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Abstract. This study is to propose a new approach for medical diagnosis using the dis-
tance between interval-valued intuitionistic fuzzy sets. For this purpose, we developed an
interview chart with interval fuzzy degrees based on the relation between symptoms and
diseases (three types of headache), and utilized the interval-valued intuitionistic fuzzy
weighted arithmetic average operator to aggregate fuzzy information from the symptoms.
In addition, we proposed a measure based on distance between interval-valued intuition-
istic fuzzy sets for medical diagnosis. The proposed method is illustrated by a numerical
example.
Keywords: Diagnosis measure, Aggregate operator, Interview chart, Interval-valued
fuzzy sets

1. Introduction. A major task of medical science is to diagnose diseases. It, however,
is not a direct and simple task at all, because the information available to the physician
about his patient and about medical relationships in general is inherently uncertain [1].
To improve the problem, there have proposed many approaches and theories such as fuzzy
set theory and rough set theory [10, 20, 35].

Fuzzy set theory makes it possible to define the inexact medical information as fuzzy
sets, therefore, it can be utilized for modeling the diagnostic process. An application of
fuzzy set on medical science fields already proposed by Zadeh in 1969 [36] and Sanchez
[23] invented a fully developed relationships modelling theory of symptoms and diseases
using fuzzy sets. Since Atanassov [4] introduced the concept of intuitionistic fuzzy sets,
fuzzy set theory has been utilized in many approaches to model the diagnostic process
[1, 3, 11, 14, 27, 33, 34].

However, the approaches have some drawbacks. First, some researches such as De et al.
[11] and Ahn et al. [3] applied the max-min-max composition rule to determine the disease
of patients. The main problem of the method using the max-min-max compositions is
the loss of information because the composition neglects in fact most values except for
extreme ones. Second, a disease in general is presented through many symptoms and
the symptoms significantly associated with the disease. Therefore, we need to aggregate
the symptoms. This is not considered in many studies. In addition, most researches for
medical diagnosis don’t use the interval data.

To solve these problems, we propose a new approach for medical diagnosis using the
distance between interval-valued intuitionistic fuzzy sets. The features and advantages of
the approach are as follows: First, it makes a diagnosis by aggregating the information

2755



2756 J. Y. AHN, K. S. HAN, S. Y. OH AND C. D. LEE

of many symptoms. Second, it uses the distance of interval data to reduce the loss of
information. Third, we developed an interview chart for preliminary diagnosis. Therefore,
the approach can be easily applied in practice through a computer program module.
As an extension of our previous studies [3, 15] the proposed method is applied to

several patients according to the types of headache. Headache, one of the most common
reasons for neurological consultation, is a condition of pain in the head and sometimes
neck or upper back pain may also be interpreted as headache. There are two categories
of headache: primary and secondary headache. Primary headache is not associated with
other diseases. Examples of primary headache are migraine, tension and cluster headache.
Secondary headache is caused by associated diseases.
For medical diagnosis of headache, we develop an interview chart with interval fuzzy

degrees based on the relation among symptoms and three types of headache (migraine,
tension and cluster). Second, we use the interval-valued intuitionistic fuzzy weighted
arithmetic average operator to aggregate fuzzy information from the symptoms. Last, we
propose a measure based on distance between interval-valued intuitionistic fuzzy sets for
medical diagnosis. At the end the practicality of the diagnosis method is illustrated by a
numerical example.

2. Preliminaries.

2.1. Fuzzy sets. Since Zadeh [35] introduced fuzzy sets (FS) in 1965, many approaches
[13, 21, 22, 26] and theories [4, 5, 7, 28] treating imprecision and uncertainty have been
proposed. Some of these theories, such as intuitionistic fuzzy sets (IFS), interval-valued
fuzzy sets (IVFS), and interval-valued intuitionistic fuzzy sets (IVIFS), are extensions of
FS theory and the others try to handle imprecision and uncertainty in different ways [19].
The concept of IFS has been introduced by Atanassov [4] as a generalization concept

of FS. Since the first public statement of this notion was made in 1983, IFS has become a
popular topic of investigation in the FS community [7, 25]. Later, Turksen [28] introduced
the concept of IVFS and Atanassov and Gargov [5] introduced the concept of IVIFS, which
is a generalization of the IFS. The fundamental characteristic of the IVFS and IVIFS is
that the values of its membership and nonmembership function are intervals rather than
exact numbers. Let us review the basic concepts of FS.

