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Abstract. This paper conducts the related researches about the guidance strategy of
missile against maneuvering targets subject to impact angle constraints, input constraints
and missile autopilot. Firstly, the three-dimensional guidance system model is established,
which has the impact angle constraints, input constraints and missile autopilot. Secondly,
an adaptive dynamic surface guidance (ADSG) strategy with impact angle constraints,
autopilot lag and input constraints is designed based on the dynamic surface method,
sliding mode control, sliding mode filter and adaptive technology. In order to deal with
the problem of input constraints, the auxiliary system is introduced. Meanwhile, a new
adaptive algorithm is proposed to reduce the tracking error of the sliding mode filter which
can further improve the guidance performance of the system. Finally, Lyapunov theory is
adopted to prove that the states of the closed-loop system are uniformly ultimately bounds.
By conducting the numerical simulations, the effectiveness of the proposed guidance law
can be proved.
Keywords: Three-dimensional guidance law, Second-order dynamics of missile autopi-
lot, Input constraints, Adaptive control, Dynamic surface control

1. Introduction. With the development of modern aircraft design technology, the ma-
neuver power of attacking targets is constantly increasing. The strong robust terminal
guidance law with intercepting the high-speed maneuvering targets is designed, which
can guarantee to intercept the precise target of missiles. Usually, the miss distance and
specific terminal impact angle at the moment of the terminal are satisfied simultaneously
[1].

In recent years, domestic and foreign experts and scholars in the control field have con-
ducted a considerable amount of researches and explorations in the guidance technology
of missile. In [2,3], the guidance law was designed which has terminal impact angle, but
it just intercepts non-maneuvering target. In order to intercept highly manoeuverable
target, a circular guidance law with attack angle constraints is designed in [4,5]. It is
well known that the sliding mode control has good robustness to external disturbances;
therefore, it is used widely in the control field [6-8]. In [7], a chattering free sliding
mode controller was designed for attitude model based on sliding mode control and back-
stepping control. In [8], a fast terminal sliding mode guidance law with impact angle was
designed for two dimensional guidance model based on nonlinear disturbance observer and
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terminal sliding mode control theory. Due to the dynamic of the missile autopilot which
must be considered in the actual design process of guidance system, it leads to a certain
time delay between the guidance command signal and the deflection signal of the control
rudder. Thus, the delay property of the autopilot always has significant influence on the
aspect of guidance precision. In [9,10], a sliding mode guidance law was proposed for the
guidance system with first-order dynamics of missile autopilot. As the intercept process
of target and missile happens in the three-dimensional space and consider the guidance
system mode of three-dimensional with the second-order dynamic of missile autopilot, an
adaptive guidance law with terminal impact angle was proposed in [11,12]. In order to
enhance the guidance system’s robustness, using the observer, a dynamic surface sliding
mode three-dimensional guidance strategy was designed with terminal impact angle for
guidance system subject to the second-order dynamic of missile autopilot in [13,14].

At present, during the process of actual design system, most of documents did not
consider the actual physical limitations of actuators and the control force provided by the
actuators is limited [15,16]. In [16], an adaptive robust control scheme was proposed for
cubesats with external disturbances, which can deal with input saturation problem by the
use of the adaptive dynamic neural network. Some guidance law designs have not con-
sidered the input constraints; however, the problem of actuator saturation may emerge in
the practical actuation. It is obvious that this problem will result in the system guidance
performance weakness, or even the guidance system instability. Therefore, the guidance
law with acceleration saturation constraint is studied having significant significance the-
oretically and practically. In [17], the three-dimensional sliding mode guidance laws were
proposed for hypersonic vehicle with external disturbances and input saturation based on
sliding mode control method and adaptive method, which used the hyperbolic tangent
function and auxiliary system to solve the input saturation problem. In [18,19], an ADSG
law was designed with autopilot of missile and acceleration constraint. In [20,21] by using
hyperbolic tangent function, adaptive technology and dynamic surface method, an ADSG
law subject to acceleration constraint was designed; however, only the first order dynamic
of the missile autopilot was considered. A three-dimensional (3D) ADSG law was pro-
posed for guidance system in presence of missile autopilot’s second-order dynamics and
acceleration constraint; however, the terminal impact angle was not considered in [23].

