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Abstract. In this paper, we provide a taxonomic literature review of Large Scale Vehi-
cle Routing Problem (Large Scale VRP, LSVRP) and present a new solution procedure
integrating qualitative and quantitative processes for solving it. First of all, according to
the principles of different heuristics that the metaheuristics derived from, 5 categories
are classified. Then based on the analysis of the characteristics of the problem, a frame-
work of the generalized procedure to solve LSVRP is given. The techniques of knowledge
representation, state-space search theory, heuristics, and modeling optimization used in
the procedure are elaborated. Finally, a comparison study is given to show the procedure’s
competitiveness. The new idea of incorporating the qualitative reasoning into quantitative
approaches can strengthen the procedure’s capability of dealing with empirical informa-
tion. It is beneficial to greatly decreasing the number of possible routing schemes, and
meanwhile, improving the practicability of the procedure.
Keywords: Large scale vehicle routing problem (LSVRP), Qualitative reasoning, Quan-
titative computing, Distribution

1. Introduction. As it closely relates theoretical research to real-world practices, and
is an NP-hard problem, the Vehicle Routing Problem (VRP) has attracted a great deal
of research efforts in the areas of operations research, management science, and trans-
portation science. Over the past 50 years, hundreds of models and algorithms have been
developed to obtain either optimal or heuristic solutions for different versions of VRP. In
their famous book titled “The Vehicle Routing Problem”, Toth and Vigo [1] provide a
comprehensive review of the state of the art of both exact and heuristic methods developed
in the last decade for the VRP and some of their main variants.

According to the statistical analysis of the literatures, it shows that the majority of the
current research has put emphasis on the problems within a limited size of 200 customers.
Especially for the results by exact algorithms, most of them can only solve the instances
with a size less than 100 customers within an acceptable computation time.

Compared with the traditional one, VRP under E-commerce environment is more com-
plex and more difficult to solve. It reveals several new features, for example, with more
delivery points, delivery points being scattered over broader area, small delivery volume,
higher costs, with strict delivery time window. The features are reflected notably in the
daily commodity industries, such as milk delivery, beverage distribution, and cigarette
distribution. Furthermore, the complexity of the problems and their solution difficulties
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will increase due to some additional practical requirements (e.g., real-time order request
processing and real-time scheduling). The classical methods, exact algorithms and tradi-
tional heuristic algorithms, have been difficult to solve large-scale application problems.
Therefore, the research focuses are gradually turned to Large Scale VRP (LSVRP) in
recent years. In [2], it has been defined that VRP with the number of customers scaling
from 102 to 103 is classified as LSVRP.
LSVRP concerns complex management decision-making. A general way to solve com-

plex management decision-making problems is firstly to simplify them before solving.
For example, the solution process begins from their sub-problems. Here the sub-problem
selection depends on the researcher’s domain knowledge. In addition, some theoretical
studies always start from several assumptions of the problems. Although there is a gap
between the hypothesis and the reality [3], it is an effective dealing way of simplifying
complex issues. Due to the gap, the solutions may have some limitations in the aspect
of application. Since 90s in the 20th century, a new approach has emerged to solve com-
plex decision-making problems, which is more scientific and effective. This thought puts
emphasis on the description, formulation and solution process for the problem, synthe-
sizes the human’s intelligence and computer’s efficiency, and achieves a comprehensive
integration of the information, knowledge and intelligence. The two disciplines, Artificial
Intelligence (AI) and Operations Research (OR) can approach this objective in funda-
mentally different but complementary ways [4]: AI problem solution techniques tend
to be inferential and to rely on expert knowledge and heuristics; OR uses algorithmic,
mathematically based approaches. That is, AI emphasizes qualitative aspects of prob-
lems; OR emphasizes the quantitative. A careful integration of these two approaches to
problem solution shows significant promise for improving the efficiency and, notably, the
acceptability of problem solving systems. Knowledge Representation in AI realizes the
utilization of empirical information in computer, which helps reduce the computational
complexity. [5] applied the idea to deal with disruption events in the distribution indus-
try. [6] proposed a methodology for analyzing and solving complex problems in the social
economic system by the integration and the conformity of multiple disciplines which led
to the formation of a comprehensive integration of the qualitative and the quantitative,
the computational and the experimental, and the virtual and the actual.
In the paper, we attempt to introduce the above thought into solving LSVRP and

present a procedure that integrates qualitative reasoning and quantitative computing to
support effective LSVRP solving and decision-making. We also will specifically elaborate
how we can integrate the qualitative reasoning and quantitative computing in the solution
process. In Section 2, we review the algorithms that have been used to solve LSVRP. In
Section 3, we present a framework of the procedure integrating qualitative and quantita-
tive processes for LSVRP. A comparative study is given in Section 4. Finally, concluding
remarks and future research directions are summarized in Section 5.

