEV (v) of node v is just proportional to the sum of the im-
portance of the neighboring vertices pointing to it. The EVC of v is given by ϵ, α

CEV (v) = α
(
ATCEV

)
v
+ ϵ (11)

The role of the parameter ϵ reminds that of the damping factor q in PRC. The parameter
α weighs the relative importance of the contribution of the peers versus that of the node
itself.

SubGC of a vertex v is the sum of weighted closed walks of all lengths starting and
ending at vertex v. The weights decrease with path length. Each closed walk is associ-
ated with a connected subgraph. It can be found using a spectral decomposition of the
adjacency matrix:

CSubG(v) =
N∑

u=1

(Ev
u)

2 eλu (12)

where Eu is an eigenvector of the adjacency matrix A of G corresponding to the eigenvalue
λj.

4. Centralities Analysis. One goal of this paper is to analyze the correlation and dif-
ference of centrality metrics among distinct network models. In this section, we introduce
principal component analysis (PCA) and granularity analysis.
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4.1. Correlation analysis based on PCA. To evaluate the correlations between cen-
trality metrics, most of the researchers have estimated the correlation of each couple of
centrality metrics as a ratio unit less number between the covariance of two variables and
the product of their standard deviations [24], or the Pearson correlation coefficient [20].
Correlations are indicators of the strength of the linear relationship between two different
variables, x and y. A linear correlation coefficient that is greater than zero indicates a
positive relationship.
Many simulation results have shown that traditional correlation analysis methods such

as Kendall correlation coefficient, Pearson correlation coefficient, and Spearman corre-
lation coefficient cannot effectively estimate the correlation between central indicators.
PCA is the simplest method for analyzing multivariate statistical distributions using fea-
ture quantities. The result can be understood as an explanation for the variance in the
original data: which direction of data values has the greatest impact on the variance?
In other words, PCA provides an effective way to reduce data dimensions; If the analyst
removes the component corresponding to the smallest eigenvalue from the original data,
the resulting low dimensional data must be optimized (i.e., reducing the dimensionality in
this way is the method that loses the least amount of information). Principal component
analysis is particularly useful in analyzing complex data, such as facial recognition. As far
as we know, there is no research work on correlation analysis among centrality metrics. In
this paper, we introduce PCA to evaluate the correlation from a statistical perspective for
the first time. PCA is used in exploratory data analysis and for making predictive models.
It is commonly used for dimensionality reduction by projecting each data point onto only
the first few principal components to obtain lower-dimensional data while preserving as
much of the data’s variation as possible. The first principal component can equivalently
be defined as a direction that maximizes the variance of the projected data. The cosine
similarity analysis of the data after PCA dimensionality reduction can be used as an es-
timate of the correlation coefficient between centrality indicators. The simulation results
later will show that the correlation algorithm based on PCA proposed in this paper can
effectively quantitatively estimate the correlation between central indicators.
In this paper, the variables are the values of the centrality metrics in Section 3. For

each network, the matrix X ∈ RN×12 is composed of 12 centrality values of all vertices
where N is the number of vertices, and the flowchart of correlation analysis on the 12
centrality metrics for each network is shown in Figure 1.

Figure 1. Flowchart of PCA method applied to estimate the correlations
bentween the 12 centrality metrics

After we get the first and second components for each centrality metrics, the cosine of
the angle between each centrality couple could be a statistic estimate of the correlation
between them. The correlation value r should range between −1.0 to +1.0. A higher
coefficient value implies a higher correlation between the centrality indices and vice versa.
r = −1.0 indicates a perfect negative correlation, while r = +1.0 indicates a perfect
positive correlation.
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4.2. Granularity analysis. To evaluate the differentiate ability of centrality measures
when they are used to rank the importance of vertices, the granularity property [23, 28, 38]
is considered in this paper. We simulate the granularity as the percentage of distinct
centrality values of each centrality metric on each network. For example, if there are 50
different values of a certain centrality measure on a network with 100 vertices, we can get
that are 50% distinct values for this centrality measure on this network, which means the
granularity of this centrality measure on this network is 0.5.

