
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2017 ISSN 1349-4198
Volume 13, Number 6, December 2017 pp. 1813–1828

DIRECTION-BASED SPATIAL-TEXTUAL SKYLINE

Zijun Chen1,2, Shasha Guo1,2 and Wenyuan Liu1,2

1College of Information Science and Engineering
2The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province

Yanshan University
No. 438, West Hebei Ave., Qinhuangdao 066004, P. R. China
{ zjchen; wyliu }@ysu.edu.cn; guoshashaxing@163.com

Received April 2017; revised August 2017

Abstract. Existing location-based services mostly recommend nearest objects to the
user by considering their spatial distance and textual relevance. However, an object not
only has a spatial distance to the user, but also has a direction from it to the user. In this
paper, we study the direction-based fuzzy preference spatial-textual skyline query. Given
a user location, a threshold theta and multiple keywords, skyline and p-skyline objects
located at different directions are returned to user. Identifying of the results depends
on three aspects: spatial distance, textual similarity and direction. Two functions are
introduced to compute the textual relevance and spatial proximity, respectively. A query
algorithm is proposed, in which an effective pruning strategy is put forward to improve
the query efficiency. In the end, empirical results show that our proposed method is ef-
fective and efficient.
Keywords: Location-based service, Skyline query, Textual relevance, Direction

1. Introduction. In recent years, location-based service is widely used [1]. With the
development of mobile network, the number of points of interests (POIs) with text in-
formation is gradually increasing. These POIs contain both text information and spatial
information. For example, in TripAdvisor and Foursquare, people can share experiences
of visiting some places.

In general, an object which is spatially close and textually relevant is a good choice for a
user [2]. However, in some cases, we will not get a satisfactory result if the spatial distance
and textual relevance are only considered. For instance, a user wants to buy stationery
before returning home from work and inputs a keyword “notebook”. The system returns
the user desired results based on the distance between the user’s query location and the
point of interest containing the keyword “notebook”. If the returned result is opposite to
the user’s home, the user will not be satisfied with the result.

Example 1.1. Now, we consider an example as shown in Figure 1. A user has just
returned from a business trip, but she is wondering whether to go to the barbershop,
supermarket or office before going back home. Besides, she would like to have a meal at a
restaurant. If she wants to eat noodles, she would express her needs by entering keywords.
The recommendation system returns four best restaurants based on spatial distance and
textual relevance, restaurant 1 to restaurant 4. Which restaurant is the best one for
her? It depends on the direction she will take. If she would like to go to the barbershop,
restaurant 1 which is the best, is not a good choice because restaurant 2 is on the way to
the barbershop. Therefore, in order to return the best results for users, the query system
should present the best restaurant for each direction. In the example, the query result
might be restaurant 1 to restaurant 4.

1813

1814 Z. CHEN, S. GUO AND W. LIU

Figure 1. Motivating example

In view of this, in this paper, we propose a novel spatial skyline query, namely direction-
based spatial-textual skyline query (DSTS query). The query not only compares spatial
distance and textual proximity, but also considers direction. And it returns optimal
objects according to spatial information and text information from different directions.

Existing methods [3, 4, 5] mostly consider exact matches for query keywords and do
not support fuzzy queries. However, because of restrictions of mobile terminal on the size
of the screen, the user may enter an error. For example, the user could input keyword
“delicaous” in place of “delicious” by mistake, and cannot get satisfactory results. For this
situation, approximate string search [6, 7] plays an important role. B. Yao et al. [8] pro-
posed approximate string search in spatial databases, which measured textual relevance
between a query point and objects by edit distance. Since fuzzy query algorithm needs
to set the threshold in advance, when edit distance is less than or equal to the threshold,
we think that related keywords match approximately. Nevertheless, in order to get exact
query results, a drawback in this method is that threshold should vary with the length of
keywords. J. Hu et al. [9] presented a function to quantify the textual relevance of two
objects, but this function only supported single keyword query. Hence, we propose a new
function to measure the textual relevance between objects and the query point. There is
no need to set a threshold in advance by considering edit distance and the weight of the
keyword.

In the following, we will give an example to explain the query. Given a query point q,
there is a plane coordinate system originating from q. Then the angle of the object o is
defined as the angle swept by x-axis counterclockwise rotation to qo. The angle of object
o is denoted by β(q, o), and the Euclidean distance between object o and q is denoted by
d(q, o).

Example 1.2. In Figure 2, there are eight objects with the query point q as original point

O = (0, 0). We get vectors a⃗, . . . , h⃗ originating from O. In this example, we set threshold
θ = π/3. Two vectors are defined in the same direction, if their included angle is smaller
than θ. As can be seen from Figure 2, the objects in the same direction with a are b, g
and h. Note that b is the object with the smallest spatial-textual distance (std(q, .)) that
is calculated based on spatial distance and textual proximity. It means that b dominates

DIRECTION-BASED SPATIAL-TEXTUAL SKYLINE 1815

Figure 2. An example of DSTS query (θ = π/3)

other three objects in the same direction and is a direction-based spatial-textual skyline
object (DSTS object). In a similar way, we can know that d and e are both DSTS objects.