2. A Review of Related Literature. In the last ten years, a variety of algorithms have
been developed to solve the LSVRP. Most of them apply the principles of tabu search,
evolutionary algorithm (including genetic algorithm) and simulated annealing, and then
improve them. All the algorithms fall into the category of metaheuristics. Metaheuristics
provide much better solutions, especially on large scale problems. One excellent survey
for this active research area is provided in the work of [7]. It showed that the best
metaheuristics for the VRP are powerful tabu search algorithms that easily outperform
other metaheuristics like simulated annealing, genetic algorithms and ant algorithms. In
this paper, we divide the related results for LSVRP into 5 categories: (1) Tabu search
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(TS), (2) Evolutionary algorithm (EA), (3) Simulated annealing (SA), (4) Local search,
and (5) Cluster first-route second.

(1) Tabu search (TS)
The principle of TS has been widely utilized to improve the algorithms’ ability for

solving LSVRP. We list the new algorithms derived from TS as follows.
• Network flow-based tabu search. Xu and Kelly [8] developed the local search approach

based on a network flow model that is used to simultaneously evaluate several customer
ejection and insertion moves. The capacity constraints are relaxed using penalty terms
whose parameter values are adjusted according to time and search feedback. Tabu Search
is incorporated into the procedure to overcome local optimality. More advanced issues
such as intensification and diversification strategies are developed to provide effective
enhancements to the basic tabu search algorithm.

• Adaptive memory-based tabu search. In 1996, Glover [9] presented the advances,
applications, and challenges in tabu search and adaptive memory programming. Tarantilis
and Kiranoudis [10] presented it in 2002. The main idea is to extract a sequence of
points (called bones) from a set of solutions and generate a route using adaptive memory.
If a large number of routes in the set of solutions contain a specific bone, then the
authors argue that this bone should be included in a route that appears in a high-quality
solution. The BoneRoute algorithm has two phases. In Phase I, a set of initial solutions
is generated using weighted savings. The solutions are improved using a standard tabu
search algorithm. In Phase II, promising bones are extracted, a solution is generated and
improved using tabu search, and the set of solutions is updated.

• Granular tabu search (GTS). It was presented by Toth and Vigo in 1998 and then
was published in INFORMS journal in 2003 [11]. They defined a granular neighborhood
for VRP by considering short edges whose lengths are less than a threshold value and
by typically not considering long edges. It will benefit decreasing the search space and
achieving a better solution within a shorter computing time. However, as the quality of
tabu search depends on the quality of initial solution and it only can process one solution,
it is more necessary to get a better initial solution. Due to the advantage of GTS, it is
applied to solve some variants of LSVRP. Chao [12] and Scheuerer [13] used it to solve
truck and trailer routing problem; Brandao [14] solved an open VRP by it. Ho and
Haugland [15] solved a VRP with time windows and split deliveries. Montané and Galvao
[16] settled vehicle routing problem with simultaneous pick-up and delivery service.

• Others. Due to the high complexity of the problems, the work of [17] has presented
an effective tabu search algorithm which applies dynamic oscillation and candidate list
strategies, which are controlled by the success of the search as the solution progresses, to
make best use of infeasible verses feasible space and promising verses the most promising
neighbors’ moves. The work of [18] proposed a hybrid heuristics, in which the whole
area is split into several sub-areas by the sweep technology and the divisional tabu search
algorithm is designed for the splitting of area, and the goods to be delivered in the adjacent
areas is exchanged to improve the global search ability of the algorithm.

(2) Evolutionary algorithm (EA)
• Evolution strategy. D. Mester and O. Braysy present active-guided evolution strate-

gies metaheuristic for the vehicle routing problem with time windows and for the capac-
itated vehicle routing problem in the works of [19,20] respectively. The metaheuristic
combines the strengths of the guided local search and evolution strategies metaheuristics
into an iterative two-stage procedure.

