International Journal of Innovative
Computing, Information and Control ICIC International ©)2012 ISSN 1349-4198
Volume 8, Number 7(B), July 2012 pp. 5317-5339

A GENERAL FRAMEWORK FOR PRECISION CHECKING

JORGE MUNOZ-GAMA AND JOSEP CARMONA

Department of Software
Universitat Politecnica de Catalunya
C. Jordi Girona, 1. 08034, Barcelona, Spain
{ jmunoz; jcarmona }@lsi.upc.edu

Received March 2011; revised October 2011

ABSTRACT. Process conformance is the domain within Process Mining that addresses
the adequacy between a model and a log of a system. It has four different dimensions:
fitness, precision, generalization and structure. This paper presents a metric to evaluate
the precision dimension: the extra behavior a formal model tolerates when confronted to
a log. Additionally, two important factors are presented together with the metric value:
confidence (an estimation of the stability of the metric value for a future window), and
a severity assessment to the imprecisions detected. Several techniques are described to
accomplish this, including a log-guided traversal of the model, the optimization of binary
linear programming models to estimate the confidence, and multi-factored methods to
determine the severity. The approach is implemented within an open-source Process
Mining platform, and experimental results certify both the significance of the approach
and the usefulness of the new factors proposed.

Keywords: Process mining, Conformance checking, Business process management,

1. Introduction. Process mining is a discipline that combines formal techniques that
address the process perspective of a system, and data mining [1]. Tt has been an emerging
area in the last decade. The reason for the success of process mining is simple: there
is a lack of automation and formal analysis in the way nowadays information systems
are designed and maintained. We live in a world where there is an exponential growth of
data, and where software engineers must necessarily adapt to an always evolving situation.
Process mining techniques are based on extracting information from [ogs, where a log is a
set, of traces observed in the execution of a system. These techniques address the process
perspective of an information system in the following scopes: process discovery (find a
formal model to represent a log), process conformance (evaluate the adequacy of a formal
model in representing a log) and process extension (incorporate enhancements into the
model). The work presented in this paper presents techniques for process conformance.

Process conformance comprises four dimensions [2]. The first dimension is called fit-
ness, and addresses how much of the log is captured by the process model. The precision
dimension instead prioritizes these models that represent as closely as possible the log. In
contrast, the generalization dimension prioritizes models having some degree of abstrac-
tion in representing the log. Finally, the structure dimension refers to models minimal in
structure which reflect the log.

In this work we propose techniques for estimating the precision of a formal model
in representing a log. Importantly, the approach presented in this paper estimates the
effort needed to achieve a better model (more precise), and identifies the mismatches
between log and model. This may speed-up the modeling stage by iterative evaluation and
enhancement of the processes within a system. Additionally, we incorporate discussions
on how to adapt the techniques to models that are popular in Process-Aware Information
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FIGURE 1. A general framework for precision checking

Systems such as Petri nets [3], YAWL [4], EPC [5] and BPMN [6]. In the remaining of the
section, the general setting and a simple example motivating the technique of this paper
are provided respectively.

1.1. Checking precision. Figure 1 describes the general scenario for checking precision:
the system under consideration has some processes that represent its modus operandi.
On top of these processes, there is an information system that is meant to coordinate
their execution according to a predefined specification. An information system can be
monitored in order to record its activities in a log, from which the techniques presented in
this paper will start. Additionally to logs, there are the models used to formally represent
the processes in a system. These models can be obtained through manual design, or
from process discovery techniques [7]. Once a model and a log are available, precision
checking will quantify how precise the model is in describing a log. This metric is crucial
in evaluating the real gap between specification and implementation of a system [8].
The contributions of this paper are the following!.

e A novel technique for robust precision checking which evaluates the effort needed
in order to reach a more precise model, and which can be instantiated on different
models (Petri nets, YAWL, EPCs, BPMN). The technique is based on a log-guided
traversal of the model behavior, thus avoiding the full exploration of the state space
of the model. This is a significant alleviation with respect to related approaches.

e The metric is equipped with a confidence interval, based on an estimation of how
the precision will change in the future.

e Imprecisions in the model are detected, and their severity quantified. This enables
selecting the deviations in the model that should be tackled first, but also provides
an elegant approach for reporting the precision dimension.

e For the case of Petri nets, all the techniques of this paper have been fully implemented
as a ProM 6 plugin.? Together with the experiments reported in [9, 10], the new
experiments reported in this paper witness the importance and generality of the
precision checking techniques proposed.

1.2. Motivating example. The example illustrates a possible payment process in a
billing context. The process is composed of 5 possible activities or tasks: set checkpoint
(A), pay by check (B), pay by cash (C), print bill (D) and close payment (E). Figure 2(c)
reflects a possible log generated by the information system managing this process. The
system has recorded two different traces: 400 instances of the trace ABDEA, and 600 for

!The work presented in this paper is an extension of the work presented in [9, 10].
Zhttp:/ /www.promtools.org/prom6
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ACDEA, reflecting the real behavior of the process. There are two models, described in
Figures 2(a) and 2(b), as potential descriptions of the process. Along this paper, we will
use different modeling languages for describing a process: for the example at hand, we are
using BPMN (Figures 2(a) and 2(b)) and Petri nets (Figure 2(d)). The question addressed
in the precision dimension is: which model describes more precisely the behavior reflected
in the log? When considering the log of Figure 2(c), the model of Figure 2(b) is more
precise because model of Figure 2(a) includes a concurrency between D and E, an extra
behavior not reflected in the log (the precision metric proposed in this paper would reflect
1 and 0.85 respectively). The extreme case is known as the flower model (modeled as a
Petri net in Figure 2(d)): this model contains all the behavior in the log (i.e., the fitness
dimension is perfect), but actually it allows any interleaving of the tasks, and thus does
not provide any information about the workflow of the process.

This paper is organized as follows. In Section 2, we introduce the basic notation nec-
essary for formally defining the problem in Section 3. In Section 4.1, we present a metric
for precision. In Section 4.2, we present a technique to compute the confidence interval
over the precision metric. In Section 5, we provide a method to detect the imprecisions
and an approach to assess the severity of each imprecision. Finally, experimental results
are provided in Section 6 while related work is reported in Section 7. Conclusions are
presented in Section 8.

2. Preliminaries. Event logs, or simply logs, contain executions of a system called traces
[7]. These traces represent the ordering between different tasks, but may also contain
additional information, such as the task originator or its timestamp. The work presented
in this paper focuses on the control-flow perspective of the processes, and therefore, all
this additional information is abstracted, simplifying the log as simply sequences of tasks.
A formal definition of trace and log can be seen in Definition 2.1.

Definition 2.1 (Trace, Log). Let T be the set of tasks of a process, and let P(S) denote
the powerset over S, i.e., the set of possible subsets of elements of S. A trace o is defined
as o € T*. Alog is a set of traces, i.e., EL € P(T*).

Additional to the definitions above, we define the concept of prefiz of a log, and the
occurrence of a prefix.