We find that there is no skyline object in some angles. In order to return results in
more directions, we introduce the concept of p-skyline.

The contributions are summarized as follows.

• We propose a novel query, namely direction-based spatial-textual skyline query. In
the meantime, we introduce the concept of p-skyline that is helpful for some practical
applications.
• On the basis of the direction-based spatial skyline query, text information is consid-

ered, and the fuzzy query is supported.
• We present a query algorithm and an efficient pruning strategy to improve the query

speed.
• We conduct experiments on real and synthetic datasets, and results show that our

method is effective.

The rest of this paper is organized as follows. In Section 2, we introduce related work.
In Section 3, we give the problem statement. Section 4 presents query algorithm. Section
5 reports experimental results and Section 6 summarizes this paper.

2. Related Work. S. Börzsönyi et al. [10] first introduced the skyline operator into re-
lational database systems and proposed two main algorithms: Block-Nested-Loops (BNL)
and Divide and Conquer (DC). Since then, the skyline operator has attracted extensive
research in the database [11, 12, 13].

M. Sharifzadeh and C. Shahabi [14] introduced the concept of spatial skyline query.
A spatial skyline set is defined according to multiple derived spatial attributes, each of
which is the object’s distance to a query point. An object dominates another object if
it is better than or equal to another object in their derived spatial attributes, and it is
better in at least one derived spatial attribute. For the sake of improving computational
efficiency, a pre-computed indexing technique based on Voronoi graph is used. However,
the spatial skyline query disregards users’ non-spatial preferences. In general, non-spatial
preferences which represent users’ specific demand are described by textual relevance.
Therefore, textually relevant preference query [15] plays an important role. In order to
make up for the weakness of the spatial skyline query, J. Shi et al. [16] introduced text
into the spatial skyline query and presented textually relevant spatial skylines. They

1816 Z. CHEN, S. GUO AND W. LIU

introduced three models: Derived Dimension Augmentation (DDA), Keyword Boolean
Filtering First (KBFF), and Spatio-Textual Dominance (STD), and conducted a detailed
analysis of the efficient STD model, and put forward efficient query algorithms.

Above these methods, they consider spatial distance, but do not take account of other
spatial attributes. Direction, an important spatial attribute, was first applied into spatial
skyline by X. Guo et al. [17]. And they only consider direction and spatial distance, but
do not consider textual relevance. Y. Ishikawa et al. [18] extended the work in [17] to the
road network and conducted the corresponding study. On the basis of [17], E. El-Dawy et
al. [19] applied static attributes (e.g., price, rank) into direction-based skyline. Although
it takes account of static attributes, it is different from text information. Therefore, as far
as we know, no one has combined the three aspects of spatial distance, text information
and direction. In the past, many skyline queries mostly consider exact matches for textual
relevance, and few people apply fuzzy matches. In this paper, we allow fuzzy matches,
and introduce a new function to quantify the text relevance.

In conclusion, spatial distance, textual relevance and direction are not taken into ac-
count at the same time in the above work. Thus, in this paper, we propose direction-based
spatial-textual skyline which considers the three aspects.

3. Problem Statement. Given a dataset D, an object o ∈ D is defined as o =< l, T >,
where o.l is a spatial point with longitude and latitude and o.T = {t1, t2, . . . , t|o.T |} is a set
of keywords. Each keyword t ∈ o.T has a weight wt(o) which represents the proportion of t
in the set of keywords. In this paper, we use the TF-IDF model in the field of information
retrieval to calculate the weight of a keyword. It can be estimated by Equation (1).

wt(o) = tf(t, o.T) · idf(t,D) (1)

In Equation (1), tf(t, o.T) is the frequency of occurrence of t in o.T , namely count(t,o.T)
|o.T | ,

idf(t,D) is the logarithmic ratio between the size of D and the number of objects con-

taining the keyword t, and is calculated by lg |D|
count(t,D)

.

Example 3.1. In Figure 3, dataset D = {o1, o2, o3, o4, o5, o6}. We take object o1 as an
example, and it contains two keywords {cozy, friendly}. The two keywords’ weight can be
estimated by Equation (1), wcozy(o1) = 1

2
· lg

(
6
1

)
= 0.389, wfriendly(o1) = 1

2
· lg

(
6
2

)
= 0.239.

Table 1 represents weights of all keywords in D.