In order to further solve guidance problem of missiles against maneuvering targets which
subjects to impact angle constraints, input constraints and missile autopilot with second-
order dynamics, a 3D ADSGL is designed on the basis of the low filtering and adaptive
control theory in this paper. The guidance scheme can be able to impact angle constraints,
input constraints and dynamics of missile autopilot at the same time. Compared with the
literature listed above, this paper has innovative aspects as the following.

(1) An improved 3D-ADSGL is proposed without differentiation of the virtual con-
trollers, and the adaptive algorithm is introduced to compensate the effect of the error
caused by the sliding mode filter, which can improve the guidance performance.

(2) The auxiliary system is introduced to deal with input constraints. Compared with
[11,12], the input constraints are taken into account.

(3) Compared with [19,20], this paper takes missile autopilot with second-order dynam-
ics into consideration, which have practical significance about the designed controller.

The rest of this article is as follows. In Section 2, guidance model in 3D space is
established. In Section 3, an adaptive dynamic surface guidance law is proposed, where
the proofs of the system stability are also given. In Section 4, the efficiency of the proposed
guidance can be confirmed laws through the results of the presented simulation. Section
5 concludes this paper.
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2. Preliminaries. In this section, for the three-dimensional guidance system, the target-
missile relative motion equations are presented. Figure 1 shows a 3D interception geome-
try. T represents the target; M denotes the missile; Mxyz expresses the inertial reference
frame; Mx4y4z4 is a line-of-sight (LOS) frame; r is the relative distance between the target
and missile; qε and qβ are the elevation and azimuth angles of the LOS, respectively.

Figure 1. Three-dimensional interception geometry

According to the kinematics principle, the three-dimensional relative motion dynam-
ics between the missile and the target can be represented by the following differential
equations [21]

r̈ − rq̇2
ε − rq̇2

β cos2 qε = aTr − aMr (1)

rq̈ε + 2ṙq̇ε + rq̇2
β sin qε cos qε = aTε − aMε (2)

−rq̈β cos qε − 2ṙq̇β cos qε + 2rq̇εq̇β sin qε = aTβ − aMβ (3)

relative motion can be seen from Figure 1, where aM = [aMr, aMε, aMβ]T is the vec-
tors of the missile’s acceleration and aT = [aTr, aTε, aTβ]T is the vectors of the target’s
acceleration in the LOS frame.

The following second-order dynamics [11] can approximately express the autopilot dy-
namics of the missile

äMε = −2ξωnȧMε − ω2
naMε + ω2

nuε + dε (4)

äMβ = −2ξωnȧMβ − ω2
naMβ + ω2

nuβ + dβ (5)

where ξ is the damping ratio, ωn denotes the undamped natural frequency, and dε and dβ

denote uncertainties in this model. uε and uβ are the missile acceleration commands.
Let qεd and qβd be pre-specified with a constant value. Also state variables are defined

as x1 = [qε − qεd, qβ − qβd]
T, x2 = [q̇ε, q̇β]T, x3 = [aMε, aMβ]T and x4 = [ȧMε, ȧMβ]T, and

then (1)-(5) can be expressed as follows:
ẋ1 = x2

ẋ2 = f(x1, x2) + bx3 + d1

ẋ3 = x4

ẋ4 = −ω2
nx3 − 2ξωnx4 + ω2

nsat(u) + d2

(6)
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where

f(x1,x2) =

 −2Ṙ

R
q̇ε − q̇2

β sin qε cos qε

−2Ṙ

R
q̇β + 2qεqβ tan qε

 , b =

 − 1

R
0

0
1

R cos qε

 ,

d1 =


aTε

R

− aTβ

R cos qε

 , d2 =

[
dε

dβ

]
,

sat(u) can be described as follows

sat(u) = [sat(uε), sat(uβ)]T

sat(ui) =

 umax, ui ≥ umax

ui, −umax < ui < umax

−umax, ui ≤ −umax

, i = ε, β
(7)

where umax is the known upper bound for control input.
The following assumption and lemma are useful to design the three dimension terminal

guidance law.

Assumption 2.1. In system (6), d1 and d2 represent the lumped external disturbances
and the autopilot uncertainties, respectively. They are assumed to be bounded and they
can satisfy the following condition

∥d1∥ ≤ d1M , ∥d2∥ ≤ d2M (8)

where d1M and d2M are unknown positive constants.

Lemma 2.1. [24]. The first-order sliding mode differentiator is designed as the following
differential equations {

ς̇0 = −µ0 |ς0 − l(t)|0.5 sign (ς0 − l(t)) + ς1

ς̇1 = −µ1sign (ς1 − ς0)
(9)

where ς1 and ς0 are the states of the system (9), and µ0 and µ1 are the designed parameters.