Definition 2.2 (Prefixes, Occurrence of a Prefix). Given a log EL, define pre(EL) as the
set of prefizes of EL, i.e., pre(EL) = {p | 0 = px € EL A p,x € T*}. Note that the empty
trace € is a prefic of any log. Given a prefiz p € pre(EL), piL denotes the occurrences of
that prefiz in the log, i.e., piL = |{o s.t. 0 =px € EL}|. The subscript EL can be omitted
whenever it is clear by the context.
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The behavior of logs and models defined in Section 3 will be mapped onto an extended
version of transition system. The basic form of transition system is defined below.

Definition 2.3 (Transition system [11]). A transition system (or TS) is a tuple (S, T, A,
Sin), where S is a set of states, T is an alphabet of actions, A C S x T x S is a set of
(labeled) transitions, and s;, € S is the initial state.

3. Problem Statement and Approach. The approach presented in this work aims at
comparing the behaviors of the model and the log in order to determine the precision
of the pair. The procedure is divided into three phases: i) exploration of log behavior,
ii) traversal of model behavior and iii) comparison of both behaviors, to detect the im-
precisions. The three phases are explained in the following three sections. Finally, in
Section 3.4, we address the problem of dealing with duplicate or invisible tasks and non
fitting models.

3.1. Determining log’s behavior. The first step is to describe formally the behavior
of the process reflected in the log. This description must have the same language (set of
traces) of the log, but it should also include state information in order to compare it with
the model behavior. For this purpose, the prefix automaton of a log is defined.

Definition 3.1 (Prefix Automaton). Given a log EL € P(T*), the prefix automaton of EL
is the transition system TS = (S, T, A, ;) such that S = pre(EL), A = {(s,e, s')|s' = se},
and S;, = €.
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FiGURE 3. TS

Figure 3 shows the prefix automaton construction for the log in Figure 2(c). The
number below each state s represents the occurrences of the prefix s in the log, i.e., s4.
Note that all the states have an occurrence number greater than zero given that all them
are log prefixes.

3.2. Log-based exploration of model behavior. An important element in any pro-
cess mining approach is the model that describes formally a process. These models can
be developed by domain experts, or produced automatically by some process discovery
technique [7]. In this work we present a general approach for precision checking, that can
be instantiated on different modeling languages. We will consider L(M) denote the set
of traces that can be observed in model M, and avail(o, M) to define the set of available
tasks according to the model M after executing the sequence of tasks o. In the last part
of the section we present five modeling languages, Petri nets and Reset nets, YAWL, EPC
and BPMN, and show how the approach is applied to them.

Once the log behavior has been determined, the second step is to compare it with the
model behavior. However, the exhaustive exploration of model state space could be costly
in terms of complexity, or even infinite. The approach presented in this work, unlike other
conformance approaches such as [8], avoids incurring into this state explosion problem by
performing a log-guided traversal of model behavior. The prefix automaton is used to
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guide the model state space exploration, extending it at each step of the traversal with
information about behavior allowed by the model. This extended prefix automaton, which
contains information of both log and model behavior, will be used later on to detect the
imprecisions between them. Formally:

Definition 3.2 (Extended Prefix Automaton). Given the prefiz automaton TS = (S, T, A,
Sin) of EL and the model M, we define the set of extended states and the set of extended
transitions as:

St = {s|ls=stNns € SAte avail(s’, M)\s¢& S}
At = {(dt,s)|s=stAnse ST}

The extended prefix automaton is TS = (§, T, A, Sin) With S=SUS* and A= AU A+,

Notice that the definition above makes the implicit assumption that, given a trace in
the log, the set of available tasks after replaying that trace in the model always can be
computed. However, there might be states of the log behavior that fall out of the model
behavior, and therefore, the set of available tasks cannot be computed. These situations,
known as non fitting are addressed in Section 3.4. In the rest of the section we will present

intuitively the extension of the log prefix automaton for the most used process modeling
languages: Petri and Reset nets, YAWL, BPMN and EPC.

3.2.1. Petri nets and reset nets. Petri nets [3] are widely used for modeling processes
given its adequacy for reflecting concurrency, its intuitive graphical format, its formal
semantics, and the vast number of approaches for Petri nets in Process Mining [12].
Informally, Petri nets are bipartite graphs, with two kinds of nodes, transitions, that
represent the tasks of the process, and places, used to define the state of the system. The
behavior of a process modeled using Petri nets is defined by the tokens and the firing rule.
Tokens, represented by black dots, flow through places. A transition is enabled if there
are tokens in all its input places. A distribution of tokens over places is called marking,
and determines the state of the system. An enabled transition can fire (i.e., the task
has been performed), and it results in the removal of the tokens in the preceding places
and the creation of tokens in the succeeding places of the transition. Firing sequence of
transitions determines the behavior represented by the model. The set of available tasks
after firing a trace o (avail(o,M)) corresponds to the set of enabled transitions in the
marking reached after firing o in the Petri net. For more details, the reader can refer to

[9].

Figure 4(a) shows a possible Petri net for the log of Figure 2(c), where tasks in the
log are associated with transitions in the model. Apart from the simple 1-to-1 mapping
between transitions and the tasks in the EL, other mappings are also possible, i.e., a
several transitions can be associated with the same task (known as duplicate tasks and
represented with the same label in all the transitions), or a transition can be associated
with no task (known as invisible tasks, and represented as a black filled or unlabeled
square). In this example, the model starts and ends with two transitions associated with
the same log event A (i.e., it has duplicate tasks), and it contains an invisible task, used
to model the possibility of skipping the execution of the task E. Figure 4(b) shows the
extension of the log prefix automaton with the information on the Petri net, e.g., after
the execution of ACD the model allows the execution of A directly (through firing the
invisible transition), without executing E first, a behavior not reflected in the log.

In [13] the authors present a set of patterns that any real-world workflow modeling
language should support. Although Petri nets have a great expressive power, they are not
able to capture in an intuitive way all these patterns (e.g., the cancellation of an activity).
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FiGURE 5. Example of system modeled with reset nets

Reset nets [14] are meant to cover this gap: they are Petri nets with the inclusion of a new
element called reset arcs. A reset arc connects a place and a transition, but it does not
restrict the enabling of the transition. Furthermore, when the transition to which a reset
arc is connected fires, any place connected to the transition by the reset arc is emptied of
all their tokens. Reset arcs are represented by two headed arrow (—).

In order to illustrate the application of the approach presented in this paper for reset
nets, we consider a simple modification of the example of Figure 4, shown in Figure 5. In
this process we introduced an extra task cancel labeled as X. In the model, X reflects the
possibility of canceling properly the procedure (removing all the tokens) before closing
the process (E) or setting the checkpoint (A). In case that the check point is set (A)
without canceling the procedure, the option of canceling the process becomes unavailable.
However, the log only reflects the cancellation of the procedure before closing the process
(E). Therefore, the cancellation after E becomes a behavior modeled but not reflected in
the log, and the prefix automaton is extended accordingly.

3.2.2. YAWL (yet another workflow language). YAWL [4] was developed in order to cap-
ture easily some of the workflow patterns that Petri nets were not able to reflect in an easy
way, e.g., cancellation, synchronization of active branches only, and multiple concurrently
executing instances of the same task. YAWL has formal semantics based on transition
systems, and also a complete support environment.?