Figure 3. An example of TD-IDF model

DIRECTION-BASED SPATIAL-TEXTUAL SKYLINE 1817

Table 1. The weights of all keywords

o1 o2 o3 o4 o5 o6

cozy 0.389 0 0 0 0 0
friendly 0.239 0 0 0.119 0 0

expensive 0 0.477 0 0 0.095 0
big 0 0 0.778 0 0 0

cheap 0 0 0 0.119 0 0.095
variety 0 0 0 0.075 0.060 0.060

discount 0 0 0 0.119 0 0.095
crab 0 0 0 0 0.156 0
fresh 0 0 0 0 0.156 0
hake 0 0 0 0 0.156 0
squid 0 0 0 0 0 0.156

wrinkle 0 0 0 0 0 0.156

Definition 3.1. (Same Direction) Given objects oi and oj, we say that oi and oj are in
the same direction from q if the included angle λi,j satisfies 0 ≤ λi,j < θ (0 < θ ≤ π/2).
λi,j is defined as follows:

λi,j = arccos
o⃗i · o⃗j

|o⃗i| · |o⃗j|

In order to give the definition of spatial-textual dominance, we first introduce the
definition of spatial-textual distance by Equation (2).

std(q, o) =
d(q, o)

QT (q, o)
(2)

In Equation (2), QT (q, o) represents the textual relevance between q and o, and d(q, o)
represents the Euclidean distance between q and o. For simplicity, we assume that spatial
distances from objects to the query point are all different from each other.

QT (q, o) =
n∑

i=1

wt′i
(o)

wmax

×
(

1− ed(ψi, t
′
i)

di

)
× 1

n
(3)

In Equation (3), the keyword set of object o is o.T = {t1, t2, . . . , t|o.T |}, the keyword set
of query point q is q.T = {ψ1, ψ2, . . . , ψn}, t′i = arg mint∈o.T ed(ψi, t), wmax is the global
maximum weight, and its purpose is to normalize the weight, ed(ψi, t) is the edit distance
between t and ψi, and di represents the length of ψi.

Definition 3.2. (Direction-Based Spatial-Textual Dominance) For the given query point
q, if two objects oi and oj are in the same direction, and (1) std(q, oi) < std(q, oj), or
(2) std(q, oi) = std(q, oj) and d(q, oi) < d(q, oj), we say that oi dominates oj based on
direction and spatial-textual distance, denoted by oi ≺DST oj.

Definition 3.3. (Direction-Based Spatial-Textual Skyline) Direction-based spatial-textual
skyline (skyline) is the set of objects in D which cannot be dominated by any other object
in D. That is, o is in the skyline iff we have ∀o′ ∈ D, o′ ̸= o, o′ ⊀DST o.

Specially, due to the particularity of spatial-textual distance, there is no skyline object
in some direction. In practical application, for the sake of better meeting user’s demand,
in the following, we give the definition of direction-based spatial-textual pseudo-skyline.

1818 Z. CHEN, S. GUO AND W. LIU

Definition 3.4. (Direction-Based Spatial-Textual Pseudo-Skyline) Direction-based spa-
tial-textual pseudo-skyline (p-skyline) is the set of objects in D which are not in skyline,
and cannot be dominated by objects in skyline or p-skyline.

Assume that S is a skyline, then PS is a p-skyline iff ∀o ∈ PS, ∃o′ ∈ D−S−PS, s.t.,
o′ ≺DST o. According to the definition, we can see that PS

∩
S = Φ.

Example 3.2. In Figure 4, there are six objects around the query point O = (0, 0). There

are six vectors a⃗, . . . , f⃗ originating from O. In the example, two vectors are in the same
direction, if their included angle is smaller than θ = π/6. In Figure 4, we know that a is
in the same direction with b. Since all objects have the same keywords and a is nearer to
the query point than b, b is dominated by a. By the similar method, we can know that c, d,
e and f are all dominated. So there is only one object a in skyline. Obviously, the result is
not satisfied with the user who would want to obtain satisfactory result in any angle. The
definition of p-skyline solves the above problem. In the example, c and e are in p-skyline.
Finally, p-skyline objects and skyline objects are returned to the user all together.

Figure 4. An example of p-skyline (θ = π/6)

Definition 3.5. (Direction-Based Spatial-Textual Skyline Query) A direction-based spa-
tial-textual skyline query (DSTSQ) returns the union of skyline and p-skyline of D.

4. Query Algorithm.

4.1. IR-Tree. In IR-Tree [20], each leaf node contains a list of (id, location), where id
refers to the identifier of an object o in dataset D, and location refers to coordinates of
o. Each leaf node contains a pointer to an inverted file whose keyword set is the union of
all the keywords of objects in the node. For each keyword t, there is a list of (o, wt(o)),
where o is an object containing t and wt(o) is the weight of t.

Each non-leaf node contains numerous entries which are made up of (cp, rectangle)
where cp is a pointer to a child node of the node, and rectangle is the minimum bounding
rectangle (MBR) of all rectangles containing the child node. Each non-leaf node contains
a pointer to an inverted file whose keyword set is the union of all child nodes of the node.
For each keyword t, a list of (e, wt(e)) is created, where e is a child node containing t and
wt(e) = max

e′∈CHILD(e)
wt(e

′).