After a finite time, then ς̇0 can approximate the differential term l̇(t) to an arbitrary

accuracy if the initial deviations ς0 − l(t) and ς̇0 − l̇(t) are bounded [19].

An adaptive dynamic surface three dimension terminal guidance law is designed for
the guidance system (6), which has the consideration of impact angle constraints, input
constraints and missile autopilot with second-order dynamics. The LOS angle error x1

and the LOS angular rate x2 can be guaranteed to converge to small region around zero
in finite time by this guidance law.

3. Main Results. On the basis of the dynamic surface control, adaptive technique and
auxiliary system, a robust dynamic surface sliding mode guidance scheme is designed
for the three-dimensional guidance system (6). The proposed guidance scheme not only
takes advantage of the sliding mode filter to avoid the differential of the virtual control
signals, but also introduces the adaptive law to compensate the effect of the error caused
by sliding mode filter. The specific process is as follows.

Step 1: In order to make the system states x1 and x2 approach to zero fast in finite time
along the sliding mode surface, the non-singular fast terminal sliding surface is designed
as follows

s2 = x2 +
α1

α0

(exp(α0 |x1|) − 1) sign (x1) + α2β(x1) (10)
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β(x1) = [β(x11), β(x12)]
T

β(x1i) =

 sig(x1i)
λ, |x1i| > η

r1

α0

(exp(α0 |x1i|) − 1) sign (x1i) + r2sign(x1i) (x1i)
2 , |x1i| ≤ η

(i = 1, 2)

(11)
r1 = (2 − λ)ηλ−1 (12)

r2 = (λ − 1)ηλ−2 (13)

where sig(·)λ = | · |λsign(·), 0 < λ < 1, sign(·) denotes the signum function, and α0, α1,
α2 and η are positive constants.

The differential of s2 can be written as

ṡ2 = f(x1,x2) + bx3 + d1 + α1 exp (α0 |x1i|) x2 + α2β̇(x1) (14)

Define the virtual control functions x∗
3 as

x∗
3 = b−1

[
−f(x1, x2) − α1 exp (α0 |x1i|) x2 − α2β̇(x1) − k2s2 − k1sig(s2)

γ − s2

4ε1

]
(15)

where k1, k2 and ε1 are positive constants.
To avoid multiple differentiation of x∗

3, the first-order sliding mode differentiator is
introduced to estimate ẋ∗

3{
ς̇10i = −µ10i |ς10 − x∗

3i|
0.5 sign (ς10i − x∗

3i) + ς11i

ς̇11i = −µ11isign (ς11i − ς10i)
(16)

where ς11i and ς10i are the states of the sliding mode differentiator, and µ10i and µ11i are
positive constants.

According to (16) and Lemma 2.1, the inequality is satisfied as

|ẋ∗
3i − ς̇10i| ≤ ℓ1i (17)

where ℓ1i can estimate the error of the sliding mode differentiator and satisfy |ℓ1i| ≤ ℓ̄1i,
and ℓ̄1i is a positive constant.

Step 2: Define the tracking error variable

s3 = x3 − x∗
3 (18)

The time derivative of s3 can be given by

ṡ3 = x4 − ẋ∗
3 (19)

Based on (15), the virtual control law is designed as

x∗
4 = −k3s3 + ς̇10i − ℓ̂1i tan

(
s3i

p1

)
− bs2 (20)

where k3 > 0.
In order to reduce the estimation error of the sliding differentiator, an adaptive law is

designed as

ℓ̂1i = β1s3i tan

(
s3i

p1

)
− ς1β1ℓ̂1i (21)

where p1, β1 and ς1 are positive constants.
To avoid multiple differentiation of x∗

4, the first-order sliding mode differentiator is
introduced to estimate ẋ∗

4{
ς̇20i = −µ20i |ς20i − x∗

4i|
0.5 sign (ς20i − x∗

4i) + ς21i

ς̇21i = −µ21isign (ς21i − ς20i)
(22)
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where ς21i and ς20i are the states of the sliding mode differentiator, and µ20i and µ21i are
positive constants.

From (22) and Lemma 2.1, the inequality is satisfied as

|ẋ∗
4i − ς̇20i| ≤ ℓ2i (23)

where ℓ2i can estimate the error of the sliding mode differentiator and satisfy |ℓ2i| ≤ ℓ̄2i,
and ℓ̄2i is a positive constant.