YAWL models are mostly composed from the following elements: tasks, represented by
squares, and conditions drawn by circles (as in Petri nets). However, in YAWL models
tasks can be connected directly with other tasks (assuming an implicit condition between
them). Furthermore, YAWL supports the join and split constructs shown in Figure 6(a).
Informally, the semantics behind each construct is the following: AND-join and XOR-
join receive the thread of control when all or one of the incoming branches are enabled,
respectively. Similarly, AND-split and XOR-split pass the thread of control to all or
precisely one of its outgoing branches. When OR-split is enabled, the thread of control
is passed to one or more of the outgoing branches. Finally, OR-join receives the control
when either each active incoming branch has been enabled or it is not possible that any

3More details on www.yawlfoundation.org.
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branch that has not yet been enabled will be enabled at any time in the future.* YAWL
allows not only to define atomic tasks, but also composite tasks (tasks that are YAWL
models itself), multiple instances tasks (the same tasks with different parameters), and
composite multiple instance tasks (a combination of the previous two). For the sake of
clarity in this paper we only consider atomic tasks.

kIl § )

AND join AND split
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OR join  OR split
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FIGURE 6. YAWL for the log of Figure 2(c) and its extended prefix automaton

Hence, a task is enabled in YAWL if it receives the thread of control. Given a sequence
o, we can define the available tasks (avail(o,M)) as the tasks with the thread of control
after replaying o in the YAWL model M. For instance, Figure 6(b) defines a YAWL
model for the log of Figure 2(c). The extended prefix automaton of the YAWL model
based in that log is shown in Figure 6(c). For example, for the state AB, we reproduce
the trace AB in the YAWL model, and the tasks that receive the thread of control after
AB are D (present in the log) and E (not present in the log).

3.2.3. BPMN (business process modeling notation). BPMN [6] models are composed from
three types of nodes®: events, activities and gateways.® Ewvents (represented as circles)
denotes something that happens (e.g., time, messages, ... ), rather than Activities which
are something that is done (represented as rounded-corner rectangles). Finally, the gate-
ways, represented as diamond shapes, are used to route the control flow. We can classify
the gateways in six types: ezxclusive decision and ezclusive merge gateways (denoted by
a “x”), parallel fork and parallel join gateways (denoted by “+7) and finally, inclusive
decision and inclusive merge gateways (denoted by “O”). Exclusive decision routes the
control flow to exactly one of its outgoing branches, while exclusive merge receives the
thread of control when one of the incoming branches is enabled. Parallel fork splits the
thread of control among all its outgoing branches, and parallel join waits for all their
incoming branches. Finally, inclusive decision and inclusive merge, instead of synchroniz-
ing all the branches (as parallel gates) or only one (as exclusive gates), synchronize any
number of the branches. However, unlike Petri nets or YAWL, the semantic behind these
gateways is underspecified in the standard specifications [15].

Figure 7(a) shows a BPMN model corresponding with the log shown in Figure 2(c). The
first part of the diagram models the choice between task B and task C, while the second
part reflects the concurrency between tasks D and E. The process is started and ended
with two activities both associated with the log event A. Figure 7(b) shows the extended
prefix automaton of the log and the BPMN model. Note that, the extension of this model
and the YAWL model seen previously reflect the same extended prefix automaton.

4Or-join semantics in YAWL is a complex topic, as described in [4].

SBPMN 1.0 is considered.

SBPMN may contain other more advanced elements such as complex gateways, triggers and subpro-
cesses which are not discussed in this paper. For more information, see www.bpmn.org.
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F1cure 7. BPMN for the log of Figure 2(c) and its extended prefix automaton

3.2.4. EPC (event-driven process chain). EPC [5] uses a chain of elements to define the
workflow of a process. An event-driven process chain may contain three types of elements:
functions, events and logical connectors. Functions (rounded rectangles) are the tasks to
execute, while events (hexagons) describe the situation before and/or after executing a
function. Finally, logical connectors are used to route the flow of the process. There exist
three types of connectors: AND (or A), OR (or V) and XOR (or X), with a semantic
similar to the one presented for BPMN. Like in BPMN notation, the underspecified and
non-local semantics behind EPC is something one should be aware of when using this
modeling language [16].

F1GURE 8. EPC for the log of Figure 2(c) and its extended prefix automaton

Figure 8(a) shows a possible EPC model for the process reflected in the log in Figure
2(c). The first part of the model reflects the choice between tasks B and C. The second part
contains a loop that models the possibility of executing the tasks D several times, an extra
behavior not reflected in the log, but which appears in the extended prefix automaton (cf,
Figure 8(b)). Notice that, EPC events represent conditions but not actions, and therefore
they are not considered tasks of the process. Note also that, although the model contains a
loop (thought an invisible task) and the behavior modeled is infinite, our approach makes
a log-guided exploration of the model behavior, bounding it, and limiting the complexity
of the exploration.

3.3. Detecting precision discrepancies. Once the prefix automaton contains the in-
formation about log and model behaviors, it has all the necessary information to detect
the imprecisions of the model in describing the log, i.e., the points where the model re-
flects more behavior than the one represented in the log. Intuitively, these points are
the states in the automaton with an occurrence value of zero, denoting that they are
allowed by the model but they do not appear in the log. As expected, these imprecisions
(filled in gray) correspond with the new states introduced in the extension of the prefix
automaton, denoting behavior not reflected in the log but modeled anyway. For instance,
the imprecisions in the Figure 4(b) are produced by the possibility of skipping the task E
through an invisible task. This extra behavior in the model was never present in the log.

However, in order to add an extra layer of robustness to the detection of imprecisions,
we extend the definition of imprecision to include, not only the states with occurrence
value zero, but also the ones below a certain threshold. With this threshold we avoid that
a noisy trace will affect the computation of the precision value. The example in Figure
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FIGURE 9. Motivation for robust imprecision detection

9 illustrates intuitively the idea. In the example, a slightly different version of the log of
Figure 2(c) is used, where a noisy trace ACEDA has been inserted, denoting an erroneous
and infrequent behavior that should not be considered. In the simple approach presented
above, where only states with occurrence value equal to zero are regarded as imprecisions,
only one imprecision would be detected (ABE), due to the fact that the other imprecision
(ACE) will be masked by the noisy trace. However, by considering a threshold related
to the frequency of each location (cf. the remaining of this section), we will be able to
consider the noisy trace as an imprecision.

In order to define formally the imprecision points, first we need to define the imprecisions
(called escaping states) for a given state. Then, we use this definition to formalize the
escaping states of the whole system, splitting the prefix automaton into three parts: inner,
escaping states and outer part (denoted as white, gray and black circles respectively).

Definition 3.3 (Escaping States of a state). Let TS = (§, T, E, Sin) be the given extended
prefix automaton for the log EL and the model M, and consider a threshold parameter
v € [0,1]. Given a state s € S, the set of escaping states at s is defined as:

Ed(s) = {S'|(s,e, s') e AN (v 54) > 3'#}

In other words, the occurrence value of the state s' (i.e., s;#) must be inferior to the
threshold defined for this point (i.e., v - sy ) in order to be an escaping state.