• Hybrid genetic algorithm. The work of [21] presents the first hybrid GA for the
VRP able to compete with powerful TS algorithms in terms of average solution cost. On
Christofides instances, this GA outperforms all metaheuristics published, except one. It
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becomes the best algorithm available for the large-scale instances generated by Golden
et al. [7]. In this work, the very good results can be explained by some key-features.
A possible premature convergence due to the local search is prevented by using small
populations of distinct solutions. Three classical heuristics provide good starting points.
The incremental population management and the partial replacement technique used
in restarts accelerate the decrease of the objective function. However, one point needs
improvement, that is, the GA is still slower than many TS algorithms. Therefore, it is
necessary to speed up the local search in the hybrid GA. In [22], LSVRP is partitioned
into two sub problems, the generalized assignment problem and vehicle routing problem
intra-region after partitioning. The first problem was solved by an improved location-
based heuristics, and the hybrid genetic algorithm was presented for solving the second
problem.
(3) Simulated annealing (SA)
Considering their similarities, we classify ITA and VRTR into the category of simulated

annealing.
• Improved threshold accepting (ITA). The work of [23] firstly presented the threshold

accepting (TA) in 1990. TA is a deterministic variant of simulated annealing in which a
threshold value T is specified as the fixed upper bound on the amount of objective function
increase allowed, whereas simulated annealing algorithm accepts the state of deterioration
of the objective function at a certain probability, which brings the randomness. Tarantilis
et al. proposed two kinds of improved TA, backtracking adaptive threshold accepting
(BATA) [24] and list-based threshold accepting (LBTA) [25]. In the backtracking algo-
rithm, the threshold value T is allowed to increase during the search. In the list-based
algorithm, a list of values for T is used during the search. In 2004, Tarantilis et al. applied
it to solve Open Vehicle Routing problem [26].
• Improved version of the record-to-record travel algorithm (VRTR). The work of [27]

presented record-to-record travel (RRT) in 1993. RRT and TA resemble in their struc-
tures. The differences lie in the initialization of the threshold sequence and the state of
the decreasing. RRT set a fixed percentage of a record as a deviation value and establish
a rule in advance to stop the search after a solution below the threshold value could not
be found. Its initial solution is generated by the Clarke and Wright algorithm. Feasible
one-point moves are made using record-to-record travel (uphill moves allowed). Points are
exchanged on different routes (two-point exchange) while feasibility is maintained (uphill
moves are allowed). Routes are cleaned up (only downhill moves allowed). A local reini-
tialization allows individual routes to be resequenced and the process of one-point moves,
two-point exchanges, and clean-up is repeated. In the end, global reinitialization perturbs
the best solution and the process of one-point moves, two-point exchanges, and clean-up
is repeated. Li [28] presented VRTR in 2005. The VRTR uses a variable-length neighbor
list. The idea is to consider only a fixed number of neighbors for each node when making
one-point, two-point, and two-opt moves. There are two key differences between VRTR
and RTR. First of all, VRTR considers two-opt moves between and within routes, while
RTR considers two-opt moves only within routes. Secondly, VRTR uses a variable-length
neighbor list that should help focus the algorithm on promising moves and speed up the
search procedure. However, RTR does not use a neighbor list. Then VRTR is used to
solve the heterogeneous fleet vehicle routing problem [29].
(4) Local search
Two good heuristics which utilize and improve the strategy of local search have greatly

increased the size of the solved instances. The work of [30,31] presents an efficient variable
neighborhood search heuristic for the capacitated vehicle routing problem. The variable
neighborhood search procedure is used to guide a set of standard improvement heuristics.
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In addition, a strategy reminiscent of the guided local search metaheuristic is used to
help escape local minima. The developed solution method is specifically aimed at solv-
ing very large scale real-life vehicle routing problems. It can find high-quality solutions
for experimental instances with up to 20,000 customers within reasonable CPU times.
The work of [32] aims to design a set of minimum-cost routes for the multi-depot vehicle
routing problem with time windows (m-VRPTW). It presents an m-VRPTW local search
improvement algorithm that explores a large neighborhood of the current solution to dis-
cover a cheaper set of feasible routes. The neighborhood structure comprises all solutions
that can be generated by iteratively performing node exchanges among nearby trips fol-
lowed by a node reordering on every route. Manageable mixed-integer linear programming
(MILP) formulations for both algorithmic steps were developed. A spatial decomposition
scheme has also been applied to further reduce the problem size.