Step 3: Define the tracking error variable

s4 = x4 − x∗
4 (24)

Computing the first order derivative of s4, we obtain

ṡ4 = −ω2
nx3 − 2ζωnx4 + ω2

nsat(u) + d2 − ẋ∗
4 (25)

To cope with the input saturation, motivated by the work of [15], the auxiliary system
(26) is introduced

v̇u =


−λ1vu −

∣∣w2
nsT

4 ∆u
∣∣ + 0.5w2

n∆uT∆u

∥vu∥2 vu

−w2
n∆u − c1sig(vu)

γ − c2sign(vu),

∥vu∥ ≥ η1

0, ∥vu∥ < η1

(26)

where λ1, c1, c2, η1 > 0, ∆u = sat(u) − u; vu = [vu1, vu2]
T is the state variable of the

auxiliary system; η1 is a positive constant.
The guidance law u is defined as

u =
1

w2
n

[
ω2

nx3 + 2ζωnx4 + ς̇20 − ℓ2i − k4s4 − s3 −
s4

4ε2

+ λ3vu −
1

2

λ2
3 ∥s4∥2 s4

ξ2 + ∥s4∥2

]
(27)

where ε2 > 0, k4, λ3 > 0, ξ is defined as

ξ̇ =

 −λ2ξ −
1

2

λ2
3 ∥s4∥2 ξ

ξ2 + ∥s4∥2 − c3sig(ξ)γ − c4sign(ξ), ∥s4∥ ≥ η2

0, ∥s4∥ < η2

(28)

where λ2, c3, c4 and η2 are positive constants.
To decrease the estimation error of the sliding differentiator, an adaptive law is designed

˙̂
ℓ2i = β2s4i tan

(
s4i

p2

)
− ς2β2ℓ̂2i (29)

where p2, β2 and ς2 are positive constants.

Theorem 3.1. For the guidance system (6) with Assumption 2.1, under the adaptive
dynamic surface guidance law (26)-(28) and adaptive law (21) and (29), the state of
closed-loop system is regulated. The following conclusions can be obtained.

(1) The si will converge to the region ∆i in finite time

∥si∥ ≤ ∆i (30)

(2) The x1 will converge to the region |x1i| ≤ ∆x1i
and x2 will converge to the region

|x2i| ≤ ∆x2i
in finite time

|x1i| ≤ ∆x1i
= max

{
η, min

{
1

α0

ln
α0∆i + α1

α1

,

(
∆i

α2

)γ}}
(31)

|x2i| ≤ ∆x2i
= ∆x1i +

α1

α0

(exp(α0∆x1i) − 1) + α2sig (∆x1i)
γ (32)



THREE-DIMENSIONAL ADAPTIVE DYNAMIC SURFACE GUIDANCE LAW 1731

where x1i and x2i are the ith component of vectors x1 and x2.

Proof: Choose Lyapunov function as

V1 =
1

2
sT

2 s2 +
1

2
sT

3 s3 +
1

2
sT

4 s4 +
1

2
vT

u vu +
1

2β1

ℓ̃1i +
1

2β2

ℓ̃2i +
1

2
ξ2 (33)

where ℓ̃1i = ℓ1i − ℓ̂1i, ℓ̃2i = ℓ2i − ℓ̂2i.
Let

V11 =
1

2
sT

2 s2 (34)

V12 =
1

2
sT

3 s3 +
1

2β1

ℓ̃1i (35)

V13 =
1

2
sT

4 s4 +
1

2
vT

u vu +
1

2β2

ℓ̃2i +
1

2
ξ2 (36)

With the application of (15), time derivative of (34) results in

V̇11 = sT
2 ṡ2

= sT
2

(
bs3 + d1 − k2s2 − k1sig(s2)

γ − sT
2 s2

4ε1

)
= sT

2 bs3 − k2s
T
2 s2 − k1s

T
2 sig(s2)

γ + sT
2 d1 −

sT
2 s2

4ε1

≤ sT
2 bs3 − k2s

T
2 s2 − k1s

T
2 sig(s2)

γ +
sT

2 s2

4ε1

+ ε1d
2
1M − sT

2 s2

4ε1

≤ sT
2 bs3 − k2s

T
2 s2 − k1s

T
2 sig(s2)

γ + ε1h1

(37)

where h1 = d2
1M .