Definition 3.4 (Escaping , Inner and Outer States of a system). Let TS = (§, T, A\, Sin)
be the given extended prefiz automaton for the log EL and the model M, and consider a
threshold parameter v € [0,1]. The set of escaping states of a system is defined as:

Eg:{s | E!saE§:sEEg(sa)/\ﬂsb,sce§:s:sbx/\stEg(sc)}

The set EJ defines the border between the log and the model behavior. The states that
fall out of this border are called outer states and are defined as:

07:{8 | s€§/\5|s':s:s':17/\s'€Eg}
The states that fall in of this border are called inner states and are defined as:

g ={selS\ (5 v}

Figure 9 shows the escaping states (gray), the inner (white) and the outer (black) part
of the example system, for v = 0.02. Notice that, given the definitions above, there may
exist states belonging to the escaping states set of a given state that do not belong to the
escaping states set of the whole system, i.e., they fall into the outer part.
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3.4. Dealing with non-fitting models, duplicate and invisible tasks. Although
the approach presented has a general nature, there are some special cases that should be
analyzed in detail. The first situation are the so called non fitting traces. In the second
step of the technique presented above, each state of the prefix automaton is extended
with the information about the tasks available according to the model representation.
This process was assuming implicitly that it was always possible to determine the set
of available tasks for any prefix in the log, replaying that prefix in the model. In other
words, the behavior of the log is assumed to be a subset of the behavior modeled in
the model. However, in the real-case scenarios, it is common to find traces that, at
some point, fall out of the model behavior, i.e., traces that do not fit with the model.
The analysis and measuring of the conformance issues produced by this kind traces fall
directly under the scope of another of the conformance dimensions: fitness. The fitness
dimension and the approaches proposed to measure it (e.g., [8, 17, 18]) should analyze
that part of the conformance independently from the precision dimension. However, the
prefixes of non fitting traces that fall within the model behavior can be considered for the
precision computation: given a non-fitting trace o for a model M (i.e., o & L(M)), we can
characterize the set of fitting states of o as {0’ |0 =o'z A o' € L(M)}. In the presence
of non-fitting traces of an EL, the approach can still compute precision by focusing on the
fitting states of every trace in EL.

The second scenario to consider is the inclusion of duplicate and invisible tasks. The
approach presented above is able to deal with duplicate tasks. Figures in Section 3.2
show examples of these situations, i.e., the task A appears twice, at the beginning and
at the end of the models in that section. The approach presented is also able to deal
with invisible tasks. Invisible tasks are usually represented as black-filled boxes (e.g., in
Petri nets) or simply as tasks without label. Examples of invisible tasks and how they are
handled can be seen in Figures 4, 6 and 8. However, all that examples satisfy a crucial
property: they are deterministic. In other words, the inclusion of duplicate tasks could
produce cases of indeterminism, i.e., it is not possible to determine a unique replay of a
trace in the model. Figure 10(a) shows an example of these situations (in that case, using
Petri nets as modeling language). In the example, if we try to replay the sequence AB,
given the information reflected in the log, we are not able to determine which of the two
tasks in the model (B on top or B at bottom) is the one that should be fired, because
both have the same footprint in the log. A similar situation could be produced by the
introduction of invisible tasks, as it is shown in Figure 10(b).

Invl

a) B >0 C b)

g *

Inv2

FI1GURE 10. Indeterminism produced by duplicate and invisible tasks

Choosing one or another invisible/duplicate task in the model may produce differences
in the behavior, and therefore the computation of the precision would be strongly related
with the choices made. In such cases, the application of heuristics and best effort strategies
becomes necessary, e.g., n-lookahead (i.e., consider the next n tasks in the trace to make a
decision), lazy invisible (i.e., invisible tasks only considered if task is already available), or
shortest sequence of invisible (i.e., consider the shortest invisible tasks necessary to avail
the task) [8]. The latter two assume that the simplest reproduction of the trace must be
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the correct one (Occam’s razor). Finally, we can apply more complex strategies based in
the cost-replayed of traces in order to determine the sequence of tasks to be considered
in each case [19]. The inclusion of invisible tasks in a deterministic scenario could also
be problematic: in the presence of invisible tasks, to determine the set of available tasks
may require the exploration of the state space, given that for invisible tasks there is not
reflex in the log to guide that traversal. For the case of Petri nets, a finite exploration of
this state space can be performed through the notion of Invisible Coverability Graph [9].

4. Evaluation of the Precision. In this section we propose a new metric for measuring
precision based on the escaping states defined in the previous section. Furthermore, a
confidence value over the metric value is presented in the second part of the section.

4.1. Precision metric. The metric presented in this section uses the extended prefix
automaton to compare model and log behaviors. For evaluating the metric we count
the imprecisions, weigh them according to their frequency, and compare them with the
behavior allowed in every state. This way of estimating precision is strongly linked with
the idea of assessing the effort needed to achieve a model 100% precise.

Definition 4.1 (ETC Precision metric). Let EL be a log, a model M, the extended prefix
automaton TS = (S, T, A, sin) with inner and escaping states (I3, EJ) from Definition 3.4
on a threshold parameter v € [0,1]. The metric is defined as follows:

2 (1B (s)] - 54)

seld

> (Javail(s, M)| - s4)

sely

(1)

etep(y) =1 —

The metric evaluates the amount of overapprozimation in each state from IJ, by dividing
the set of escaping states by the set of allowed tasks. Note that |EJ (s)| < |avail(s, M)], and
therefore 0 < etcp < 1.7 To illustrate the metric we consider the payment process modeled
in Figure 2(a) and two possible logs shown in Figure 11. The corresponding extended
prefix automata determining the escaping states (considering a v = 0.02) is shown in the

same figure. For each case, the metric value would be etcp(0.02) =1 — % = 0.86 and
etcp(0.02) =1 — % = (.86, respectively. These results reflex that both pairs model-log

have the same high precision of 0.86, as it was expected, regardless of the size of the log.
However, note that imprecisions with different weight would affect differently the metric.
Both examples do not achieve the perfect precision, given the concurrent behavior between
activities D and E (such concurrency is not observed in the log). On the other hand, if we
consider the same pair of logs with the model of Figure 2(b), the resulting extended prefix
automaton will contain no escaping state, and the metric will report a 100% of precision
(as it would be expected).

#lnsmances | Log Traces
10 ABDEA 20
10 ACDEA

#instzoces | Lo Traces
D 900 ABDEA | 1o

100 ACDEA
1 NE 10 10 0

a) O

FIGURE 11. Example for precision metric computation

"Only states included in model behavior are considered (cf. Section 3.4).
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Note that in these examples we are considering a « value of 0.02. Actually, changing
v slightly has no effect in the metric for these particular examples. However, there are
situations where it could be interesting to consider a greater v, e.g., computing only the
precision of the frequent parts of the process. For example, in Figure 11(b), considering
a 7 of 0.15, the infrequent part of the trace ACDEA is cut, considering only the most
frequent trace ABDEA. In that case, the state AC is considered as an escaping state,
and the rest of the succesors states are considered as outer states. The precision metric
changes to 0.71.