DIRECTION-BASED SPATIAL-TEXTUAL SKYLINE 1819

Figure 5 illustrates an IR-Tree on 9 spatial objects. Table 2 and Table 3 show the
contents of the inverted files of non-leaf nodes and leaf nodes, respectively. For example,
in Table 2, the weight of the keyword c in child R3 of non-leaf node R6 is 0.4, which is
the maximal weight of the keyword in the two objects o3 and o8 in R3. In Table 3, the
weight of the keyword d in child o7 of leaf node R4 is 0.1.

Figure 5. IR-Tree

Table 2. Content of inverted files of the non-leaf nodes

InvertF ile− root InvertF ile−R5 InvertF ile−R6

a (R5, 0.7), (R6, 0.3) (R1, 0.7), (R2, 0.4) (R3, 0.1), (R4, 0.3)
b (R5, 0.5), (R6, 0.3) (R1, 0.5), (R2, 0.4) (R3, 0.3)
c (R5, 0.5), (R6, 0.7) (R1, 0.5), (R2, 0.4) (R3, 0.4), (R4, 0.7)
d (R5, 0.1), (R6, 0.1) (R1, 0.1) (R3, 0.1), (R4, 0.1)

Table 3. Content of inverted files of the leaf nodes

InvertF ile−R1 InvertF ile−R2 InvertF ile−R3 InvertF ile−R4

a (o1, 0.5), (o2, 0.7) (o4, 0.4) (o3, 0.1) (o9, 0.3)
b (o5, 0.5) (o6, 0.4) (o3, 0.1), (o8, 0.3)
c (o1, 0.5), (o5, 0.5) (o4, 0.4), (o6, 0.3) (o3, 0.4), (o8, 0.3) (o7, 0.7), (o9, 0.3)
d (o2, 0.1) (o3, 0.1) (o7, 0.1)

Definition 4.1. (MinDist Distance [21]) In Euclidean space of dimension n, the minimum
distance between a point p and MBR R(s, t) is denoted by MinDist(p,R(s, t)), which is
defined as follows:

MinDist(p,R) =
n∑

i=1

|pi − ri|, ri =


si, if pi < si

ti, if pi > ti

pi, otherwise

(4)

1820 Z. CHEN, S. GUO AND W. LIU

For the purpose of proposing pruning rules later, some definitions and theorems are
given in the following.

Textual Relevance of Node:

QT (q, e) =
n∑

i=1

wt′i
(e)

wmax

×
(

1− ed(ψi, t
′
i)

di

)
× 1

n
(5)

In Equation (5), e.T is the keyword set of node e, where e.T = {t1, t2, . . . , t|e.T |}.
The keyword set of query point q is denoted by q.T , where q.T = {ψ1, ψ2, . . . , ψn} and
t′i = arg mint∈e.T ed(ψi, t).

Spatial Distance of Node:

d(q, e) = MinDist(q, e) (6)

Spatial-Textual Distance of Node:

std(q, e) =
d(q, e)

QT (q, e)
(7)

Theorem 4.1. Given a query point q, a node e and any child e′ of e, we have QT (q, e′) ≤
QT (q, e).

Proof: In IR-Tree, we know that the weight of the keyword t in e is the maximum
weight of t in all children of e. Therefore, we can get wt(e

′) ≤ wt(e). For any keyword ψi

of q, assume that ti = arg mint∈e.T ed(ψi, t), and t′i = arg mint∈e′.T ed(ψi, t). Since e.T =∪
e′∈CHILD(e)

e′.T , ed(ψi, ti) ≤ ed(ψi, t
′
i). Based on Equation (5), we prove the theorem.

Theorem 4.2. Given a query point q, a node e and any child e′ of e, we have std(q, e′) ≥
std(q, e).

Proof: According to Definition 4.1, we have MinDist(q, e′) ≥ MinDist(q, e). If e′ is
an object, we have MinDist(q, e′) = d(q, e′). Based on Theorem 4.1, we have QT (q, e′) ≤
QT (q, e). Then, std(q, e′) = d(q,e′)

QT (q,e′)
= MinDist(q,e′)

QT (q,e′)
≥ MinDist(q,e)

QT (q,e′)
≥ MinDist(q,e)

QT (q,e)
= std(q, e).

So we prove the theorem.

4.2. Pruning method. In IR-Tree query algorithm, with the help of priority queue, we
can make the object or node with the smallest std(q, ·) to be firstly dequeued. If there is
a tie, the object or node with the smaller d(q, ·) should be firstly dequeued.

Definition 4.2. (Angle Range) Given a query point q, assuming that set S exists n
(n > 1) objects. We sort the objects in S by the order of the angle in ascending order to
get a sequence (o1, o2, . . . , on). Then, the entire plane is divided into n parts by half-line
qo1, qo2, . . . , qon, and we call each part an angle range. Range(S, oi) is defined as an angle
range swept by qoi (1 ≤ i < n), q as the center, counterclockwise rotation to the position
of qoi+1. Accordingly, the swept angle is called the division angle of Range(S, oi). If o
is in Range(S, oi), the predecessor and successor of o in S are oi and oi+1, respectively.
Range(S, on) is defined as an angle range swept by qon, q as the center, counterclockwise
rotation to the position of qo1. Accordingly, the swept angle is called the division angle of
Range(S, on). If o is in Range(S, on), the predecessor and successor of o in S are on and
o1, respectively. In S, the predecessor and successor of o are called adjacent object of o
and denoted by o−S and o+

S , respectively. The division angle of Range(S, oi) (1 ≤ i ≤ n)
is denoted by A(S, oi).