5. Robustness Measure. To evaluate the destructiveness of these centralities when
they are used for removing vertices, we consider the relative size of the largest connect-
ed component (LCC) in this paper. The largest connected component is the connected
subgraph with the largest size (number of vertices in it). While the largest connected
component will be smaller and smaller with the removal of vertices. The ratio of the
largest connected component of the network before and after vertices removal is called
LCC [39]:

LCC = S ′/S0 (13)

where S ′ is the number of vertices in the largest connected component after the attack.
S0 is the number of vertices in the largest connected component of the initial network. To
measure the robustness of network before collapsing, Schneider et al. [32] proposed the
robustness measure R index:

R =
1

N

N∑
Q=1

s(Q) (14)

where s(Q) is the fraction of vertices in the largest connected cluster after removing
Q vertices. The normalization factor 1/N ensures that the robustness of networks with
different sizes can be compared. The range of possible R values is between 1/N and
0.5, where these limits correspond, respectively, to a star network and a fully connected
graph. Iyer et al. [29] proposed V index to measure the vulnerability of a network to a
given scheme of vertex removal, to be the complementary quantity to R:

V =
1

2
−R (15)

6. Simulation and Implementation Results. Our goal is to study the correlations
and difference of 12 popular centrality metrics among three distinct network models. We
are also curious about that the robustness of distinct network models against different
attack strategies, and the relationship between destructive level of these centrality metrics
when they used as attacking guidelines and their correlations among distinct network
models. Moreover, we attempt to compare the estimated results with the known ground
truth.

All of the simulations are implemented upon Python3.7 workbench. For simulating data,
1000 networks where 1000 vertices exist for each network are generated for each network
model (ER, WS and BA) on the basis of well-known python package NetworkX2.5.

6.1. Correlation analysis between centrality metrics. It is known that PCA is
often used as a dimensionality-reduction technique. After we get the 12 centrality values
of all networks, first, we apply dimensionality-reduction technique of PCA to obtaining
the first and second components of each centrality metric. Then centrality metrics can be
denoted as the vector of their first and second components. Last, the cosine of the angle
between the two vectors of each centrality couple could be an estimate of the coefficient of
correlation between them. The statistical results of the correlations are shown in Figures
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Figure 2. Correlations of 12 centralities on ER models

Figure 3. Correlations of 12 centralities on BA models

Figure 4. Correlations of 12 centralities on WS models
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Figure 5. Correlations between DC and other centrality metrics based on
PCA method for ER models, with errorbar

Figure 6. (color online) The distribution of the highly positive correlated
(r > 0.8) centrality metrics among different networks

2-4. It should be clarified that a lighter color represents a higher positive correlation. One
example of the correlations between DC and others with errorbar is given in Figure 5.

As Figures 2-4 show, some centrality metrics are highly correlated with each other, and
there is some difference between distinct network models. Figure 6 gives the distribution
of the highly positive correlated (r > 0.8) centrality metrics among different networks.
As Figure 6 shows: DC, PRC, CFBC and SubGC are highly positive correlated with each
other among the 3 different network models (ER, BA, WS). However, interestingly, the
four metrics are not classified to one same centrality class according to their purpose and
conceptualization as shown in Table 1. And there is a strong positive correlation between
BC and LoadC across three models, while BC and LoadC are both classified to path
centralities. In addition, CC, HarmC and RC are perfect correlated with each other with
r = 1, because they are equal to each other when the network is undirected and unweighted
according to Equations (6), (8) and (9). For the sake of the rest of the discussion, we
denote DC, PRC, CFBC, and SubGC as the I correlation centralities, BC and LoadC
as the II correlation centralities, CC, HarmC and RC as the III correlation centralities
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Table 2. The distribution of correlations between centrality metrics across
three network models