4.2. Confidence over the precision metric. Together with the precision metric pre-
sented in the previous section, we provide an estimation of the confidence over this metric,
i.e., an estimation of the stability of the metric value for a certain future window to con-
sider. In this work, we propose a confidence interval, i.e., and upper and a lower value over
the metric value. The amplitude of the interval determines the confidence over the metric
(i.e., the narrower the interval is, the more confidence one has). The confidence interval
described in this work is strongly linked with the future to consider, i.e., the confidence
that the metric vary in a short period of time (and therefore with only few new executions
of the process) should not be the same as considering a long period of time where much
more new incoming behavior is considered. This future is specified using a parameter k,
which defines the number of new extra traces to consider in order to analyze the possible
variations of the metric value. By estimating an upper and a lower metric value, we are
providing a confidence interval over the metric itself.

4.2.1. Upper confidence value. In order to estimate an upper confidence value, we must try
to maximize the metric value using the k£ new traces that determine the future assuming
always a best case scenario, i.e., minimizing the number of imprecisions. In the best case
scenario we can assume that each of these k traces is able to reach an escaping state, i.e.,
each of them are traces starting in the initial state of the prefix automaton and ending
exactly in an escaping state. If the escaping state receives enough traces to overpass
the threshold (v, cf. Section 3.3), it will not be an imprecision anymore, and therefore,
the metric value will be increased. Notice that, given the way the precision metric is
computed (see Section 4.1), the increase achieved covering different imprecisions may be
different, i.e., imprecisions concerning frequents parts have a greater weight in the metric
than other imprecisions less frequent, and therefore, covering them produces a greater
increase.

In summary, the problem of computing an upper confidence value can be reduced to an
optimization problem: maximize the total increase (gain) of covering imprecisions, given
k new traces and a set of imprecisions, each one with a function that determines the
cost and gain of covering it. The cost of covering an escaping state is determined by the
number of traces needed to overpass the threshold. The gain of covering a escaping state
is estimated as the increase it will produce in the metric. Formally:

Definition 4.2 (Cost and Gain of Covering an imprecision). Let s' € S be an escaping
state such that (s,e, s') € A\, and let v be the parameter used to define the escaping states.
The cost of covering s', denoted as C(s') =1 with | € N, is the minimum [ that satisfies
(s +1)-v < (sl +1). The gain of s’ is defined as G(s') = sy, i.e., the gain of reducing
in one the number of escaping states of the parent state s.

By inspecting the fraction part of Formula (1), one can see why the gain of covering the
escaping state s’ is sy if in state s one escaping state is removed, then the new escaping es-
tates in s are |EJ (s)|—1. Since this number is multiplied by sy in the numerator part of the
fraction, the numerator will be reduced exactly in |EJ(s)|- sy — (|[EJ(s)] — 1) - s = sx.
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Given the cost and gain functions, and the maximization to achieve, the problem can be
reduced to the Knapsack problem [20]. Here we propose the formulation of the problem
as a Binary Integer Programming (BIP) problem. This problem can be solved using linear
programming techniques [21]. The formulation is described below:

BIP model to solve:

1. Variables: denoting if the escaping state 7 is covered or not.
Vie EJ : X; € {0,1} (2)
2. Constraints: the total cost cannot exceed the number of new traces seen.

S X<k 3

i€E]

3. Cost function: maximize the gain.

In the simple formulation of the problem, the number of variables is |EJ|. However,
characteristics of the problem and properties over the domain can be exploited to reduce
significantly this number. For example, being C the set of possible costs for a given model,
for each possible [ € C, at most |k/l] can be used in order to satisfy (3). Hence, the real

upper bound to the number of variables needed is > |k/l].
leC
With the result of the maximization of the possible total gain obtained using at most

k traces, we can define the upper confidence interval value as follows.

Definition 4.3 (Upper Confidence Value). Let N and D be the numerator and denom-
inator of the metric etcp as defined in (1), i.e., etcp(y) =1 — (N\D). Let Gmax be the
result obtained using the optimization problem modeled above. The upper confidence value

15 defined as follows:
N -G
By = 1 — 2~ Grmax
U(k) D (5)

To illustrate the confidence value we use again the example of Figure 11. In the example
11(a) there are 2 imprecisions. Given v = 0.02, the cost of covering each imprecision is
the same, i.e., 1 trace, and the gain is also the same, i.e., 10 in each case. Taking
k = 1, only 1 trace could be covered, and then the upper bound for this k£ would be
U(l) =1 — 232 = 0.93. Considering a greater k (e.g., k = 2), both imprecisions can
be covered, achieving an upper confidence value of 1. Note that, even considering a near
future the metric could increase substantially, denoting a low confidence over the metric.
On the other hand, in example 11(b) there are also two imprecisions, but the cost and
the gain of covering them are not the same. Given v = 0.02, the cost of covering them
is 19 (upper) and 3 (lower), and the gain is 900 and 100, respectively. In this case,
considering £ = 1 no imprecision can be covered. With £ = 3 only the lower imprecision
can be covered, and the resulting upper bound would be U(3) = 1 — % = 0.87
(only a minimum variation over the metric). With a greater & of 20, only one of the two
imprecisions can be covered. In that case, and taking into account that we are considering
the best case scenario, we maximize the gain (i.e., covering the imprecision with gain of
900), and hence the upper bound achieved is U(20) = 1 — % = 0.99. Note that,
covering only the other imprecision will achieve an upper bound considerably inferior,
i.e., 0.87. For values of k greater than 22, both imprecisions can be covered, achieving

precision 1.0. Notice than, in this second example, more executions of the process have
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been reflected in the log, and then the confidence over the metric computed is higher (i.e.,
the upper bound is closer to the metric value).

4.2.2. Lower confidence value. The approach behind the lower bound assumes a situation
determined by the & new traces that lower as much as possible the precision value (worst
case scenario). Hence, in contrast to the upper bound computation where we maximize
the imprecisions to cover, the appearance of new imprecisions in the system is considered
instead. By estimating the new imprecisions that may appear caused by the k traces, we
will be able to determine the confidence over the metric decrease in the future.

The type and number of new imprecisions arising from observing k£ new traces can vary
significantly. In this work we propose an approach based on the size of the traces seen in
the log, and the most generic and worst case scenario possible according to the model. If m
is the average size of the traces in the log, we consider k traces of size m, representing new
behavior. Therefore, this k£ new traces produce m - k new states in the prefix automaton.
At the same time, each one of this new states contains # escaping states. This parameter
f is defined by the user depending on the scenario to be considered. For instance, this
parameter could be extracted statistically from the log as final representation of the
process (e.g., the average of escaping states per state, per trace). Alternatively, given
that we are considering always the worst case scenario, we may consider that each of
these new states contains the maximum number of possible escaping states, i.e., |T| — 1
where T are the set of tasks. In other words, all the tasks are available but only one is
followed by the trace. Given these considerations, the lower confidence value is defined
as follows.