Computing the first order derivative of V12 and using (20) and (21), it can be rewritten
as

V̇12 = sT
3 ṡ3 −

1

β1

ℓ̃1i
˙̂
ℓ1i

= sT
3 s4 − k3s

T
3 s3 − sT

3 bs2 + sT
3

(
ς̇10i − ẋ∗

3i − ℓ̂1i tan

(
s3i

p1

))
− 1

β1

ℓ̃1i

(
β1s3i tan

(
s3i

p1

)
− ς1β1ℓ̂1i

)
≤ sT

3 s4 − k3s
T
3 s3 − sT

3 bs2 + s3i

(
ℓ1i − ℓ̂1i tan

(
s3i

p1

))
− 1

β1

ℓ̃1i

(
β1s3i tan

(
s3i

p1

)
− ς1β1ℓ̂1i

)
≤ sT

3 s4 − k3s
T
3 s3 − sT

3 bs2 + ℓ1i |s3i| − ℓ1is3i tan

(
s3i

p1

)
+ ς1ℓ̃1iℓ̂1i

(38)

As

−ℓ1is3i tan

(
s3i

p1

)
≤ − ℓ1is

2
3i

|s3i| + p1

, ℓ̃1iℓ̂1i = ℓ̃1i

(
ℓ1i − ℓ̃1i

)
≤ 1

2
ℓ2
1i −

1

2
ℓ̃2
1i (39)

substituting (39) into (38), one can obtain

V̇12 ≤ sT
3 s4 − k3s

T
3 s3 − sT

3 bs2 + |s3i| ℓ1i −
ℓ1is

2
3i

|s3i| + p1

+
ς1
2

ℓ2
1i −

ς1
2

ℓ̃2
1i

≤ sT
3 s4 − k3s

T
3 s3 − sT

3 bs2 −
ς1
2

ℓ̃2
1i +

ς1
2

ℓ2
1i

(40)
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Computing the first order derivative of V13, one can obtain

V̇13 = sT
4 ṡ4 + vT

u v̇u + ξξ̇ − 1

β2

ℓ̃2i
˙̂
ℓ2i

≤ − sT
4 s3 − k4s

T
4 s4 + ∥s4∥ ∥d2∥ + λ3s

T
4 vu −

1

2

λ2
3 ∥s4∥2 sT

4 s4

ξ2 + ∥s4∥2 + w2
nsT

4 ∆u

− sT
4 s4

4ε2

− λ1v
T
u vu −

∣∣w2
nsT

4 ∆u
∣∣ − 1

2
w2

n∆uT∆u − w2
nvT

u ∆u − c1v
T
u sig(vu)

γ

− sT
4

(
ς̇20i − ẋ∗

4i − ℓ̂2i tan

(
s4i

p2

))
− 1

β2

ℓ̃2i

(
β2s4i tan

(
s4i

p2

)
− ς2β2ℓ̂2i

)
− c2v

T
u sign(vu)λ2ξ

2 − 1

2

λ2
3 ∥s4∥2 ξ2

ξ2 + ∥s4∥2 − c3ξsig(ξ)γ − c4ξsign(ξ)

≤ − sT
4 s3 − k4s

T
4 s4 + ∥s4∥ ∥d2∥ + λ3s

T
4 vu −

1

2

λ2
3 ∥s4∥2 sT

4 s4

ξ2 + ∥s4∥2 + w2
nsT

4 ∆u

− sT
4 s4

4ε2

− λ1v
T
u vu −

∣∣w2
nsT

4 ∆u
∣∣ − 1

2
w2

n∆uT∆u − w2
nvT

u ∆u − c1v
T
u sig(vu)

γ

− c2v
T
u sign(vu)λ2ξ

2 − 1

2

λ2
3 ∥s4∥2 ξ2

ξ2 + ∥s4∥2 − c3ξsig(ξ)γ − c4ξsign(ξ)

+ ℓ2i |s4i| − ℓ2is4i tan

(
s4i

p2

)
+ ς2ℓ̃2iℓ̂2i

(41)