E+W+B E+B E+W W+B BA WS
I∼I II∼I SOC∼CFCC SOC∼CFBC SOC∼DC, PRC SOC, CFCC∼III
II∼II EVC∼SOC, CFCC EVC∼III
III∼III CFCC∼III, EVC

in this paper according to distribution of their correlations among 3 models. For each
correlation centralities group, the metric in each group is highly positive correlated with
others of this group across three network models (ER, WS, BA).
The distribution of highly positive correlations (r > 0.8) is shown in Table 2. In this

table, if A ∼ B, then each metric of A is highly positive with all of the metrics of B. As
Table 2 shows, many of the centralities are highly positive correlated with each other, but
vary slightly across distinct network models.

6.2. Granularity analysis of centrality metrics. In this paper, the granularity prop-
erty [38] is considered to evaluate the differentiate ability of centrality metrics among
distinct network models. And we are also curious about the relationship between their
correlations and their granularity property. The granularity statistic mean values with
errorbar of each centrality metrics grouped by the network models ER, WS and BA are
shown in Figure 7. It is obvious that the granularity of all centrality metrics presented
nearly no difference in the expected values (considering the confidence intervals) on three
network models. While interesting, only DC (0.15) and CC (0.75) present a low granu-
larity while others present a great granularity (0.9), which is consistent with the results
of [23]. It should be indicated that a higher granularity implies a higher performance of
differentiating the vertices of a network, meanwhile, a higher space complexity.

Figure 7. Granularity feature of 12 centralities on three network models
with errorbar

6.3. Robustness of networks against centrality metrics attacking guideline.
LCC, robustness index R and vulnerability index V are considered to evaluate the de-
structive level of these centrality metrics when they are used as guidelines for removing
vertices. Figure 8 shows how LCC (shaded areas denote the 95% confidence intervals) de-
caying with the removal vertices proportions on 12 attack strategies among three network
models. It is obvious that network scale shrinks quickly against some attack strategies.



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.20, NO.4, 2024 991

Figure 8. (color online) Robustness against simultaneous attack for three
network models, where f is the fraction of removed vertices

Figure 9. Vulnerability of three network models with errorbar

Especially for BA network models, they become completely disconnected (LCC = 1/N)
when the removing vertices proportion is nearly to 0.2, which indicates that BA networks
are more vulnerable under intentional attack than others.

To observe the global attack performance of 12 attack indices among three network
models, the V index of the global destructiveness is given in Figure 9 which is grouped by
12 attack strategies. From Figure 9, we can easily capture that the bar of BA is higher
than the other two bars in each attack strategy group which indicates that BA network is
more vulnerable than ER and WS networks. It is consistent with the conclusion of many
researches [8, 41, 42, 43].

To study the relationship between the correlations of these centrality metrics and their
destructive level when they are used as attack strategies among the three network models,
more information is listed in Table 3. In Table 3, for each network model, the V-index
ranges from large to small. From a global view, it can be observed that the I correlation
centralities are more destructive than the II correlation centralities; furthermore, the II
correlation centralities are more destructive than the III correlation centralities when
they are used as guidelines for removing vertices. Now, we could state that, for two
centrality metrics, the higher their correlation, the similar their destructive level when
they are used as attack strategies. This evidence confirms that PCA is applicable to
quantify the correlations of centrality metrics from another perspective. While there is no



992 X. GUO, Y. ZHENG, Z.-M. LU, J. CUI AND H. LUO

Table 3. The V-index of three network models under 12 attack strategies

Correlation group I II
Network model DC PRC CFBC SubGC BC LoadC

ER 0.249676 0.261822 0.257507 0.230919 0.226123 0.226964
WS 0.202025 0.227531 0.222657 0.173125 0.181854 0.182537
BA 0.395035 0.39646 0.397182 0.256498 0.385245 0.386251

Centrality class 1st 4th 2nd 4th 2nd 2nd
Correlation group III
Network model SOC CFCC CC HarmC RC EVC