Definition 4.4 (Lower Confidence Value). Let N and D be the numerator and denomina-
tor of the metric etcp as defined in (1), i.e., etcp(y) =1 — (N\D). The lower confidence
value s

N+ (m-k-0)

Lk, 0) =1~ 50 T (6)

Following with the example of Figure 11 and considering 6 as |T'| — 1, the average size
of the traces in both logs (i.e., m) is 5, and the number of tasks of the process (i.e., T)
is 5. Considering v = 0.02, k£ = 1, the lower bound of log 11(a) would be computed as
L(1,4)=1- 20414 _ () 76. On the other hand, considering the log 11(b) with the same

140+(5-1-5)
parameters, the lower bound would be L(1,4) =1 — %

to the metric value denoting the low confidence of changing in the near future. Notice
again that in the second example, more executions of the process have been reflected in
the log, and therefore, the confidence over the metric computed is higher. This is even
clearer if we take both upper and lower confidence value. For instance, with £ = 1 and
v = 0.02, the metric and the interval of example 11(a) are 0.86 and 0.76 — 0.93 (the size
of the interval is 0.17). For example 11(b), they are 0.86 and 0.85 — 0.86 (the amplitude
of the interval is 0.01, considerably smaller than example 11(a)).

= 0.85, i.e., really close

5. Locating and Assessing Imprecisions. As important as evaluating the precision
of a system in a global way is locating where the precision problems are and assessing
their importance. This is the goal of this section: in the first part we present the minimal
disconformant traces used to locate the imprecisions, while in the second part we present
an approach to estimate the severity of these imprecisions.



A GENERAL FRAMEWORK FOR PRECISION CHECKING 5331

5.1. Locating the imprecisions. In this section we provide paths to imprecisions, i.e.,
the path followed by the system to reach an escaping state. We call these paths Minimal
Disconformant Traces (MDT ). MDT main property is their minimality, i.e., they are the
shortest trace in the model such that it deviates from the log behavior [9]. Therefore,
MDT represents a succint mechanism to report imprecisions, identifying the situations to
tackle in order to reach a more precise model.

Definition 5.1 (Minimal Disconformant Traces (MDT)). Given T the set of tasks of the
process, a log EL, a model M, define the Minimal Disconformant Traces of EL and M as:

MDT ={c' € T* |o' =0t ANo' € L(M) Ao € pre(EL) Ao’ ¢ pre(EL)}

By the construction of the extended prefix automaton and the definition of MDT above,
there is only one MDT for every imprecision, corresponding to the sequence associated
with the escaping state. For instance, Figure 12(a) shows the two existing MDT for the
process in the examples of Figure 11, one for each imprecision. Furthermore, the set of
MDT could be considered as an event log, i.e., it is indeed a set of sequence of tasks.

MDT

ABE
ACE

a)

FIGURE 12. Example of minimal disconformant traces (MDT)

5.2. Severity of an imprecision. Associating a severity value to each imprecision will
assess the urgency for fixing it. Moreover, the imprecisions can be sorted according to
their severity. Below we provide a set of factors to estimate the severity of an imprecision.

Assessing the severity of an imprecision is a complex and subjective operation, which
may change depending on the scenario and the needs of the analyst of the system. For
that reason, in this work we present a multi-factored severity approach, where each of
the four factors may be weighed according to the importance each scenario requires. The
four factors considered are frequency, alternation, stability and criticality.

Definition 5.2 (Severity of an Imprecision). Let EJ be the set of escaping states denoting
the imprecisions of a system. Given s € EJ, the severity of the imprecision at s is

861)(8) = f(FﬁaAft’Sftvat) (7)

where Fy, Ap, Sp, Cp correspond to the frequency, alternation, stability and criticality
factors of the imprecision at s, and [ 1s a user-defined function that weighs these four
factors.

In the rest of the section, the four factors are described. In the definitions below, the
following context is assumed: a model M, a log EL, the extended prefix automaton of
EL on M TS = (§, T, A, Sin), and (s',e,s) € A where s € EJ is the imprecision to be
assessed.

5.2.1. Frequency. The first factor assesses the severity of an imprecision according to its
frequency. An imprecision reached frequently should have more importance than another
located in infrequent parts that barely have any repercussion in the process execution.
Therefore, we define the frequency factor as follows:
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Definition 5.3 (Frequency factor). Let maxy = max(zxy | x € S) be the mazimum
occurrence value of all the states in S. The frequency factor of the imprecision at s is

defined as follows:

Fals) = (8)

To illustrate the frequency factors (and the rest of factors) we consider the process
of Figure 13. The process is composed by a model (13(a)) and a log (13(b)). The
extended prefix automaton (considering a v = 0.01) is shown in 13(c). We consider two
of the four imprecisions of the system: imprecision a is reached after the sequence ABG,
while imprecision b is reached after ACE. Imprecision a has a high frequency factor of

1000

030 = 0.97, (where 1030 is the maximum occurrence value in the whole prefix automaton).

On the other hand, imprecision b has a extremely low frequency factor of % = 0.03.

500 | ABDH

250 | ABEH
250 ABFH
30 ACDH

Ficure 13. Example for determining the severity of the imprecisions

5.2.2. Alternation. The second factor of the severity assessment addresses the probability
of choosing an incorrect option. In case of the precision dimension, this incorrect choice
refers to the possibility of, given a state, choosing a task allowed by the model but not
reflected in the log, i.e., an imprecision. There are situations where choosing badly is really
unlikely because almost all the possible paths reflect correct process behavior. However,
there are cases where the ratio between the tasks that should be enabled (i.e., lead to an
escaping state) and the ones that are really allowed by the model is quite high. These
latter situations are the ones that should be tackled first (i.e., have high severity) given
that they may produce problematic situations in the process. The alternation factor is
the one that assets that issue, and can be defined as follows:

Definition 5.4 (Alternation factor). Let Pg(x) be the probability of choosing an escaping
state being in the state x. The alternation factor of the imprecision at s is defined as
Ap(s) = Pg(s'), being s’ the predecessor of s. The distribution of Pg(x) may be different
depending on the assumptions taken. If no assumption is considered, a uniform distribu-
tion, where each possible path has the same probability, must be applied. Therefore, the
alternation factor can be estimated as:

| E5 (s")]
Ap(s) = |avail(s', M)| )
Following with the example of Figure 13, the alternation factors of both a and b impreci-
sions are completely different. For the imprecision a the factor value is i = 0.25, denoting
a low probability of choosing an erroneous path in that location. On the other hand,
imprecision b has a high alternation factor of % = 0.75, reflecting the high probability of
deviating from the behavior observed in the log.
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5.2.3. Stability. The third factor considers the probability of an imprecision to become a
non-imprecision in the future. This concept is strongly linked with the robustness layer
presented when defining the escaping states (cf. Section 3.3). In order to measure the
stability or equilibrium of the imprecision, we apply a little perturbation to the system
and the results are analyzed.® In our setting, the perturbation consists on considering
a small number of extra traces (denoted by z) that reach the imprecision. For stable
imprecisions, these z extra traces will not produce any effect, i.e., the imprecision will
still be an imprecision. These are the cases that should be tackled first (i.e., high severity
degree) because the probability of changing in the future is low. However, in unstable
situations, these z extra traces may produce a sufficient change in the occurrence value of
a predecessor state making it to overpass the threshold defined (v, cf. Section 3.3), and
thus become non-imprecisions. Repairing these unstable imprecisions may be a waste of
resources given the high probability that they disappear in the future represented by the
window of z traces. The intensity of the perturbation (i.e., the number of extra traces z
considered) may be proportional to the size of the case (in our setting, the total number
of traces seen in that location), i.e., the perturbation in frequent parts of the process must
be greater than the perturbation made in other less frequent parts.