In the following, we will propose a pruning rule in Theorem 4.3.

DIRECTION-BASED SPATIAL-TEXTUAL SKYLINE 1821

Theorem 4.3. In the process of DSTS query, we will get the result set incrementally.
The current result set and the final result set of DSTS query are denoted by R and RF ,
respectively. Given an object or node p that will be inserted into the priority queue.
Assume that p is in an angle range Range(R, oi) and A(R, oi) < 2θ, then p need not be
inserted in the priority queue, and this will not affect the correctness of RF .

Proof: Since p is in Range(R, oi) and A(R, oi) < 2θ, we can get ∃o ∈ R, s.t., o ≺DST p
(p is an object) or ∀o′ ∈ p.MBR, ∃o ∈ R, s.t., o ≺DST o

′ (p is a node). So, p will not be
in RF . Next, we should prove that we can get RF without the help of p.

(1) p is an object.
For an object o, if p ⊀DST o, we can determine whether o is in RF without the help of

p.
If an object o is dequeued from the priority queue before p’s parent node, we can get

p ⊀DST o apparently. So we should consider the object o dequeued from the priority
queue after p’s parent node. If std(q, o) ≤ std(q, p), then we have p ⊀DST o. So we should
only consider the object o which satisfies std(q, o) > std(q, p).

According to the relationship of o and Range(R, oi), there are two cases.
Case 1 (o is in Range(R, oi)): In case 1, we can get ∃o′ ∈ R, s.t., o′ ≺DST o and

therefore o is not in RF . So we can determine whether o is in RF without the help of p.
For instance, as shown in Figure 6, R = {a, b, c, d}. Assume that A(R, a) < 2θ, p and o
are both in Range(R, a), and std(q, o) > std(q, p). Then, we get a ≺DST o or b ≺DST o.

Case 2 (o is out of Range(R, oi)): If o is in the same direction with p, then we
will have p−R ≺DST o or p+

R ≺DST o. We get that o is not in RF and therefore pruning p
completely has no impact on o. If o is not in the same direction with p, then p ⊀DST o.
So pruning p completely has no influence on o. For example, as shown in Figure 7,
R = {a, b, c, d}. Assume that A(R, a) < 2θ, p is in Range(R, a), o is out of Range(R, a),
and std(q, o) > std(q, p). If o is in the same direction with p, according to Figure 7, we
know that a ≺DST o.

Figure 6. The first case Figure 7. The second case

(2) p is a node.
Since Range(R, oi) contains p, it contains all objects in p.MBR. Therefore, we can

prove that pruning p will not affect the correctness of RF in a way which is similar to
that of (1). So we prove the theorem.

4.3. Algorithm description. Algorithm 1 describes details of query processing. Algo-
rithm 2 illustrates how to calculate the number of division angles which are not smaller
than 2θ. Algorithm 3 represents how to identify the type of o.

1822 Z. CHEN, S. GUO AND W. LIU

Theorem 4.4. Given the current result set R, while all division angles obtained by R are
smaller than 2θ, we can terminate the query algorithm.

Proof: After finding the current result set R, we get any object o dequeued from the
priority queue. While all division angles obtained by R are smaller than 2θ, there must
be an object o′ in R which is in the same direction with o. Apparently, o is dequeued
from the priority queue after o′. According to the creation of the priority queue, we know
that o′ ≺DST o. Therefore, R is the final result set, and the query algorithm could be
terminated correctly.

Theorem 4.5. When an object o is dequeued from the priority queue, the type of o could
be identified by R and L, where R is the current result set and L is the current set of
visited objects.

Proof: According to the relationship of o and the adjacent objects of o in L, there are
four cases in the following.

Case 1: While o is not in the same direction with o−L and o+
L , o is the object in skyline

(see Figure 8(a)).
Case 2: While o is not in the same direction with o−L and is in the same direction with

o+
L , we can know that o+

L ≺DST o. If o+
L ∈ R, o is not a result; if o+

L /∈ R and o is not in the
same direction with the adjacent objects of o in R, o is an object in p-skyline; otherwise,
o is not a result (see Figure 8(b)).

Case 3: While o is in the same direction with o−L and is not in the same direction with
o+

L , it is similar to that of Case 2 to identify the type of o (see Figure 8(c)).