ER 0.224114 0.224114 0.157991 0.16618 0.16618 0.15052
WS 0.180795 0.180795 0.104256 0.115675 0.115675 0.0933616
BA 0.391699 0.391699 0.236516 0.249346 0.249346 0.21607

Centrality class 2nd 3rd 3rd 3rd 3rd 4th

clear relationship between the destructive level and the centrality class which is classified
according to their purpose and conceptualization.
To observe the detail of local attack performance to detect the most destructiveness

attack strategy of 12 attack indices on three distinct network models, we extract the I
correlation centralities for ER and WS networks, I, II, SOC and CFCC for BA networks
from Figure 8, as shown in Figure 10. From Figure 10, it can be observed that the attack
strategies based on highly positive correlated centralities metrics: PRC and CFBC could
rapidly cause serious damage to network connectivity of the three network models, while
there is some slightly difference about the damage rapid of the two metrics across three
distinct network models. For ER networks, PRC is a little bit more destructive than CFBC
from the beginning to the end of the attack program. For WS networks, at the beginning,
PRC is the most destructive, and then when the proportion of removing vertices is nearly
to 0.3, CFBC and PRC cause the same damage. While for BA networks, CFBC and PRC
cause the same damage at the beginning, then when the proportion of removing vertices
is nearly to 0.1, CFBC becomes more destructive.

Figure 10. (color online) Robustness of ER networks against the high-
destructive attack strategies, where f is the fraction of removed vertices

6.4. Summary. From above simulation results, we can summarize the following practical
insights.
Many of the centralities are highly positive correlated with each other, but vary slightly

across distinct network models: DC, PRC, CFBC and SubGC are highly positive corre-
lated with each other among the 3 different network models (ER, BA, WS). However,
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the four metrics are not classified to one same centrality class according to their purpose
and conceptualization. And there is a strong positive correlation between BC and LoadC
across three models, while BC and LoadC are both classified to path centralities. For
each correlation centralities group, the metric in each group is highly positive correlated
with others of this group across three network models (ER, WS, BA).

The granularity of all centrality metrics presented nearly no difference in the expected
values (considering the confidence intervals) on three network models. A higher granular-
ity implies a higher performance of differentiating the vertices of a network, meanwhile,
a higher space complexity.

Network scale shrinks quickly against some attack strategies, and BA networks are
more vulnerable under intentional attack than others. BA network is more vulnerable
than ER and WS networks.

For two centrality metrics, the higher their correlation, the similar their destructive level
when they are used as attack strategies. PCA is applicable to quantify the correlations of
centrality metrics from another perspective. While there is no clear relationship between
the destructive level and the centrality class which is classified according to their purpose
and conceptualization.

The attack strategies based on highly positive correlated centralities metrics: PRC and
CFBC could rapidly cause serious damage to network connectivity of the three network
models, while there is some slightly difference about the damage rapid of the two metrics
across three distinct network models.

7. Conclusions. This paper proposes a more suitable method for evaluating the corre-
lation degree between centrality indicators, and compares the effectiveness of this method
with traditional correlation analysis methods in statistics used in previous studies in eva-
luating the correlation degree between centrality indicators.

We find that BA networks are more vulnerable to intentional attack than others for the
global robustness analysis. We also find that the higher correlation of two metrics, the
similar their destructive level when they are used as attack strategies. We also observe
that PRC and CFBC attack strategies could rapidly cause serious damage to network
connectivity of the three network models compared with other metrics, while there is
slightly difference across three distinct network models. For ER networks, to cause most
serious damage, the attack strategy based on PRC should be applied to attack network.
For WS networks, when the proportion of removing vertices is under 0.3, PRC is the best
choice. While for BA networks, when the proportion of removing vertices is nearly to 0.1,
CFBC is the most destructive one.

In the future work, to detect the most effective centrality metric for network with
various features, we will introduce deep learning to the analysis of the relationship of the
destructiveness attack strategies on the basis of centrality metrics and network features.
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