Definition 5.5 (Stability factor). Let z be a percentage of the occurrence value of the
location, i.e., z = [s)y - 7] where T € [0,1] is the parameter indicating the percentage of
new traces to be considered in order to determine the stability of an imprecision. Moreover,
let | € N be the smallest number such that the equation (sl +z) - < (su +1) is satisfied,
i.e., | defines the minimum number of traces the state s must receive in order to change
from escaping to non-escaping state after considering z new traces in that point. The
stability factor of the imprecision at s is the probability of s still being an escaping state

after considering z new traces, i.e.,
-1
Sp(s,m) = Pi(< ) =) Pi(=1i) (10)
i=0

where PZ(< ) and P?(= x) represent the probability that the state s receives less than x
(or ezxactly x) of the new z traces considered in this point.

For instance, for imprecision a in the example of Figure 13, and considering v = 0.01
and 7 = 0.06, z would be [1000-0.06] = 60 and [ would be [((1000+ 60)-0.01) —0] = 11.
On the other hand, the z considered for imprecision b would be [30-0.06] = 2 and [ would
be [((304+2)-0.01) — 0] = 1.

Let ps define the probability that a new trace in s’ follows the state s, and let 1 — pg be
the probability that the trace follows one of the other successor states of s’. According to
the Binomial distribution [23], the stability factor can be expressed as:

-1
Sp(s,m) =) (f) (ps)' (1 —ps)*" (11)
i=0
Formula (11) can be understood as follows: in order for s to still be an escaping state, i
successes (p,)* and z—i failures (1 — p,)* % are needed. However, the i successes can occur
anywhere among the z traces, and there are (f) different ways of distributing ¢ successes in
a sequence of z traces. The probability p, may depend on the assumptions taken. Again,
if no knowledge regarding the distribution of the log is assumed, a uniform distribution

8The idea of applying perturbations in order to estimate some properties has been used successfully
in other fields, such as the measurement of community robustness [22].
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is taken. Therefore, if ¢ is the number of successor states of s’, the probability of each
successor state is 1/¢, and Formula (11) can be rewritten as:

sen- ()02

Following with the running example of Figure 13, the stability factor of imprecision a
would be 0.04, while value for the imprecision b is 0, denoting that it is really unstable.

5.2.4. Criticality. The last severity factor addresses the criticality of the tasks involved in
a imprecision. Informally, this factor will measure the importance given to the tasks that
deviate from the log: it is not the same to execute an unnecessary check of a field in an
online form, than making twice the payment of a 3 million dollar grant. Thus, each task
must be assessed with a criticality value strongly linked with the cost (economic, legal,
temporal, ...) of executing the task in an inappropriate moment. This is a subjective
factor, strongly related with the process analyzed, and requires a domain expert to provide
the tasks criticality values. This factor does not appear in preliminary versions of severity
computation presented in [10], and was inspired by the work in [19].

Definition 5.6 (Criticality factor). Let the function crit : T — [0..1] define the criticality
for each task. The critical factor at imprecision s is Cy(s) = crit(e).

In the example of Figure 13 we set a criticality value of 0.5 to all the tasks in the process,
except D, G and E. D and E would correspond to complex checking actions (e.g., human
revision of a 80 pages grand application form) and therefore their criticality value is set
in 0.9. On the other hand, G would correspond to a simple checking (e.g., a milliseconds
query of non-sensitive information in a database), and therefore it is assessed with a low
value of 0.2. In such possible scenario, the criticality factor for imprecision a would be
0.9, while the imprecision b would be assessed as 0.2.

6. Experiments. We start by comparing the approach of this paper with the metric a’b
presented in [8], one of the most popular techniques for precision checking. Figure 14(a)
shows a chart illustrating the comparison. In order to confront both metrics, a v value of
0 has been used in our tool. The benchmarks used are small logs, publicly available.® The
models reported are Petri nets obtained from the log using the ILPMiner [24], a process
discovery tool. The chart shows that, in the cases where the models are precise, both
metrics report the highest value. In the other cases, the values of both metrics may be
substantially different, due to the different emphasis both metrics have: while a’b penalizes
precision by observing the tasks relations, metric etcp will penalize the situations where
the model deviates from the log (a thorough comparison can be found in [9]).

Table 14(b) compares the precision metric of different modeling languages. The pro-
cesses are based on Describing planning processes in the production by using ARIS and
SAP and New Technology Introduction Process (NTIP) for Solution Architects ARIS
Community reference models, and the example of Section 3. Each one of the three bench-
marks comprises an EPC, YAWL, and BPMN model (created by hand), and a Petri net
model (generated from the log using ILPMiner ProM plugin). The table illustrates how
inter-model precision comparison can be done when several modeling languages are used.

Table 14(c) contains the experiments using larger benchmarks, from the same public
available repository. These benchmarks cannot be handled by the current implementation
of the a’'b metric. Our experimental setting is based on variations of the a32f0n00_5
and t32f0n00-5 examples: the experiments focus on illustrating how the growth of a

9www.promtools.org/prom5
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(a)
Bench PN | YAWL | BPMN | EPC
payment || .857 .857 .857 .857
new_tech || .775 911 .861 .939
planning || .824 .810 .980 .887
(b)

Bench | |Log| | 5y | k || etcp | Confidence | time(s) |
p20 180 .543 | .246 - .553 | (.307) 1/3/5
p40 360 .564 | .345 - .570 | (.225) 1/5/6
p60 540 .576 | .403 - .582 | (.179) 1/7/11
p80 720 .583 | .441 - 587 | (.146) 1/12/17

a32 | p100 | 900 | .05 | 20 || .592 | .470 - .595 | (.125) 1/15/24
p150 | 1350 .591 | .504 - .595 | (.091) 2/16 /23
p200 | 1800 591 | .523 - .595 | (.072) 2/17 /23
p250 | 2250 .590 | .534 - .594 | (.060) 2/16 /24
p300 | 2700 591 | .544 - 594 | (.050) 2/16 /24
p20 360 .385 | .250 - .387 | (.137) | 2 /67 / 121
p40 720 391 | .305 - .392 | (.087) | 4 / 180 / 229
p60 | 1080 .392 | .330 - .393 | (.063) | 5 / 295 / 339
p80 | 1440 .393 | .345 - .394 | (.049) | 6 / 336 / 496

t32 | p100 | 1800 | .05 | 20 || .393 | .353 - .394 | (.041) | 6 / 390 / 550
p150 | 2700 .393 | .365 - .393 | (.028) | 6 / 411 / 562
p200 | 3600 393 | .371-.393 | (.022) | 7/ 429 / 572
p250 | 4500 .393 | .376 - .393 | (.017) | 9 / 440 / 579
p300 | 5400 393 | .379 - .393 | (.014) | 9 / 443 / 581

(c)