(5) Cluster first-route second
An effective way to deal with LSVRP by decreasing the problem’s state space largely

is the method of cluster first-route second. Different features are utilized to cluster the
customers, e.g., road information, customer information, vehicle information, and depot
location. Besides simple sweep technology [18], there are several new customer clustering
methods. In [2], the customers were firstly segregated into districts according to the
main road grid system. Then the customer districts were assigned to vehicles using
the vehicle flow formulation model and the combined saving and 3-option algorithm.
Finally, the vehicle routes were determined as a traveling salesman problem. Yu and
Liu [33] designed an architecture of a spatial decision support system (SDSS) which is
composed of three stages, merging the large numbers of customers according to their
space attributes, assigning the merged customers to vehicles using a sweep algorithm,
and determining each vehicle route order as a Traveling Salesman Problem. Ouyang [34]
proposed algorithms to automatically discretize vehicle routing zones from continuum
approximation guidelines by utilizing a combination of spatial partitioning techniques to
systematically obtain optimum zone designs.

The idea of introducing qualitative process into solving LSVRP, especially in the stage
of customer clustering, has appeared in a few results. For example, the work of [35] tackles
the more realistic tactical or operational case (a French manufacturer of furniture with
775 destination stores), with a fixed number of vehicles of each type, and the optional
possibility for each vehicle to perform several trips. The author presents two human
experiences could be utilized to decrease the solution space of the problems. First of
all, professional dispatchers assign a ‘full load’ by hand to a truck going directly to the
client. It is assumed that such manual assignments are already removed from input data.
Secondly, a good priority rule is then to use the largest trucks first. And in the work of
[36], the concept generalized workload is introduced to balance the different routes, which
comprehensively considers route distance, the number of customers and the quantity of
the delivery goods in one route. The above ideas taking advantage of qualitative factors
are beneficial to quickening satisfied schemes acquisition and improving the practicability
of the solution method.

For the results in the categories (1) ∼ (4), by adding adaptive techniques to deal with
LSVRP, they improve the traditional heuristic algorithms and increase their efficiencies to
some extent. They encourage the practical applications of theoretical results of LSVRP.
However, the solution efficiency is contradiction to the quality of the solution, which
has not been solved very well, especially for LSVRP. There is a way to mitigate the
contradiction from two aspects. One is to decrease the problem’s state space through
incorporating human’s heuristic knowledge. The other is to bring the computer’s powerful
computing ability into play. That is, the problem maybe solved better under condition of
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the combination of human’s intelligence and computer’s efficiency and the integration of
qualitative reasoning and quantitative computing.
For the category of (5), the two stages clustering and routing are entirely independent,

which causes the common weakness of local optimization. [18] considered the comprehen-
sive optimization of adjacent areas. It improves the global search ability of the algorithm.
[34] proposed a method to divide the area from the perspective of mathematical compu-
tation, however, it lacks the consideration of qualitative factors involved in the solution
process, which results in worse practicality. There are still some other remarkable general
limitations of approaches. For example, most of them can not deal with the parameters’
dynamic changes. And for the practitioner, the most relevant issue is that metaheuristics
are not guaranteed to find the optimum or even a satisfactory near-optimal solution. All
metaheuristics will eventually encounter problems on which they perform poorly. The
practitioner must gain experience in which optimizers work well on different classes of
problems.
Therefore, a general solution procedure that can find optimal routing schemes in real

time, and meanwhile, can accommodate real world instances’ dynamic changes is in great
need. The objective of this paper is to present an intelligent procedure for synthesizing
qualitative and quantitative processes for solving LSVRP. Comparing with the above re-
sults, there are two most important features of our solution procedure. (1) The number
of feasible travel schemes is no longer determined by the number of customers (the scale
of the problem), but by the number of the customer clusters. And the computation time
stays almost unchanged as the number of customers grows. This significantly increases
the utilization of the solution procedure for LSVRP. (2) The procedure aims to iden-
tify the feasible routing schemes by considering several adjacent clusters and then using
OR programming model to find the final solution. It overcomes the weakness of local
optimization caused by entirely independent of the clustering and routing to some extent.