According to

− ℓ2is4i tan

(
s4i

p2

)
≤ − ℓ2is

2
4i

|s4i| + p2

ℓ̃2iℓ̂2i = ℓ̃2i

(
ℓ2i − ℓ̃2i

)
≤ 1

2
ℓ2
2i −

1

2
ℓ̃2
2i

∥s4∥ ∥d2∥ ≤ ∥s4∥2

4ε2

+ ε2h2, w2
nsT

4 ∆u −
∣∣w2

nsT
4 ∆u

∣∣ ≤ 0

λ3s
T
4 vu − w2

nvT
u ∆u ≤ 1

2
λ3 ∥s4∥2 + vT

u vu +
1

2
w2

n∆uT∆u

− 1

2

λ2
3 ∥s4∥2 sT

4 s4

ξ2 + ∥s4∥2 − 1

2

λ2
3 ∥s4∥2 ξ2

ξ2 + ∥s4∥2 = −1

2
λ2

3 ∥s4∥2

(42)

substituting (42) into (41), it can be simplified as

V̇13 ≤ − sT
4 s3 − k4s

T
4 s4 + ε2h2 + ℓ2i |s4i| − λ1v

T
u vu + vT

u vu

− c1v
T
u sig(vu)

γ − ℓ2is
2
4i

|s4i| + p2

+
ς2
2

ℓ2
2i −

ς2
2

ℓ̃2
2i

− c2v
T
u sign(vu)λ2ξ

2 − λ2ξ
2 − c2ξsig(ξ)γ − c4ξsign(ξ)

≤ − sT
4 s3 − k4s

T
4 s4 + ε2h2 − (λ1 − 1)vT

u vu − c2v
T
u sign(vu)λ2ξ

2

− λ2ξ
2 − c2ξsig(ξ)γ − c4ξsign(ξ) − ς2

2
ℓ̃2
2i +

ς2
2

ℓ2
2i

(43)

where h2 = d2
2M .
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Based on (38), (41) and (43), the time derivative of V1 is

V̇1 ≤ − k2s
T
2 s2 + ε1h1 − k3s

T
3 s3 − k4s

T
4 s4 + ε2h2 −

ς1
2

ℓ̃2
1i +

ς1
2

ℓ2
1i −

ς2
2

ℓ̃2
2i +

ς2
2

ℓ2
2i

− (λ1 − 1)vT
u vu − c1v

T
u sig(vu)

γ − λ2ξ
2 − c2ξsig(ξ)γ

≤ − k2s
T
2 s2 −

(
k3 −

1

2

)
sT

3 s3 −
(

k4 −
1

2

)
sT

4 s4 −
ς1
2

ℓ̃2
1i −

ς2
2

ℓ̃2
2i

− (λ1 − 1)vT
u vu − λ2ξ

2 + ε1h1 + ε2h2 +
ς1
2

ℓ2
1i +

ς2
2

ℓ2
2i

≤ − φV1 + ρ

(44)

where

φ = min

{
2k2, 2

(
k3 −

1

2

)
, 2

(
k4 −

1

2

)
, 2(λ1 − 1), ς1β1, ς2β2, 2λ2

}
ρ = ε1h1 + ε2h2 +

λ1

2
ℓ2
1i +

1

2
ℓ2
2i

(45)

The eφt multiplies both sides of Equation (44)

(V1(t) + φV1(t)) eφt ≤ ρeφt (46)

Integrate (46) and we can obtain

V1(t) ≤ (V1(0) − Γ) e−φt + Γ (47)

where Γ = ρ/φ.
From (33), it can be obtained as

1

2
sT

i si ≤ V1(t) ≤ V1(0) + Γ (48)

Further

∥si∥ ≤
√

V1(0) + Γ = ∆i (i = 1, 2) (49)

Thus, the si converges to the region ∆i in finite time.
The conclusion (1) shows that si will converge to the region ∆i, and then the x1i and

x2i of convergence are analyzed as follows.
Case 1: if |x1i| ≤ η, the x1i is already converged to the region |x1i| ≤ ∆x1i

in finite
time, and based on (10), it can be written as

s2i = x2i +
α1 + α2r1

α0

(exp(α0 |x1i|) − 1) sign (x1i) + α2r2sign (x1i) (x1i)
2 , i = 1, 2 (50)

Thus

|x2i| ≤
α1 + α2r1

α0

(exp(α0η) − 1) + α2r2η
2 + ∆i (51)

Case 2: if |x1i| > η, based on (10), it can be written as

x2i +
α1

α0

(exp(α0 |x1i|) − 1) sign (x1i) + α2sig (x1i)
γ = ∆ϖi (52)

where ∆ϖi ≤ ∆i.
According to (52), it can be divided into two forms as follows

x2i +

(
α1 −

α0∆ϖi

T (x1i)

)
T (x1i)

α0

+ α2sig (x1i)
γ = 0 (53)

x2i +
α1T (x1i)