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 8. Four cases of indetifying object type

DIRECTION-BASED SPATIAL-TEXTUAL SKYLINE 1823

Case 4: While o is in the same direction with o−L and o+
L , we can know that o−L ≺DST o

and o+
L ≺DST o. If o−L ∈ R or o+

L ∈ R, o is not a result; if o−L /∈ R, o+
L /∈ R, and o is not in

the same direction with the adjacent object of o in R, we can know that o is an object in
p-skyline; otherwise, o is not a result (see Figure 8(d)).

So we prove the theorem.
For Algorithm 1, in line 5, if all division angles obtained by R are smaller than 2θ, then

count = 0, and we can terminate the query algorithm according to Theorem 4.4. That
is, count is the number of division angles which are not smaller than 2θ. In lines 7-20,
if e is an object, its type will be identified in the following steps. In lines 9-12, e is the
first object dequeued from the priority queue, so it must be in skyline. ComputeCount()
is invoked to update the value of count, and e is inserted into R and L, respectively. In
lines 13-20, e is not the first object dequeued from the priority queue. ComputeType()
is invoked to identify the type of e. In lines 21-26, if e is a node, the child of e could be
pruned according to Theorem 4.3. If e is a non-leaf node, then p is a node; otherwise p is
an object.

Algorithm 1 Query Algorithm (DSTSQ)
Input: query point q, threshold θ, IR-Tree index
Output: result set R

1: R = Φ, count = −1, L = Φ //count refers to a counter. L is a set of visited objects
2: Queue ← NewPriorityQueue()
3: Queue.Enqueue(index.RootNode, 0, 0) //There are two keys in the queue, which are std(q, .)

and d(q, .), respectively
4: while not Queue.IsEmpty() do
5: if count == 0 then
6: return R
7: e = Queue.Dequeue()
8: if e refers to an object then
9: if R == Φ then

10: count=ComputeCount(R, e, count) //call Algorithm2
11: R← e
12: L← e
13: else
14: e.type=ComputeType(L, e, R) //call Algorithm3
15: L← e
16: if (e.type==1 or e.type==2) then //e is in skyline or p-skyline
17: count=ComputeCount(R, e, count)
18: R← e
19: else
20: continue
21: else //e refers to a node
22: for each child p of node e do
23: if (p can be pruned according to Theorem 4.3) then
24: continue
25: else
26: Queue.Enqueue(p, std(q, p), d(q, p))
27: return R

For Algorithm 2, it will be invoked when an object o is identified as a result, and will
be added to R. Since o is a result, we know that A(R, o−R) ≥ 2θ. When R is empty, count
is not used to record the number of division angles which are not smaller than 2θ. So in
the beginning, we let count = −1. In lines 1-2, we can know that R is empty according

1824 Z. CHEN, S. GUO AND W. LIU

Algorithm 2 ComputeCount Algorithm
Input: current result set R, object o, counter count
Output: count

1: if (count == −1) then
2: return 1
3: else find the adjacent object (o−R and o+

R) in R

4: if (A(R ∪ {o}, o−R) ≥ 2θ ∧ A(R ∪ {o}, o) ≥ 2θ) then
5: return + + count
6: else
7: if (A(R ∪ {o}, o−R) < 2θ ∧ A(R ∪ {o}, o) < 2θ) then
8: return −− count
9: else

10: return count

Algorithm 3 ComputeType Algorithm
Input: set of visited objects L, object o, current result set R
Output: type of o

1: < o−L , o+
L > = L.getAdjacentObject(o)

2: < o−R, o+
R > = R.getAdjacentObject(o)

3: if (A(L ∪ {o}, o−L) ≥ θ ∧ A(L ∪ {o}, o) ≥ θ) then //case 1
4: return 1 //o is in skyline
5: if (A(L ∪ {o}, o−L) ≥ θ ∧ A(L ∪ {o}, o) < θ) then //case 2
6: if (o+

L ∈ R) then
7: return 3 //o is not in result set
8: else
9: if (A(R ∪ {o}, o−R) ≥ θ ∧ A(R ∪ {o}, o) ≥ θ) then

10: return 2 //o is in p-skyline
11: else
12: return 3
13: if (A(L ∪ {o}, o−L) < θ ∧ A(L ∪ {o}, o) ≥ θ) then //case 3
14: if o−L ∈ R then
15: return 3
16: else
17: if (A(R ∪ {o}, o−R) ≥ θ ∧ A(R ∪ {o}, o) ≥ θ) then
18: return 2
19: else
20: return 3
21: if (A(L ∪ {o}, o−L) < θ ∧ A(L ∪ {o}, o) < θ) then //case 4
22: if (o−L ∈ R or o+

L ∈ R) then
23: return 3
24: else
25: if (A(R ∪ {o}, o−R) ≥ θ ∧ A(R ∪ {o}, o) ≥ θ) then
26: return 2
27: else
28: return 3

to the value of count. We let count = 1, since o will be the first object added to R. In
lines 4-5, if a division angle larger than or equal to 2θ is divided into two angles larger
than or equal to 2θ, count is increased by 1. In lines 7-8, if a division angle larger than
or equal to 2θ is divided into two angles less than 2θ, count is decreased by 1.