3. A Framework of the New Generalized Procedure to Solve LSVRP. The dif-
ficulty for solving LSVRP is due to the problem’s solution space increases exponentially
with the increase of the size of the problem. And the key point is to significantly reduce
the problem’s solution space. Therefore, focusing on the reduction of the state space of
feasible vehicle routes, combining the techniques of qualitative reasoning and quantita-
tive computing, a framework of the procedure synthesizing qualitative and quantitative
processes for solving LSVRP is presented, which is shown in Figure 1.
In Figure 1, we divide all the functions of the solution process into qualitative reasoning

and quantitative computing, which are enumerated in the left and right column respec-
tively. These functions are interrelated consecutively finishing the solution process. The
qualitative process includes the following 5 parts.
In Part 1, the qualitative factors are selected from the influence factors on customer

clustering and then represented by knowledge. The qualitative factors include experts’
distribution experience, drivers’ preferences, customer features, traffic information, and
city’s geographical features. The features of customers could be customer’s importance
level, the level of customer’s demand amount, etc., City’s geographical features concern
the characteristics of city layout. In China, there are four typical city structures, axis-
oriented structure, multi-block oriented structure, block-oriented structure, and blocks
and loops mixed structure. Such factors are difficult to be utilized and incorporated to
the computing process. To take advantage of them to decrease the solution space, the
information structure of qualitative factors should be firstly built up, based on which
they could be represented by knowledge. Comparing with the traditional knowledge
representation schemes [37] (e.g., Logic, Production Rules, Semantic Nets and Frames),
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Figure 1. The framework of the procedure synthesizing qualitative and
quantitative processes for LSVRP

Figure 2. Tree-like knowledge representation of qualitative factors in the distribution

a new one named Tree-like knowledge representation [38] is more appropriate for the
representation of qualitative factors in the distribution industry. A representation example
is given in Figure 2. Then a dynamic knowledge base should be built for storing the
knowledge of qualitative influence factors.

In Part 2, an inference engine is designed for the solution of initial customer clustering.
This is a rough and initial classification based on qualitative factors. The inference engine,
that is, an ‘interpreter’ for the knowledge base, enables the knowledge to solve the actual
problems. Here the reasoning strategy of forward chaining is applied. Forward chaining
starts with the knowledge of available qualitative factors and uses inference rules to match
the actual until a satisfied clustering result is achieved.

In Part 3, according to the characteristics of the problem, controlling rules can be
designed to decrease the number of feasible routes while they are enumerated. So the



5816 M. HUANG AND X. HU

total searching time is reduced and the searching process is simplified. For example, for
open vehicle routing problems, where vehicles are not required to return to the depot,
a vehicle will require less travel time if it finishes tasks in the nearer clusters before
the further ones to the depot. Furthermore, if adding a delivery task inside the area in
which the customer being served is located violates the travel time or the load capacity
constraint, then there is no need to consider customers outside this area. In [39], two
search rules have been designed for a real distribution problem in cities with a circular
transportation infrastructure.
In Part 4, after achieving the customer clustering results, vehicle routing schemes are

enumerated among all the clusters. The corresponding relationship between the set of
routing schemes and a state-space is built, in which a customer is a search node. A routing
scheme is a path spanning through the state-space from an initial state to a goal state.
In this case, the central depot is a search node corresponding to the initial state, and the
last customer which a vehicle will serve within the constraints is the goal state. Therefore,
the generation of vehicle routing schemes is turned into the path searching through the
state-space. Considering the characteristics of search strategies and the problems, we
adopt the depth-first search strategy to enumerate the schemes.
Finally, in Part 5, the results should be interpreted to real routes. The solutions

indicate only the service sequences in customer clusters, and do not specify which specific
customers are served. To address this, solution policy to determine the specific customers
should be developed. Nearest neighbor principle is appropriate to determine the specific
customers.
In the quantitative process, quantitative influence factors are firstly analyzed and then

customers are subdivided by clustering tools (e.g., fuzzy clustering) after they are ini-
tially classified in the qualitative process. A mathematical model is developed to select
the satisfied routing schemes from the set of feasible routing schemes achieved by enu-
meration work. Here, the traditional programming theories (e.g., linear programming,
integer programming) can be used for modeling and solving.
We have studied VRP in [39,40], which concern several parts in the framework shown

in Figure 1. The result in [39] solves a food wholesalers’ distribution decision, and [40]
presents a relatively general approach to a specific kind of VRP. Both of them study the
problems from the perspectives of qualitative processing (enumeration of routing schemes
based on State-space search theory) and quantitative processing (modeling and solution).
They verify the feasibility of the framework in Figure 1 in solving small and medium sized
problems. Owning to the number of feasible vehicle routes is no longer determined by
the scale of the problem (the number of customers), but by the number of the customer
clusters in the new procedure, it can be concluded that the new procedure will be effective
for LSVRP.