Definition 2.1. (FS) Let X is a set (space), with a generic element of X denoted by x,
that is X = {x}. Then a FS is defined as Equation (1).

A = {⟨x, µA(x)⟩ | x ∈ X} (1)

where µA : X → [0, 1] is the membership function of the FS A, µA(x) ∈ [0, 1] is the degree
of membership of the element x to the set A.

Definition 2.2. (IFS) For a set X, an IFS A in the sense of Atanassov is given by
Equation (2).

A = {⟨x, µA(x), νA(x)⟩ | x ∈ X} (2)

where the functions µA : X → [0, 1] and νA : X → [0, 1], with the condition 0 ≤ µA(x) +
νA(x) ≤ 1, ∀ x ∈ X.

The numbers, µA(x) ∈ [0, 1] and νA(x) ∈ [0, 1], denote the degree of membership and
the degree of non-membership of the element x to the set A, respectively. For each IFS
A in X, the amount πA(x) = 1 − (µA(x) + νA(x)) is called the degree of indeterminacy
(hesitation part), which may cater to membership value, non-membership value or both.
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Definition 2.3. (IVFS) Let [I] be the set of all closed subintervals of the interval [0, 1]
and M = [ML,MU ] ∈ [I], where ML and MU are the lower extreme and the upper extreme,
respectively. For a set X, an IVFS A is given by Equation (3).

A = {⟨x,MA(x)⟩ | x ∈ X} (3)

where the function MA : X → [I] defines the degree of membership of an element x to A,
and MA(x) = [MAL(x),MAU(x)] is called an interval-valued fuzzy number.

Definition 2.4. (IVIFS) For a set X, an IVIFS A is an object having the form Equation
(4).

A = {⟨x,MA(x), NA(x)⟩ | x ∈ X} (4)

where MA : X → [I] and NA : X → [I] represent the degree of membership and non-
membership, 0 ≤ sup(MA(x)) + sup(NA(x)) ≤ 1, ∀ x ∈ X. MA(x) = [MAL(x),MAU(x)]
and NA(x) = [NAL(x), NAU(x)], so A = ([MAL(x),MAU(x)], [NAL(x), NAU(x)]).

2.2. Application of fuzzy sets in medical diagnosis. The fuzzy sets have been uti-
lized in several different approaches to model the diagnostic process [6, 9, 24, 33]. In this
section, we present an application of IFS theory in Sanchez’s approach for medical diag-
nosis [23]. He represented the physician’s medical knowledge as a fuzzy relation between
symptoms and diseases. The approach was elaborated by Adlassnig [1] and applied in
many studies such as [11, 14].

Let S = {S1, ..., Sm}, D = {D1, ..., Dn} and P = {P1, ..., Pq} denote the sets of symp-
toms, diseases and patients, respectively. Two fuzzy relations (FR) Q and R are defined
as Equation (5) and Equation (6).

Q = {⟨(p, s), µQ(p, s), νQ(p, s)⟩ | (p, s) ∈ P × S} (5)

R = {⟨(s, d), µR(s, d), νR(s, d)⟩ | (s, d) ∈ S ×D} (6)

where µQ(p, s) and νQ(p, s) indicate the degrees for patient’s symptoms, i.e., the degrees
are the relationship between patient and symptoms (patient’s degrees). In other words,
µQ(p, s) indicates the degree to which the symptom s appears in patient p, and νQ(p, s)
indicates the degree to which the symptom s does not appear in patient p. Similarly,
µR(s, d) and νR(s, d) are the relationship between symptoms and diseases (confirmabil-
ity degrees), i.e., µR(s, d) is the degree to which symptom s confirms the presence of
disease d, and νR(s, d) the degree to which the symptom s does not confirm the presence
of disease d, respectively. Note that Q is defined on the set P ×S and R on the set S×D.
The composition T of R and Q (T = R ◦ Q) for diagnosis of disease describes the state
of patients in terms of disease as a FR from P to D given by the membership function
Equation (7) and non-membership function Equation (8).

µT (p, d) = max
s

{min[µQ(p, s), µR(s, d)]} (7)

νT (p, d) = min
s
{max[νQ(p, s), νR(s, d)]} (8)

for all p ∈ P and d ∈ D.

3. The Proposed Approach. In this section, we introduce the proposed approach for
medical diagnosis. The approach is divided into four stages:

• stage 1: Collect the patient’s degrees and confirmability degrees for patient’s symp-
toms. Confirmability degrees are presented in the interview chart developed in this
study. Patient’s degrees are assigned by a physician.