α0

+

(
α2 −

∆ϖi

sig (x1i)
γ x1i

)
sig (x1i)

γ = 0 (54)
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where T (x1i) = (exp(α0 |x1i|) − 1) sgn (x1i), and according to (53), the following inequal-
ities can be obtained as

α1 −
α0∆ϖi

T (x1i)
> 0 (55)

From (55), it can be obtained that the x1i can satisfy the inequality as

|x1i| ≤
1

α0

ln
α0∆i + α1

α1

(56)

From (54), inequality is satisfied as follows

α2 −
∆ϖi

sig (x1i)
γ x1i

> 0 (57)

By similar analysis, it can be obtained that the x1i converges to the region in finite
time.

|x1i| ≤
(

∆ϖi

α2

)γ

≤
(

∆i

α2

)γ

(58)

Therefore, x1i can converge to the region in finite time

|x1i| ≤ ∆x1i = max

{
η, min

{
1

α0

ln
α0∆i + α1

α1

,

(
∆i

α2

)γ}}
(59)

According to (52) and (59), it can be got that x2i converges to the region in finite time

x2i ≤ ∆ϖ − α1

α0

(exp(α0 |x1i|) − 1) sign (x1i) + α2sig (x1i)
γ

≤ ∆x1i +
α1

α0

(exp(α0∆x1i) − 1) + α2sig (∆x1i)
γ = ∆x2i

(60)

Therefore, the x1 and x2 can converge to the region |x1i| ≤ ∆x1i
and |x2i| ≤ ∆x2i

in
finite time. Theorem 3.1 is proved.

Remark 3.1. In guidance law (27), we introduce λ3vu to deal with the input constraints
of guidance system, mainly for the following two conditions.

When ∥vu∥ ≥ η1, there is an input constraint in control system
(a) When ui ≥ uM , λ3vu can guarantee that ui reduces to ui = uM .
(b) When ui ≤ −uM , λ3vu can guarantee that ui increases to ui = −uM .
Thus, ui = uM or ui = −uM .
When ∥vu∥ < η1, there are no input constraints in guidance system, that is to say

∆ui = 0, the λ3vu can guarantee that uV c satisfies −uM < ui < uM . Thus ui = sat(ui).

4. Numerical Examples. To demonstrate the effectiveness of the designed guidance law
(27), numerical examples are presented in the section. Referring to [11], the simulation
parameters are as follows: the mission parameters: (1) velocity: VM = 1500 m/s; (2)
initial position coordinates: xM(0) = 0 km, yM(0) = 0 km, and zM(0) = 0 km; (3) initial
heading angle and flight path angle: φM(0) = −30 deg and θM(0) = 30 deg. The target
parameters: (1) velocity: VT = 900 m/s; (2) initial position coordinates: xt(0) = 4.32
km, yt(0) = 6.84 km, and zt(0) = 11.046 km; (3) initial heading angle and flight path
angle: φT(0) = 140 deg and θT(0) = −10 deg. Among the parameters above, the maximal
acceleration of the missile is 40g that is the acceleration of gravity (g = 9.8 m/s2). The
desired LOS flight path angle is qd = −21.1 deg and the LOS is qd = −37.1 deg.

In order to test the robustness to the proposed guidance strategy, we have added a
comparison with command filter back-stepping guidance law (CFBG) [23]. The parameter
uncertainties of the missile model are given as dε = 100 sin t m/s2 and dβ = 100 sin t m/s2,
and the simulation is divided into two kinds of target accelerations as follows.
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Case 1: aTε = 7g sin(t) and aTβ = 7g sin(t).
Case 2: aTε = 7g and aTβ = 7g.
(1) Simulation analysis for consine maneuvering.
The parameters about the second-order dynamics of missile autopilot are given as

ζ = 0.8 and ωn = 10 rad/s. The parameters of guidance law (27) are chosen as α0 = 0.5,
α1 = 1.5, α2 = 4.5, η = η1 = η2 = 0.02, ε1 = 0.05, ε2 = 0.05, k1 = 1.2, k2 = 2.5, k3 = 10,
k4 = 3.5, λ = 0.75, λ1 = 0.5, λ2 = 1.2, λ3 = 1.35, ς111 = ς112 = 1.5, ς101 = ς102 = 2,
µ101 = µ102 = 2, µ111 = µ112 = 2.5, p1 = p2 = 0.01, β1 = 0.05, ς1 = 0.1, ς211 = ς212 = 1.5,
ς201 = ς202 = 2, µ201 = µ202 = 2, µ211 = µ212 = 2.5, c1 = c2 = 1.25, c3 = c4 = 1.55,
β2 = 0.05, ς2 = 0.1. For case 1, the simulation curves of the missile-target are shown
in Figures 2(a)-2(g). Table 1 presents the miss distances for two cases, and also reveals
interception times.