In Algorithm 3, we can identify the type of an object according to Theorem 4.5.

DIRECTION-BASED SPATIAL-TEXTUAL SKYLINE 1825

5. Experimental Study. All algorithms were implemented in Java, and the experi-
ments were conducted on a 3.60GHz six-core machine running Windows 10 operating
system with 8GB memory.

5.1. Datasets. In experiments, we use a real dataset and a synthetic dataset to study the
performance of our proposals. The real dataset is TG which is obtained by https://www.cs.
utah.edu/ lifeifei/, and the synthetic dataset is generated by random generator. We ran-
domly assign 5-10 keywords to each object in the two datasets. The real dataset contains
18,200 objects, and the synthetic dataset contains 70,900 objects. We measure the aver-
age runtime and number of dominance tests over generated workloads of 100 queries for
each parameter setting. The query location is randomly generated, and the keywords are
randomly selected from the keywords of objects.

5.2. Experimental results. For simplicity, we denote the real dataset as R and the
synthetic dataset as S. In order to test the effect of pruning strategy, we update the
algorithm DSTSQ by removing lines 23-25 in Algorithm 1, denoted by DSTSQ′. We
compare DSTSQ with DSTSQ′ in R and S, respectively.

(1) Effect of θ on runtime
Figures 10(a) and 10(b) show the effect of θ on runtime when the number of keywords

for query point q is 1-3. We observe that as θ increases, the runtime decreases in general.
The reason is that as θ increases, an object can dominate more objects and the termination
condition of Theorem 4.4 is easy to meet.

(2) Effect of θ on dominance test
Figures 10(c) and 10(d) describe the effect of θ on dominance test when the number

of keywords for query point q is 1-3. With θ increasing, the dominance test decreases
in general. The reason is as follows. As θ increases, the size of result set decreases.
Accordingly, the number of objects to be compared will be reduced, namely dominance
test decreases.

(3) Effect of the number of keywords k on runtime
Figures 9(a) and 9(b) represent the effect of the number of keywords k on runtime

when θ = π/6. We find that as k increases, the runtime becomes longer. The reason
is as follows. For each keyword in q.T , the list created for it in the inverted file should
be visited. With k increasing, more lists in the inverted file should be visited, and the
runtime of traversing inverted file becomes longer.

(4) Effect of θ on the result set
Figures 10(e) and 10(f) show the effect of θ on the result set when the number of

keywords for query point q is 1-3. With the increase of θ, the size of the result set

(a) Runtime(R) (b) Runtime(S)

Figure 9. Effect of number of keywords k

1826 Z. CHEN, S. GUO AND W. LIU

(a) Runtime(R) (b) Runtime(S)

(c) Dominance test(R) (d) Dominance test(S)

(e) Result size(R) (f) Result size(S)

(g) Size(R) (h) Size(S)

Figure 10. Effect of threshold θ

decreases. Given a final result set R, the size of R equals the number of division angles
obtained by R. According to Definition 3.5, the division angles obtained by R will not be
less than θ, so the size of R will not be larger than 2π/θ. Therefore, with θ increasing,
the size of result set might become smaller. Meanwhile, from the experiment, we know
that for the same θ, the results of DSTSQ and DSTSQ′ are all the same, which verifies
the correctness of the pruning rule in Theorem 4.3.

DIRECTION-BASED SPATIAL-TEXTUAL SKYLINE 1827

In Figures 10(a)-10(f) and Figure 9, we find that the runtime of DSTSQ is less than
that of DSTSQ′. At the same time, the dominance test of DSTSQ is less than that of
DSTSQ′. In addition, the number of objects in S is more than that in R. Thus, the
runtime in S is longer than that in R.

(5) Effect of θ on the size of skyline and p-skyline
Figures 10(g) and 10(h) describe the effect of θ on the size of skyline and p-skyline. We

can see that the p-skyline is not empty under different value of θ. Since the size of result
set will not be larger than 2π/θ, if the size of result set is less than 2π/θ, it shows that
the user would not get useful result in some direction. However, if the objects in p-skyline
are not returned, the user will not get satisfactory result in more directions. Therefore,
we should return the objects in p-skyline to better meet the user’s demand.

6. Conclusions. In this paper, we propose direction-based spatial-textual skyline query.
On the basis of direction, we take account of spatial distance and textual relevance, and
apply fuzzy query to the calculation of textual relevance. Since there is no skyline object
in some direction, we propose the concept of p-skyline to better meet user’s demand. The
query is carried out to find skyline and p-skyline objects, and the union of skyline and
p-skyline will be the result set of the query. We present an effective pruning strategy in
the process of query. Objects or nodes that satisfy the pruning rule will not be inserted
into the priority queue, such that there will be less objects to be visited. We have proved
that while all division angles obtained by the result set are smaller than 2θ, the query
algorithm can be terminated. Finally, extensive experimental evaluation on both real and
synthetic datasets shows that the proposed algorithm is efficient and effective.