• stage 2: Calculate the IIFWAA of the patient’s degrees and confirmability degrees,
respectively, using an aggregate operator.

• stage 3: Calculate the distance using the IIFWAA calculated in stage 2.



2758 J. Y. AHN, K. S. HAN, S. Y. OH AND C. D. LEE

Table 1. Interview chart for migraine items

IF degree
migraine tension cluster

No Items(Symptoms) µRC
νRC

µRC
νRC

µRC
νRC

M1 Positive family history... [0.5, 0.6] [0.2, 0.3] [0.2, 0.3] [0.4, 0.6] [0.2, 0.3] [0.5, 0.6]
M2 At least five attacks... [0.7, 0.8] [0.1, 0.2] [0.1, 0.2] [0.6, 0.7] [0.1, 0.2] [0.6, 0.7]
M3 Headache lasting... [0.5, 0.6] [0.2, 0.3] [0.3, 0.4] [0.4, 0.6] [0.1, 0.3] [0.3, 0.5]
: : : : : : : :

M23 Concurrent with... [0.6, 0.8] [0.1, 0.2] [0.1, 0.2] [0.6, 0.7] [0.2, 0.3] [0.6, 0.7]

• stage 4: Determine the disease of patient based on the distance.

3.1. Interview chart. A diagnosis procedure usually starts off with an interview of
patient and doctor [18]. Therefore, the screening method using questionaire is helpful in
diagnosis of headache and interview chart is a leading part.
In our earlier work [2], we developed an interview chart for preliminary diagnosis of

headache, where the qualitative data from the interview chart were obtained and then
quantified by dual scaling. However, the method has some problems such as loss of
information and insufficient use of physician’s knowledge.
In the next study [3], an extended version of our previous interview chart has been

implemented. In the chart, we reformed the fuzzy degrees and added some composite
symptoms. The chart consisted of 22, 17 and 14 items (symptoms) for the three types
of headache (migraine, tension and cluster), respectively. The chart was investigated
by 5 physicians. We estimated headache labels of patients using the information ob-
tained from the chart. Two interview charts above had an exact number in [0, 1] as the
membership/non-membership degrees.
In this study, we developed an improved interview chart, an interval-valued version of

the interview chart developed in our previous studies, based on physician’s knowledge.
The chart consists of 23(M1 ∼ M23), 17(T1 ∼ T17) and 15(C1 ∼ C15) items for the
three types of headache, respectively. Table 1 is the interview chart for migraine type.
Each item has confirmability degrees with the relation among symptoms and the three
types of headache, and has an interval-value in [0, 1] as the degrees. In the chart, 7 items
(M21 ∼ M23, T16 ∼ T17, C14 ∼ C15) are composite symptoms. Composite symptom
is a meaningful item for diagnosis of headache. For example, if a patient simultaneously
has symptoms M5, M8 and M15, he/she has a composite symptom and the symptoms are
displayed in the composite item M22. In the improved chart, two composite items (M23
and C15) are added in the items of previous version [15].

3.2. An aggregate operator. The chart developed in this study has 23 symptoms for
the migraine type of headache and the symptoms significantly associated with the type.
Likewise, the symptoms for tension and cluster significantly associated with their types,
respectively. Therefore, it is general that some symptoms appear simultaneously and
compositely from a patient. For example, a patient might have the symptoms M3 ∼
M6, C1 ∼ C3, simultaneously. In this case, we need to aggregate the interval-valued
intuitionistic fuzzy information corresponding to the degrees for patient’s symptoms and
confirmability degrees.
Up to now, many operators have been proposed for aggregating information [8, 30, 31].

Two of the most common operators for aggregating arguments are the weighted averaging
operator and the ordered weighted averaging operators.
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In this study, we utilize the interval-valued intuitionistic fuzzy weighted arithmetic
average (IIFWAA) operator developed by Xu [32] to aggregate fuzzy information from
the symptoms. It is defined as follows.

Definition 3.1. (IIFWAA Operator) Let A = {(xi,MA(xi), NA(xi)) (i = 1, 2, ..., n)}
be a collection of interval-valued intuitionistic fuzzy values. Then, an IIFWAA operator
is defined as Equation (9).

IIFWAA (A) = ([1− Πn
i=1(1−MAL(xi))

ωi , 1− Πn
i=1(1−MAU(xi))

ωi ],

[Πn
i=1(NAL(xi))

ωi ,Πn
i=1(NAU(xi))

ωi ])
(9)

where ω = (ω1, ω2, ..., ωn)
T be the weight vectors of A. In addition, ωi > 0 and

∑n
i=1 ωi = 1.