Table 1. Miss distances and interception times for the two cases

Guidance laws
Case 1 Case 2

Miss
distance (m)

Interception
time (s)

Miss
distance (m)

Interception
time (s)

Proposed method 0.715 8.587 0.345 9.529
CFBG 1.455 8.532 1.860 9.480

From Figures 2(a) and 2(b), the LOS angular rates q̇ε and q̇β converging to zero in finite
time can be ensured by both guidance laws for case 1. However, the convergence property
under the proposed method has smoother and smaller chattering than the CFBG.

From Table 1, it can be observed that the miss distance under the designed guidance
laws is similar to that under the CFBG for case 1. From Figures 2(c) and 2(d), assuredly,
the LOS angles qε and qβ under the presented law can also converge to their desired
terminal LOS angles respectively. However, the CFBG law cannot consider the impact
angle constraints during the design process of guidance law. Figures 2(e) and 2(f) depict
the missile lateral accelerations under the two guidance laws for case 1, which makes the
proposed control laws be possible for the actual physical limit. However, the proposed
method is continuous, smooth and has small control amplitude compared with CFBG. It
can be visibly observed from Figures 2(g) and 2(h) that the proposed law can guarantee
guidance performance about the maneuvering target intercepted by the missile.

(2) Simulation analysis for constant maneuvering
For case 2, its control parameters are the same as case 1. The simulation curves

obtained by the proposed method and CFBG are shown in Figures 3(a)-3(g) for case 2.
The simulation curves include the responses of line of sight angle, line of sight angular
rate, missile acceleration command, relative distance, trajectories of the missile and the
target. From Figures 3(a) and 3(b), assuredly the performance of the designed guidance
laws is superior in comparison with CFBG because it can drive the LOS angular rate to
zero faster. The miss distance is 0.345 m about the proposed guidance law while CFBG
law is 1.860 m. The curves of LOS angle error under the presented method and CFBG are
shown in Figures 3(c) and 3(d). Assuredly, the proposed method can make LOS angles
converge to their desired terminal LOS angles. Form Figures 3(e) and 3(f), it can be
known that the missile accelerations under both proposed guidance law can satisfy the
reasonable bounds. However, the missile accelerations produced by the presented method
is much smoother and smaller than those under the CFBG. According to the observation
from Figures 3(g)-3(h), the missile precision intercepting the maneuvering target can be
guaranteed under the proposed method.
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(a) Elevation line of sight angular rate (b) Azimuth line of sight angular rate

(c) Elevation line of sight angle error (d) Azimuth line of sight angle error

(e) Elevation acceleration command in
loop

(f) Azimuth acceleration command

(g) Relative distance (h) Interception geometry

Figure 2. Simulation results for case 1
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(a) Elevation line of sight angular rate (b) Azimuth line of sight angular rate

(c) Elevation line of sight angle error (d) Azimuth line of sight angle error

(e) Elevation acceleration command (f) Azimuth acceleration command

(g) Relative distance (h) Interception geometry

Figure 3. Simulation results for case 2
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5. Conclusions. In this paper, a new adaptive dynamic surface guidance scheme is pro-
posed for the terminal guidance problem of missiles intercepting the maneuvering targets
subject to impact angle constraints, second-order dynamics of missile autopilot and input
constraints. The conclusions are as the following.

(1) The proposed guidance law employs the sliding mode filter to eliminate the “explo-
sion of complexity” in inherent in traditional back-stepping method. At the same time,
the adaptive algorithms are introduced to eliminate the effect of the error caused by the
sliding mode filter.

(2) The auxiliary system is introduced in controller design to solve input constraints,
which makes the designed controller meet physical constraints of the actuators. And
under the designed controller, the states of guidance system can be stabilized in a small
region around zero in finite time.

(3) The simulation results demonstrate that the guidance scheme is effective for the
missiles to intercept the maneuvering targets in different situations.

(4) In the future, the problem of actuator faults and some states unknown should be
considered in the guidance law design. Under the constraints above, how to develop the
advance guidance law which can produce higher guidance precision and better robustness
is a great difficult problem.
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