In future work, we intend to develop algorithms to support the continuous query which
retrieves objects on the direction-based spatial-textual skyline. In addition, it is of interest
to examine the processing of the skyline query over road networks.

REFERENCES

[1] A. Ponomarev, Recommending tourist locations based on data from photo sharing service: Method
and algorithm, Conference of Open Innovations Association and Seminar on Information Security
and Protection of Information Technology, pp.272-278, 2016.

[2] I. D. Felipe, V. Hristidis and N. Rishe, Keyword search on spatial databases, Proc. of the 24th
International Conference on Data Engineering, Cancún, México, pp.656-665, 2008.

[3] C. Zhang, Y. Zhang, W. Zhang et al., Inverted linear quadtree: Efficient top k spatial keyword
search, IEEE Trans. Knowledge and Data Engineering, vol.28, no.7, pp.901-912, 2013.

[4] L. Chen, G. Cong and X. Cao, An efficient query indexing mechanism for filtering geo-textual data,
Proc. of the 2013 ACM SIGMOD International Conference on Management of Data, New York, NY,
USA, pp.749-760, 2013.

[5] D. Zhang, Y. M. Chee, A. Mondal et al., Keyword search in spatial databases: Towards searching
by document, Proc. of the 25th International Conference on Data Engineering, Shanghai, China,
pp.688-699, 2009.

[6] C. Li, J. Lu and Y. Lu, Efficient merging and filtering algorithms for approximate string searches,
Proc. of the 24th International Conference on Data Engineering, Cancún, México, pp.257-266, 2008.

[7] K. Chakrabarti, S. Chaudhuri, V. Ganti et al., An efficient filter for approximate membership check-
ing, Proc. of the ACM SIGMOD International Conference on Management of Data, Vancouver, BC,
Canada, pp.805-818, 2008.

[8] B. Yao, F. Li, M. Hadjieleftheriou et al., Approximate string search in spatial databases, Proc. of
the 26th International Conference on Data Engineering, Long Beach, CA, USA, pp.545-556, 2010.

[9] J. Hu, J. Fan and G. Li, Top-k fuzzy spatial keyword search, Chinese Journal of Computers, vol.35,
no.11, pp.2237-3346, 2012 (in Chinese).

[10] S. Börzsönyi, D. Kossmann and K. Stocker, The skyline operator, Proc. of the 17th International
Conference on Data Engineering, Heidelberg, Germany, pp.421-430, 2001.

1828 Z. CHEN, S. GUO AND W. LIU

[11] K. L. Tan, P. K. Eng and B. C. Ooi, Efficient progressive skyline computation, Proc. of the 27th
International Conference on Very Large Data Bases, Roma, Italy, pp.301-310, 2001.

[12] J. Chomicki, P. Godfrey, J. Gryz et al., Skyline with presorting, Proc. of the 19th International
Conference on Data Engineering, Bangalore, India, pp.717-719, 2003.

[13] D. Papadias, Y. Tao, G. Fu et al., Progressive skyline computation in database systems, ACM Trans.
Database Systems, vol.30, no.1, pp.41-82, 2005.

[14] M. Sharifzadeh and C. Shahabi, The spatial skyline queries, Proc. of the 32nd International Confer-
ence on Very Large Data Bases, Seoul, Korea, pp.751-762, 2006.

[15] X. Kuang, P. Zhao, V. S. Sheng et al., TK-SK: Textual-restricted k spatial keyword query on
road networks, Databases Theory and Applications – The 26th Australasian Database Conference,
Melbourne, VIC, Australia, pp.167-179, 2015.

[16] J. Shi, D. Wu and N. Mamoulis, Textually relevant spatial skylines, IEEE Trans. Knowledge and
Data Engineering, vol.28, no.1, pp.224-237, 2016.

[17] X. Guo, Y. Ishikawa and Y. Gao, Direction-based spatial skylines, Proc. of the 9th ACM International
Workshop on Data Engineering for Wireless and Mobile Access, Indianapolis, IN, USA, pp.73-80,
2010.

[18] X. Guo, B. Zheng, Y. Ishikawa et al., Direction-based surrounder queries for mobile recommenda-
tions, The VLDB Journal, vol.20, no.5, pp.743-766, 2011.

[19] E. El-Dawy, H. M. O. Mokhtar and A. El-Bastawissy, Directional skyline queries, Proc. of the 3rd
International Conference on Data and Knowledge Engineering, Wuyishan, China, pp.15-28, 2012.

[20] G. Cong, C. S. Jensen and D. Wu, Efficient retrieval of the top-k most relevant spatial web objects,
Proc. of the VLDB Endowment, vol.2, no.1, pp.337-348, 2009.

[21] N. Roussopoulos, S. Kelley and F. Vincent, Nearest neighbor queries, Proc. of the 1995 ACM SIG-
MOD International Conference on Management of Data, San Jose, CA, USA, pp.71-79, 1995.