In this study, we use ω = (1/n, 1/n, ..., 1/n). The aggregation result IIFWAA is still
IVIFS and is not very sensitive to A. For medical diagnosis, we first calculate IIFWAA
from degrees of the interview chart and then use a measure based on distance between
IVIFS.

3.3. A distance measure. In diagnosis with IFS data, we generally determine the diag-
nostic labels of patient p for any disease d such that both inequalities 0.5 < µT (p, d) and
νT (p, d) < 0.5 are satisfied. However, as mentioned above, the max-min-max composition
rule is affected by only extreme values. As a result, the diagnosis approach using the
measures, µT (p, d) and νT (p, d), leads to quite conservative results. For example, let use
the confirmability membership degrees (µR(s, d)) for a patient are 0.7, 0.4 and 0.7. Then
the diagnosis measure µT (p, d) based on max-min-max composition is 0.4. However, if the
symptoms are significantly associated with a disease, it is reasonable that the diagnosis
measure has a value above 0.4.

As an alternative to the max-min-max composition, other measurements such as sim-
ilarity and distance between IFS have attracted many researchers [12, 16, 17, 29, 37].
Szmidt and Kacprzyk [27] proposed the distance measures between IFS for medical di-
agnosis. Park et al. [19] proposed new distance measures between IVFS. In this study,
we propose a measure based on distance between IVIFS. In the measure, we consider the
hesitate part to modify Park’s distances. The measure, the normalized Hamming distance
considering the hesitate part, is defined as follows.

Definition 3.2. (Distance Measure) For any two IVIFS A = {(xi,MA(xi), NA(xi))
(i = 1, 2, ..., n)} and B = {(xi,MB(xi), NB(xi)) (i = 1, 2, ..., n)}, the normalized Hamming
distance considering the hesitate part is defined as Equation (10).

lh(A,B)=(1/4n)
∑

[|MAL(xi)−MBL(xi)|+ |MAU(xi)−MBU(xi)|+ |NAL(xi)−NBL(xi)|
+ |NAU(xi)−NBU(xi)|+ |HAL(xi)−HBL(xi)|+ |HAU(xi)−HBU(xi)|]

(10)

where H is the hesitate part.

4. Illustrative Example. In this section, we present an example to illustrate med-
ical diagnosis process. For medical diagnosis of headache, the example uses the pa-
tient’s degrees ⟨MQ(p, s), NQ(p, s)⟩ assigned by a physician, and confirmability degree
⟨MR(s, d), NR(s, d)⟩ indicated in the interview chart.

Let us consider patient P1. P1’s symptoms are (M5, M8, M12, M15, M18, M19) of
migraine, (T3, T6, T10) of tension headache, and (C4, C11) of cluster headache. P1

simultaneously has symptoms M5, M8 and M15 (the symptoms are displayed in the
composite symptom M22), therefore, the symptoms of migraine are represented in (M12,
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Table 2. Patient P1’s degrees: ⟨MQ(P1, s), NQ(P1, s)⟩

symptom M12 M18 M19 M22 T3 T6 T10 C4 C11

MQ [0.5, 0.6] [0.5, 0.6] [0.4, 0.6] [0.7, 0.8] [0.6, 0.7] [0.5, 0.7] [0.4, 0.6] [0.5, 0.6] [0.5, 0.7]

NQ [0.2, 0.3] [0.1, 0.3] [0.1, 0.2] [0.1, 0.2] [0.1, 0.2] [0.2, 0.3] [0.2, 0.4] [0.1, 0.2] [0.2, 0.3]