4. A Comparative Study. The comparison work was carried out with eight large-
scale OVRPs reported in the research of Li et al. [41]. These problems have 200 to 480
customers but do not have route durations. Moreover, only one vehicle type and two
demands, 10 and 30 are considered in these problems. In order to apply our solution
procedure, we use 20 as the average demand. Considering the feature of customer layout
in these 8 problems, we divide the customers in each instance into three equal circular
areas by three parallel loops dispersing from the depot. After enumerating the routing
schemes by the depth-first search strategy, an integer programming model has been built
to calculate the final solution. In Table 1, we present the results (the minimum number of
vehicles (Kmin), the solution distance, computation times, and percent of improvement)
obtained from the ORTR by Li et al. and from the procedure presented in this paper.
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Table 1. Comparison on eight large-scale OVRPs from Li et al.’s ORTR
and the procedure presented in this paper

Prob.(n, C)
ORTR by Li et al. Our Procedure Percent of Improvement (%)

Kmin
Solution Time

Kmin
Solution Time

Vehicles
Solution

Time
Distance (min) Distance (min) Distance

O1(200, 900) 5 6018.52 6.09 4 7658.86 0.25 20.00 –27.25 95.89
O2(240, 550) 9 4584.55 7.33 5 4823.26 0.30 44.44 –5.21 95.91
O3(280, 900) 7 7732.85 8.21 6 9937.26 0.30 14.29 –28.51 96.35
O4(320, 700) 10 7291.89 9.56 7 8223.72 0.31 30.00 –12.78 96.76
O5(360, 900) 8 9197.61 12.78 8 11590.32 0.35 0.00 –26.01 97.26
O6(400, 900) 9 9803.80 16.29 8 11823.11 0.35 11.11 –20.60 97.85
O7(440, 900) 10 10374.97 15.59 9 12442.10 0.35 10.00 –19.92 97.75
O8(480, 1000) 10 12429.56 18.78 10 16472.64 0.36 0.00 –32.53 98.08
Note:

• n = The number of customers
• C = Vehicle capacity
• Kmin = The minimum number of vehicles
• Percent of improvement = 100* (ORTR Solution – Our Procedure)/ORTR Solution
• Bold fonts indicate the values better than the results obtained from ORTR

It is shown from Table 1 that, each solution in terms of distance indicated by the pro-
cedure presented in this paper is longer than that from ORTR. However, the computation
times of our procedure are much shorter than those of ORTR, and increase negligibly as
the number of retailers grows. For example, for O2, compared with the 5.21% increase of
the travel distance, the number of vehicles needed in our procedure reduces that needed
in ORTR by almost half (44.44%). These results indicate that the solution procedure
proposed in the paper is superior in terms of computation time. In addition, the ability
to deal with multiple types of vehicles and its independence of the problem size also make
our procedure competitive to some extent.

5. Concluding Remarks. In this paper, we first review the results of LSVRP, and then
we present a new solution procedure for LSVRP from the perspective of simultaneously
utilizing qualitative and quantitative factors. The new idea of incorporating the quali-
tative reasoning into quantitative approaches can strengthen the procedure’s capability
of dealing with empirical information. It is beneficial to greatly decreases the number
of possible routing schemes to be considered for final selection, and meanwhile, improve
the practicability of the procedure. It also provides a reference for solving other complex
decision-making problems, for example, disruption management problem in distribution,
and emergency management problems in electric power system.

It is necessary to point out that the classification of customers may lead to a loss of
better solutions or even the best solutions. With the increase in the number of customer
clusters, the efficiency of the solution process in terms of computation time decreases. In
order to improve the accuracy, we still need to improve the solution procedure by applying
more appropriate methods for customer clustering and by taking more complicated travel
times into considerations.
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