FIGURE 14. Experimental results (1)

log influences the metric and its confidence, given a particular selection of the stability
and confidence parameters presented in this paper. The column with pX reports the
percentage of the log considered in each case, i.e., p100 represents the original a32f0n00_5
log, while logs pX with X < 100 correspond to slices of the original log, e.g., p20 contains
the first 20% of the original log traces. Logs pX with X > 100 are obtained by choosing
with uniform distribution among the existing traces in the log the extra traces needed
to achieve the desired size. As in the previous experiment, the models used are the ones
obtained from discovering a Petri net through the ILPMiner ProM plugin. The wide
spectrum of the set of benchmarks presented makes it possible to illustrate the evolution
of the approach presented in this paper and can be considered as real situations in an
information system where trace sets are evaluated on a regular basis, e.g., monthly. A
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FIGURE 15. Experimental results (2)

first conclusion on the table is the stability of the approach with respect to the size of
the log. Notice that the etcp value tends to increase as new behavior is considered, e.g.,
between p20 and p100 there is a difference of 0.05. However, this difference is extremely
small considering that between p20 and p100 there is a 500% increment in the observed
behavior. In addition, the more traces are included in the previously observed behavior,
the closer the metric value is to stabilizing. The second conclusion to extract from this
table is the dependency between the traces considered and the confidence in the metric,
i.e., increasing the size of the trace set considered results in a narrower confidence interval.

The influence of parameters & (confidence, see Section 4.2) and ~y (precision metric, see
Section 4.1) in the approach are considered in the following experiment. In chart 15(a),
three process models are considered: ext_c1_01, ext_c1_02 and ext_c1_03.'° These bench-
marks have been created using the PLG [25] tool. This tool allows to create configurable
and generic benchmarks, containing all the common patterns appearing in any workflow
model, e.g., choice, parallelism and sequence. For the experiment, each one of the logs
considered contains 15000 traces. Benchmarks 01 and 03 denote standard processes, with
great difference between model and log behavior (and thus exhibiting low precision). On
the other hand, process model ext_c1_02 is a simpler model which describes accurately
the behavior reflected in the log, i.e., the precision value is high. The chart illustrates
the influence in the approach when considering diverse future windows, i.e., four different
k values: 1, 500, 1000 or 2000 new traces to consider. In these experiments the worst
case version of # is considered, i.e., |T| — 1 (cf. Section 4.2). As it is reflected in the
experiments, the future considered has no influence on the metric value, but it is relevant

10All experiment benchmarks are available in http://www.Isi.upc.edu/ jmunoz/software.html.
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on the confidence value over the metric. The possibility of variation for the metric con-
sidering a really near future (i.e., &k = 1) is practically zero. However, when considering
further futures, this possibility increases, e.g., considering a k value of 2000 (approx. 15%
of the log) the confidence in the metric is substantially low. Notice that, as expected, the
confidence interval is not symmetric.

Chart 15(b) illustrates the relation between the v parameter and the percentage of the
process behavior considered to compute the precision. Two generic and representative
process, plg_01 and plg_02, have been created using PLG tool, and different values of
v have been tested. The conclusion we obtain is that for these processes, lower values
of v (i.e., less than 0.04) can be used to polish the effects produced by noisy traces,
while greater values of 7 (not considering more than 10% of the process behavior for
computing the precision) should be used if the emphasis is in computing precision on the
most frequent parts of the process. Values greater than 0.4 do not make any sense, due
to the fact that the 100% of process is ruled out.

In addition, charts 15(c) and 15(d) are used to illustrate the part of the approach
concerning the severity. Four generic models (sev01, sev02, sev03 and sev04) have been
created using the PLG tool, which contain the most common structures in workflow
models. For each model, a severity analysis has been performed, where each factor in
Equation (7) has received the same weight. The same values of v and 7 have also been
assigned for all the models (0.01 and 0.06, respectively). The criticality value assigned to
each of the tasks has been different depending on the task and the model. In chart 15(c),
we selected the most sever imprecision of each process, and showed the distribution of the
imprecision for each one of the four factors. This chart illustrates the distribution of the
weight of each factor in the final severity value, in this particular setting. In addition, it
also illustrates that, given the normalization introduced in the definition of each one of the
factors, it is possible to compare the severity between imprecision of different processes,
e.g., given a system containing the four process models, and given the current setting, the
imprecision shown in the second bar (which corresponds to model sev02) should be tackled
first. In chart 15(d), the same four processes are considered. In this case, imprecisions of
each process are classified in three categories: low (less than 0.3), mid (between 0.3 and
0.4) and critical (greater than 0.4). Notice that, in this particular scenario, the number
of critical imprecisions (the ones that should be tackled urgently) is small (approx. 10
imprecisions for each process) compared with the total number of imprecisions.

Finally, the approach presented in this paper has been tested in a real world scenario.
The scenario is taken from a Dutch Academic Hospital, and the log contains about 150.000
events in 1100 cases, where each case corresponds with a patient of the Gynecology de-
partment.'’ The goal of the experiment is to measure the quality of the models obtained
using different discovery algorithms. The process miners used in the experiment are
RBMiner|[26], Genet[27], ILPMiner [24] and a-miner[1l]. The results illustrate that the
precision of the models obtained using such miners focusing on the whole process is very
low. The models generated allow almost all the tasks most of the time, decreasing dras-
tically the precision and consequently the quality of the models. For instance, the etcp
value of the models generated by a-miner and RBMiner are 0.03 and 0.01 respectively.
However, that precision increases when we apply partition and clustering techniques over
the log, to focus the mining on specific parts of the process. For instance, mining a model
projecting the process over the set of the 10 most frequent events will result in a precision

HTog file DOT is doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d 1120ffcf54 and can be found in the 3TU
Datacenter (http://data.3tu.nl).
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of 0.397, 0.386 and 0.386 for Genet, ILPMiner and a-miner respectively. In the case of
RBMiner, the precision is slightly greater, i.e., 0.423.

The approach presented has been implemented as ETConformance plug-in within ProM
6 tool. The current approach considers models in Petri net modeling language, the dom-
inating model in ProM 6. Other models will be considered in the future.

7. Related Work. The seminal paper in [8] represents the closer work to the techniques
of this paper. In that paper, the authors present metrics for fitness, structural and also
precision (called a’b). This precision metric is based on comparing the ordering relations
between events in the model with the ones from the log. Due to this, the exhaustive
exploration of model state space is required, becoming impractical for real life cases.
In [18], the authors present an approach based on measuring the percentage of potential
traces in the model that are in the log, while in [17] a technique for comparing the precision
of two models with respect to a log is presented. In [28], a technique for measuring the
precision of a model without a log (through causal footprints) is proposed. The approach
is applied to Petri net models but also EPCs, and it can be applied to BPEL and UML
models too. In [29], the authors propose also an independent-model approach based on
the minimal description length principle. A complete study and evaluation of precision
checking approaches, and conformance techniques in general, can be found in [2, 30].

8. Conclusions. In this work, we have presented a metric to measure the precision be-
tween a log and a process model. The technique is designed to be model independent,
being possible to instantiate it for different modeling languages. Together with the metric,
the approach incorporates important and new aspects in conformance checking: the mea-
surement of the confidence over the precision metric, and the multi-factored assessment
of the imprecisions severity. The approach has been implemented as plug-in within ProM
open-source process mining framework. Finally, a set of experiments has been performed
to reveal the properties and the relevance of the concepts introduced in this paper.
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