Table 3. Confirmability degrees: ⟨MR(s, d), NR(s, d)⟩

migraine tension cluster
symptom MR NR MR NR MR NR

M12 [0.6, 0.7] [0.1, 0.2] [0.2, 0.3] [0.5, 0.6] [0.1, 0.3] [0.4, 0.6]
M18 [0.6, 0.7] [0.2, 0.3] [0.2, 0.4] [0.4, 0.6] [0.4, 0.6] [0.1, 0.2]
M19 [0.5, 0.6] [0.1, 0.2] [0.1, 0.2] [0.6, 0.7] [0.3, 0.4] [0.3, 0.5]
M22 [0.7, 0.8] [0.1, 0.2] [0.1, 0.2] [0.6, 0.8] [0.1, 0.2] [0.7, 0.8]
T3 [0.3, 0.4] [0.4, 0.5] [0.6, 0.7] [0.1, 0.2] [0.2, 0.3] [0.5, 0.6]
T6 [0.2, 0.4] [0.4, 0.6] [0.6, 0.7] [0.1, 0.3] [0.1, 0.3] [0.5, 0.6]
T10 [0.2, 0.3] [0.4, 0.5] [0.5, 0.6] [0.2, 0.3] [0.1, 0.2] [0.4, 0.6]
C4 [0.5, 0.6] [0.2, 0.3] [0.1, 0.2] [0.6, 0.7] [0.6, 0.7] [0.1, 0.2]
C11 [0.2, 0.4] [0.3, 0.5] [0.3, 0.4] [0.2, 0.3] [0.5, 0.7] [0.1, 0.3]

Table 4. Patient’s degrees: (IIFWAA MQ, IIFWAA NQ)

Q symptom M symptom T symptom C
P1 ([0.54, 0.66], [0.12, 0.24]) ([0.51, 0.67], [0.16, 0.29]) ([0.50, 0.65], [0.14, 0.24])

M18, M19, M22). The stages for medical diagnosis of the proposed approach are as
follows:

• stage 1: Table 2 is the degrees for P1’s symptoms assigned by a physician, and Table
3 is the confirmability degrees indicated in the interview chart.

• stage 2: Based on Table 2 and Table 3, Table 4 and Table 5 are calculated by
applying IIFWAA operator Equation (9). For example, [0.61, 0.71], an IIFWAA MR

of Table 5, is calculated as follows: The confirmability membership degrees of the
symptoms (M12, M18, M19, M22) are ([0.6, 0.7], [0.6, 0.7], [0.5, 0.6], [0.7, 0.8]) and
ω = (1/4, 1/4, 1/4, 1/4). Then,

0.61 = 1− {(1− 0.6)1/4} ∗ {(1− 0.6)1/4} ∗ {(1− 0.5)1/4} ∗ {(1− 0.7)1/4}

0.71 = 1− {(1− 0.7)1/4} ∗ {(1− 0.7)1/4} ∗ {(1− 0.6)1/4} ∗ {(1− 0.8)1/4}
An IIFWAA NR of Table 5, [0.12, 0.22], is calculated as follows: From the con-

firmability non-membership degrees ([0.1, 0.2], [0.2, 0.3], [0.1, 0.2], [0.1, 0.2]) of the
symptoms (M5, M8, M18, M19),

0.12 = {0.11/4} ∗ {0.21/4} ∗ {0.11/4} ∗ {0.11/4}

0.22 = {0.21/4} ∗ {0.31/4} ∗ {0.21/4} ∗ {0.21/4}
• stage 3: Table 6 is calculated by applying Equation (10) in Table 4 and Table 5. For
example, 0.16, the distance for migraine of Table 6, is calculated as follows:

0.16 = (1/12)[(|0.54− 0.61|+ ...+ |0.34− 0.27|) + ...+ (|0.50− 0.37|+ ...+ |0.36− 0.39|)]
• stage 4: The lowest distance points out a proper diagnosis. As a result, we can
diagnose that patient P1 suffers preferentially from migraine.
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Table 5. Confirmability degrees: (IIFWAA MR, IIFWAA NR)

R Migraine Tension Cluster
symptom M ([0.61, 0.71], [0.12, 0.22]) ([0.15, 0.28], [0.52, 0.67]) ([0.24, 0.40], [0.30, 0.47])
symptom T ([0.23, 0.37], [0.40, 0.53]) ([0.57, 0.67], [0.13, 0.26]) ([0.13, 0.27], [0.46, 0.60])
symptom C ([0.37, 0.51], [0.24, 0.39]) ([0.21, 0.31], [0.35, 0.46]) ([0.55, 0.70], [0.10, 0.24])

Table 6. Distance for P1’s symptoms: lh

T Migraine Tension Cluster
P1 0.16 0.26 0.24

5. Conclusion. In this paper, IVIFS theory has been applied to make a diagnosis of
headache as a new approach on decision support practice in medicine. For medical di-
agnosis of headache, we developed an interview chart with interval fuzzy degrees based
on the relation among symptoms and three types of headache. Second, we utilized the
IIFWAA operator to aggregate interval-valued fuzzy information from the symptoms.
Last, we proposed a measure based on distance between IVIFS for medical diagnosis.
The result of the example indicates that it is possible to classify headache using our di-
agnosis method. We expect that the method will be improved to be an efficient tool for
medical diagnosis and the physician’s decision.
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